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Abstract 
In this paper, we present a new algorithm to route text queries within a P2P network, called Neighboring-Ant 
Search (NAS) algorithm. The algorithm is based on the Ant Colony System metaheuristic and the SemAnt 
algorithm. More so, NAS is hybridized with local environment strategies of learning, characterization, and 
exploration. Two Learning Rules (LR) are used to learn from past performance, these rules are modified by three 
new Learning Functions (LF). A Degree-Dispersion-Coefficient (DDC) as a local topological metric is used for 
the structural characterization. A variant of the well-known one-step Lookahead exploration is used to search the 
nearby environment. These local strategies make NAS self-adaptive and improve the performance of the 
distributed search. Our results show the contribution of each proposed strategy to the performance of the NAS 
algorithm. The results reveal that NAS algorithm outperforms methods proposed in the literature, such as 
Random-Walk and SemAnt. 
Keywords: Search Process, Internet, Complex Network, Ant Colony System, Local Environment, 
Neighbor. 
 
Resumen 
En este documento, proponemos un nuevo algoritmo para ruteo de consultas textuales dentro de una red P2P, 
llamado Neighboring-Ant Search (NAS). El algoritmo está basado en la metaheurística Ant Colony System (ACS) 
y el algoritmo SemAnt. Además, NAS está hibridizado con estrategias del ambiente local de aprendizaje, 
caracterización y exploración. Dos reglas de aprendizaje (LR) son usadas para aprender del rendimiento pasado, 
esas reglas son modificadas por tres Funciones de Aprendizaje (LF). Un Coeficiente de Dispersión del Grado 
(DDC) es usado como una métrica topológica local para la caracterización estructural. Una adaptación del bien 
conocido método de exploración de adelanto (one-step Lookahead) es usado para explorar el ambiente cercano. 
Estas estrategias locales proveen a NAS una capacidad auto-adaptativa que mejora el rendimiento de la búsqueda 
distribuida. Los resultados experimentales muestran la contribución de cada estrategia propuesta para el 
rendimiento del algoritmo NAS. Estos resultados revelan que el algoritmo NAS obtiene mejores resultados que los 
algoritmos propuestos en la literatura existente tales como Random-Walk y SemAnt. 
Palabras Clave: Proceso de Búsqueda, Internet, Redes Complejas, Sistema de Colonia de Hormigas, Ambiente 
Local, Vecindad. 

 
1 Introduction 
 
The popularity of peer-to-peer (P2P) systems is motivated by the benefits offered to the end user. In contrast to the 
traditional Web, a P2P system does not need to rely on any dedicated centralized servers, which makes P2P networks 
reliable and fault tolerant. Hence a user can easily join a network and leave when necessary, giving rise to 
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unstructured self-organizing networks. Due to the unstructured nature, these applications often employ a flooding-
based data search mechanism, which generates severe communication overhead and limits the growth of P2P 
systems. These systems together with the underlying Internet are considered complex dynamic distributed networks 
for their size and constantly evolving interconnectivity. In complex dynamic distributed networks, global knowledge 
collection is not a feasible approach to handle queries on shared resources. In these circumstances, each query needs 
to determine locally its behavior, without resorting to a global control mechanism. 

Digital technologies and new standards make it possible to produce music, movies, pictures, images, and textual 
information in a digital form with reasonable quality. Internet is the essential, cheapest and most convenient way to 
manage digital files, to sell, buy, and share digital content. Such a popular application like the World Wide Web 
(WWW) has not been convenient enough to share files. Sharing content on the WWW requires infrastructure (a 
HTTP server) and makes it difficult for individual users to share their files in an easy and independent way. The files 
published on the WWW are available for search only after their respective sites are crawled and indexed by existing 
centralized search engines. Since such operations may take a significant amount of time, users have no direct control 
over the published files to make them available for immediate search. These disadvantages make the use of 
traditional applications for file sharing complicated [13]. 

In 1999 the P2P systems arose as a response to the increased demand for file sharing. These systems are formed 
by interconnected peers that offer their resources to other peers within the network. The participants connect and 
disconnect constantly, producing changes in the structure of the network. Due to the unstructured nature, applications 
mainly employ flooding-based data search mechanisms. Flooding-based search generates vast amounts of Internet 
traffic that limits the growth of peer-to-peer systems. The obvious problems that appeared with the growing 
popularity of peer-to-peer file sharing systems are two: a) the poor accuracy of the information search and b) the 
traffic caused by the flooding-based search. Measurements have shown that peer-to-peer systems are the main source 
of Internet traffic [13],[10],[11], making the development of new approaches to avoid flooding an important research 
challenge. 

The Semantic Query Routing Problem consists in each peer deciding, based on a keyword in the query, to which 
neighboring peer to resend the text query. To avoid flooding, the goal is to maximize the number and the quality of 
query results, while minimizing the use of the resources of the network. Existing approaches for query routing in P2P 
networks range from simple broadcasting techniques to sophisticated methods [13],[10],[11]. Due to the fact that 
P2P networks are based on non-central authorities and high-growing dimension, the challenge for query routing is 
the development of methods that adapt themselves to dynamic environments. Such intelligent adaptation must be 
based only on the local knowledge of each peer. Among the intelligent mechanisms successfully applied to several 
problems in distributed systems, lie the ant-colony methods. The metaheuristic of Ant Colony System, proposed by 
Dorigo [12], solves optimization problems based on graphs. Many ant algorithms have been specifically designed for 
handling routing tables in telecommunications. However, there are very few ant algorithms for handling routing 
tables in the Semantic Query Routing Problem [10].  

In this paper, we present a novel algorithm for distributed text query routing. The algorithm, called the 
Neighboring-Ant Search (NAS), is based on two well-known ant algorithms: the Ant Colony System [7] and the 
SemAnt [10]. Additionally, NAS is hybridized with local strategies of learning, characterization, and exploration. 
Three functions are employed to learn from past performance. The first function is used to evaluate the NAS 
performance based on the found and expected results. The second function qualifies the NAS performance based on 
the available time for the searching. The third function qualifies each peer depending on the distance towards a 
previously found resource. A topological metric based on the number of connections of each peer is used for the 
structural characterization. An adaptation of the well-known one-step Lookahead search is used to explore the 
neighbor peers of the nearby environment [11]. These three strategies contribute with the main goal of the 
application which is to find a greater amount of resources in the least amount of time.  
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2 Background 
 
In order to place the research in context, this section is divided in four parts. The first part defines, explains, and 
models the peer-to-peer complex networks. The second part explains and formally defines the Semantic Query 
Routing Problem. The third part explains and defines the Lookahead exploration and the Degree-Dispersion-
Coefficient local metric. The last part refers to the Random-Walk algorithm. 
 
2.1 Peer-to-Peer Complex Networks  
P2P systems are formed by interconnected peers that offer their resources to other peers within the network. Hence a 
P2P network is a distributed system that can be modeled as a graph. Each peer in the network is represented by a 
node (also called a vertex) of the graph. The interactions among the peers are represented by the connections (also 
called the edges) of the graph. In P2P networks, the nodes are capable of self-organization for the purpose of sharing 
resources, without requiring the mediation or support of a server or centralized authority [2].  

More so a P2P system, together with the underlying communication network (typically Internet), forms a 
complex system that requires autonomous operation through mechanisms of intelligent search [10]. Amaral [1] 
published a classification for different types of systems and categorized them into simple, complicated, and complex 
systems. Complex systems are those systems that have (typically) a very large number of components, the 
connections among them may evolve over time, and the roles of the components may vary. In many studies, complex 
systems are modeled as networks, giving rise to the concept of complex networks and, within this context, the term 
P2P Complex Networks. 

One of the main motivations for modeling systems as P2P complex networks is the flexibility and generality of 
the abstract representation that allows handling properties such as dynamic topology in a natural way. A recent 
methodology for modeling complex systems, called Autonomous Oriented Computing (AOC), was proposed by Liu 
[12]. AOC consists in the formulation of a tuple that represents the general model of the system, i.e.: <{e1, 
e2,…,ei,…,eN}, E,Φ}>, where {e1,e2,…,ei,…,eN} is a subset of size N of autonomous entities, E is the environment in 
which the entities reside, and Φ is the objective function of the global system. Each entity is a basic element with a 
well-defined goal within the complex system. To achieve its goal, it has attributes that describe its behavior rules, 
current state, and an evaluation function.  We use the AOC notation to model P2P systems as follows: i) the entities 
are the agents that surf in the network with the objective of finding resources; ii) the environment is the P2P network 
and iii) the objective function is to find the maximal set of resources in the shortest possible time. A more detailed 
description of our querying system based on intelligent agents is given in Section 4. 
 
2.2 The Semantic Query Routing Problem 
The problem of locating textual information in a P2P network over the Internet is known as Semantic Query Routing 
Problem (SQRP). The goal of SQRP is to determine the shortest paths from a node that issues a query to nodes that 
can appropriately answer it (by providing the requested information). The query traverses the network moving from 
the initiating node to a neighboring node and then to a neighbor of the neighbor and so forth until it locates the 
requested resource (or gives up in its absence). This type of propagation is known as flooding and it is the most 
common search strategy in P2P networks. Algorithms for SQRP must consider several factors, ranging from 
hardware and software characteristics to user behavior. Due to its complexity [10],[1],[12],[6], solutions proposed to 
SQRP typically limit to special cases. Yang et al. [6] propose AntSearch that controls the quantity of flooding using a 
simple learning technique, whereas Michlmayr [10] proposes the SemAnt algorithm for learning from user behavior.  

Formally, SQRP is defined with the description of an Instance and an Objective that must be satisfied by a 
solution algorithm such as the ant-based algorithm proposed in this work. Instance: given a P2P network represented 
by a graph T, a set of contents distributed in the nodes called repositories R, and a set of semantic queries Q launched 
by the nodes. Each query can be launched from any node in the time T

0
, ∀T

0
 ∈ Z, assuming a discrete-time 

process. The node that originally launches a query (or receives a query from other node) in time  T
0
+i, ∀i ∈ Z+ 

∪{0}, can locally process the query and/or forward a copy of the query to a set of nearby nodes at time T
0
+(i+1).  

The query processing finishes when a stop condition has been satisfied, whether either the maximal quantity of 
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resources has been found or th time-to-live value specified for the query is reached. Objective: find a set of paths 
among the nodes launching the queries and the nodes containing the resources, such that the quantity of found 
resources is maximized and the quantity of steps given to find the resources is minimized. 

 
2.3 Lookahead and the Degree-Dispersion-Coefficient  
A node i is a neighbor of a node j if the two nodes i and j are connected by an edge (i, j) in the graph that models the 
system. The set of all neighbors of a node i is denoted by ( )iΓ . In an undirected simple graph, that is, a graph in 
which the edges are considered bidirectional communication channels and each pair of nodes may be connected by at 
most one edge, the degree of a node is the number of neighbors it has. 

A well-known strategy based on local information is the one-step Lookahead exploration method [11]. 
Lookahead is employed in algorithms to examine neighboring resources up to a certain level before deciding how to 
proceed with the search. In this work, we assume that each node knows the resources of the first-level neighbors.  

In order to locally focus the exploration strategy we use the Degree-Dispersion-Coefficient (DDC) function 
[14]. DDC is based on local information that through the dispersion of the degree of a node measures the differences 
between the degree of a node and the degrees of its neighbors, this is:   

 
( )( )
( )
iDDC i
i

σ
µ

= , ( 1 ) 

 

Where the degree variation of the set { ( )}i i∪ Γ  
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  ∑ , Ni is the number of nodes in {i ∪ Γ(i)}, and, ki and kj are the degree of nodes i and j 

respectively.   
 
2.4 Random-Walk Algorithm  
The Random-Walk (RW) search algorithm is a blind search technique where the nodes of the network possess no 
information on the location or contents of the requested resource, unless the resource resides in the node itself . Let G 
be a graph that models the network and v a node in G. A T-hop Random-Walk from v in G is a sequence of dependent 
random variables X0,..., XT defined as follows: X0 = v with probability 1 and for each i = 1,...,T, the value for Xi is 
selected uniformly at random among the nodes in 1( )iX −Γ , that is, among the neighbors of the node of the preceding 
step. In others words, a Random-Walk begins at a node and on each step moves to a neighbor of the current node, 
until it arrives to a node that meets the goal. In our P2P model, the goal is met when a node contains the requested 
resource [3]. Optionally, one could include the DCC function into the Random-Walk algorithm. A simple 
modification to include such a structural preferentiality is to choose uniformly at random two neighbors, calculate 
their DCC values, and move on to the neighbor with higher DCC. 
 
3 Related Work  

 
The success of SQR algorithms in P2P file-sharing networks lies on search mechanisms that have received special 
attention [10][6]. We summarize here some of the most relevant proposals for semantic query routing using Ant-
Colony Algorithms. These algorithms are based mainly on a learning structure named pheromone. This structure is 
used for establishing indirect communication between ants about their past performance. The pheromone table (τ) is 
used as a query routing table. 

Michlmayr [10] proposes a distributed SQRP algorithm for P2P networks called SemAnt and includes an 
evaluation of the parameter configuration that affects the performance of the algorithm. Michlmayr aims for an 
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optimal ratio between network traffic and quantity of results and compares the performance of SemAnt with the 
Random-Walk algorithm using the following metrics: i) Resource Usage define as the number of links traveled for 
each query within a given period of time, ii) Hit Rate defines as the number of resource found for each query within 
a given period of time, and iii) Efficiency defined as the ratio of resource usage to hit rate. Dividing the number of 
links traveled by the number of resources found, gives the average number of links traveled to find one resource.  

Yang et al. [6] propose an algorithm called AntSearch for non-structured P2P networks. In AntSearch, each pair 
of nodes stores information on the level of success of past queries as well as on the pheromone levels of the 
immediate neighbors. The work of Yang et al. was motivated by the need to improve search performance in terms of 
the traffic in the network and the level of information recovery. Yang et al. use three metrics to measure the 
performance of the AntSearch. One is the number of searched files for a query with a required number of results, 
given N as: a good search algorithm should retrieve the number of results over but close to N. The second one is the 
per result costs that defines the total amount of query messages divided by the number of searched results; this 
metric measures how many average query messages are generated to gain a result. Finally, search latency is defined 
as the total time taken by the algorithm. 

Di Caro and Dorigo [4] propose AntNet that is designed for packet-switched networks. The ants collaborate in 
building routing tables that adapt to current traffic in the network, with the aim of optimizing the performance of the 
entire network. AntNet uses global information on the nodes of the network in order to choose the destination nodes. 
Di Caro and Dorigo focused on standard metrics for performance evaluation, considering only sessions with equal 
costs, benefits and priority and without the possibility of requests for special services like real-time. In AntNet 
framework, the main measures are: i) throughput correctly delivered bits/sec, ii) delay distribution for data packets 
(sec), and iii) network capacity usage for data and routing packets, expressed as the sum of the used link capacities 
divided by the total available link capacity. 

Most relevant aspects of former works have been incorporated into the proposed NAS algorithm. The 
framework of AntNet algorithm is modified to correspond to the problem conditions: in AntNet the final addresses 
are known, while NAS algorithm does not know a priori the nodes where the resources are located. On the other 
hand and different to AntSearch, the SemAnt algorithm and NAS are focused on the same problem conditions, and 
both use algorithms based on AntNet algorithm. However, the difference between the SemAnt and NAS is that 
SemAnt only learns from past experience, whereas NAS takes advantage of the local environment. This means that 
the search in NAS takes place in terms of the classic local exploration method of Lookahead [11], the local structural 
metric DDC, and three local functions of the past algorithm performance. These three performance functions are 
described in the following section.  
 
4 Classical Learning Rules Modified by the Proposed Learning Functions 

 
The classic ACS algorithm is formed by two rules – selection and update – that allow the convergence of the system 
towards better results. Modifications of these rules were made with the goal of adapting the ACS algorithm to the 
SQRP. Also, new functions were added such as the DDC topological metric, the Lookahead method, and three 
Learning Functions: hit importance, time-to-live of the agent, and distance towards a resource that improve the 
performance of the system in terms of the objective of the problem. The additions of these functions improved the 
system performance and are explained in detail in this section. 

 
4.1 Learning Functions  
This section describes the new proposed Learning Functions (LF) and so is divided into three parts. The first function 
defines the hit importance, the second function defines the time-to-live importance, and the last function defines the 
distance importance. With these three LF, introduced in the classical learning rules, the agents search the resources. 

Hit Importance Function (HIT), shown in Eq. (2), qualifies the performance of the search agent k (that is, an 
ant that represents a query), based on the found result (resultsk), and the expected result (maxResults):  

 



438   Claudia Gómez Santillán, et al. 

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448 
ISSN 1405-5546 

kresults
HIT =

maxResults
, ( 2 ) 

where resultsk represents the amount of results found by the ant k and maxResults is the amount of results requested. 
The value of the HIT function is applied in the global updating function, Eq. (8), with the purpose of guiding the 
queries toward routes that provide the greatest possible amount of found resources. This HIT value is registered in 
each node of the path traversed by the search ant, as shown in Figure 1. 
Importance of Time-to-live Function (ITL_HOP), qualifies the performance of the search agent k, based on the 
time-to-live used to find one resource (TTLk) and the maximum time-to-live originally assigned:  
 

 

k

maxTTLITL_HOP =
2×TTL

, ( 3 ) 

 
where TTLk is the partial time-to-live of the ant k until the moment, and maxTTL is the maximum time-to-live 
assigned to an ant for a query.  These time measures are given in terms of the number of hops and correspond 
respectively with the given steps and the maximum steps allowed to each ant. The result is applied into the global 
updating rule, Eq. (8), with the overall goal of decreasing the time-to-live necessary to find a set of resources. The 
ITL_HOP value is registered in each node of the path traversed by the ant until the node with the last resource is 
found, as shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Importance of Distance Function (ID_HOP), for the agent k, shown in Eq. (4), qualifies each node s, which is a 
neighbor of the current node r, depending on the distance towards a previously found resource t:  
 

,  of 
-1

k
r,s,t

r,s,t

hID_HOP = r s route k
h

 
∀ ∈ 

 
 ( 4 ) 

 
when r is the current node, s is the evaluated node, t is the found resource, k is the ant agent, hk is the total number of 
steps taken by the agent, and hr,s,t is the number of hops from the source to an evaluated resource node. Once an ant k 
generates a route to a resource t, the function ID_HOPr,s,t is applied to each node belonging to this route to increase 
its importance in terms of the distance to a found resource node with respect to the length of the route. This function 
is obtained through the inverse of the total number of hops hk made by the ant on the route to the resource found, 

 
TTLk = 5 
maxTTL= 25 
ITL_HOP = 2.5  

resultsk = 3 
maxResults = 5 
HIT = 0.6 

Fig. 1. Example of the calculation of the HIT function       
 

Fig. 2. Example of the calculation of the ITL_HOP 
function 
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divided by the relative number of hops hr,s,t from the source to the node evaluated s, which is a neighbor of the 
current node r, as is shown in Figure 3.  
 
4.2 Classical Learning Rules (LR)  
This section describes the modifications made to the two classical learning rules, originally proposed by Dorigo [7] 
in the ACS algorithm. The first rule is called state transition; with this rule the next node to be visited is selected. 
The transition rule uses two strategies: exploitation and exploration. The second rule is called updating; with this 
rule the ant updates the nodes in the traversed path. The updating rule uses two strategies: local and global updating 
of the pheromone. All strategies are used to feedback the system on successful routes. 
 
 
 

 
   
 
 
 
 
 

Fig. 3. Example of the calculation of the ID_HOP function 
 

The modified state transition rule of  NAS is formulated by Eqs. (5) and (6). This: 
 

{ } { }, , , , 00,arg max _ ,  if  (exploitation)

,                                                                             otherwise (biased exploration),
n n nn r L t L r L tL n L DDC ID HOP q q

s
S

β
τ∀ ∈

    ⋅ + ≤    = 


 ( 5 ) 

 
where r is the current node where the ant k is located, u belongs to the set of neighboring nodes of r, Vk is the set of 
nodes visited by the ant k, τ is the pheromone table, t is the searched resource, β  is the parameter that determines the 
relative importance between the pheromone and the DDC with ID_HOP, q is a random number, and q0 determines 
the relative importance of exploitation versus exploration.  In case that q ≤ q0, the exploitation strategy is selected: it 
selects a node that provides a greater amount of pheromone and better connectivity with smaller numbers of hops 
toward a resource. Otherwise the exploration strategy, Eq. (6), is selected: 
 

, , , ,
, , , ,

, , , ,
( )

_
( ),

_
k

r u t u r u t
r u t r u t

r i t i r i t
i r i V

DDC ID HOP
S f p p

DDC ID HOP

β

β

τ

τ
∀ ∈Γ ∧ ∉

   ⋅ +   = =
   ⋅ +   ∑

     ,            ( 6 ) 

 
where S selects a node applying a random selection function f  based on the well-known roulette-wheel selection to 
favor nodes with higher connectivity, stronger pheromone trail, and a shorter distance to a requested resource. This 
exploration strategy stimulates the ants to search for new paths. Note that the pseudorandom variable is modified by 
the DDC topological metric and the ID_HOP learning function. 

The ACS updating rule is composed of both local and global updating. Hence the modified updating rule in this 
work is given in Eqs. (7) and (8). The local update strategy of NAS is formulated by: 
 

, , , , 0(1 )r s t r s tτ ρ τ ρ τ← − ⋅ + ⋅ , ( 7 ) 

 

hk = 5 
hr,s,t= 1, for r=1 and s =2 
hr,s,t= 3, for r=3 and s =4 
ID_HOPr,s,t = 1/5, for r=1 and s =2 
ID_HOPr,s,t = 3/5, for r=3 and s =4 
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where r is the current node where the ant k is located, s is the current neighboring node where the ant is going to 
move, t is the searched resource, τ is the pheromone table where the ant does the local updating, 0τ is the 
initialization value of the pheromone, and ρ  is the local evaporation factor of the pheromone. Each time an ant 
decides to move towards a node by the state transition rule, some pheromone is deposited at each node that has been 
visited to establish a trend towards the most frequently visited nodes. 
On the other hand, the modified global update strategy, given by Eq. (8), is computed each time that a resource is 
found and is applied to each node belonging to the route that lead to the discovery of the resource: 
 

[ ], , , ,(1 ) (1 ) _ ,  of r s t r s t w HIT w ITL HOP r s path kτ α τ α← − ⋅ + ⋅ ⋅ + − ⋅ ∀ ∈ , ( 8 ) 

 
whereα is the global evaporation factor of the pheromone, and w is a weight factor that controls the relative 
importance between the resource found (HIT function) and the time-to-live (ITL_HOP function). The amount of 
pheromone deposited depends on the quality of the solution obtained, the amount of resources found, and the time-
to-live of the ant at time of discovery. 
 
5 Multi-agent Architecture and Parallel Pseudocode  
 
In this section we describe the NAS algorithm for the Semantic Querying Routing Problem. We first present an 
agent-based architecture and then a parallel pseudocode. 

Multi-Agent System Architecture. The overall system architecture is shown in Figure 4. It comprises two 
elements: i) the environment (E) which is a static P2P complex network, with a probability distribution for the 
network topology (T), understood as a set of linked nodes with local information about their neighboring nodes, ii) 
the agents {{e1}, {e2}, {e3}} that can be of three kinds, depending on their role: query, search, and retrieval. In the 
NAS algorithm the agents are represented as ants, each agent is either an ant that carries a query (Q) or a node of the 
network that launches the query; each node also has its own repository (R).  

The query agents {e1} represent stationary ants located in the nodes that launch queries and their role is to 
create search agents.  The search agents {e2} represent ants born in a node that launches a query. Their role is to 
move through network following a set of rules. These agents operate through the state transition that chooses 
between exploratory or exploitatory movements through Eqs. (5) and (6). Each time that an action is activated the 
local update module conducts local evaporation from the pheromones table through Eq. (7). In order to evaluate its 
performance, an agent records the routes that have been selected, and each time it finds a resource, it creates a 
retrieval agent. The Lookahead strategy verifies if a resource exists in the current node or in its neighborhood. The 
time-to-live of a search agent is set at maxTTL, but the agent could also ceases to operate upon reaching the expected 
amount of results maxResult. All modules rely on control parameters that must be configured properly to ensure 
good performance of the system. The retrieval agents {e3} are ant created whenever a result is found in a node.  
These agents are responsible for evaluating the performance of the search agents and updating with feedback the 
pheromone table. With this feedback, done through Eq. 8, the route that was traversed by the search agent up the 
resource is updated on the pheromone table and returned to the end user. 

NAS Algorithm Parallel Pseudocode, is a metaheuristic algorithm, where a set of independent agents called 
ants cooperate indirectly and sporadically to achieve a common goal. The algorithm has two objectives: it seeks to 
maximize the number of resources found by the ants and to minimize the number of steps taken by the ants. NAS 
guides the queries toward nodes that have better connectivity using the local structural metric DDC [14]. Since the 
DDC, in order to minimize the hop count, measures the differences between the degree of a node and the degrees of 
its neighbors, the more frequent that a query is carried towards a resource a better path is selected. This is, the rate of 
optimization of a query depends directly on its popularity.  



A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks    441 

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448 
ISSN 1405-5546 

 
Fig. 4. NAS Architecture  

 
 

Table 1. NAS algorithm pseudo code 

01 parallel // Concurrent activity of query agents 
02       for each query in rk  create a search agent k with TTLk= maxTTL and Hitsk=0  
03                     while Hitsk < maxResults and TTLk  > 0 // Concurrent activity of search agents  
04                                 // Phase 1: The evaluation of results 
05                   if  the unvisited sk ∈ { rk ∪ Γ( rk)} has the searched resource // Lookahead strategy 
06           rk = append sk to pathk 
07                                    Hitsk = Hitsk +1                                     
09           Local Pheromone Update (Eq. 7) 
10                                    Global Pheromone Update (Eq. 8) // Concurrent activity of retrieval agents 
11      else // Phase 2: The state transition 
12                 if rk is a leaf node or does not have an unvisited neighbor , 
14     remove the last node from pathk 
15                else 
                                                 sk = apply the transition rule with the DDC function (Eqs. 5 and 6) 
16      rk  = append sk to pathk  
18      Local Pheromone Update (Eq. 7)                                            
                                   TTLk = TTLk -1 
19                      kill the search agent 

 
The NAS algorithm performs in parallel all the queries using query agents.  The role of each query agent is to 

create a search agent when a query is launched in a corresponding node. The activity of each search agent consists 
of two main phases. The first phase, the evaluation of results (lines 04-10 of the pseudocode in Table 1) implements 
the classical Lookahead technique. That is, an ant k, called search agent and located in a node rk, verifies if the 
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resource exists in an unvisited node sk that belongs to its neighborhood, including itself. If the resource is found, the 
ant adds the node sk to its path, updates the number of occurrences of the queried resource Hitsk, reduces the ant time 
TTLk by one hop, performs the local pheromone update according to Eq. (7), and performs the global pheromone 
update according to Eq. (8). The global updating of the pheromone is a concurrent activity of the ants called 
retrieval agents; the route to the resource is updated on the pheromone table and returned to the end user. In the case 
that the evaluation phase fails, a second phase, the state transition (lines 11-18 of the pseudocode in Table 1) is 
carried out. This phase selects through random number q, Eq. (5), a neighbor node s. In the case that there is no new 
node towards which to move, that is to say, the node is a leaf or all neighbor nodes have been visited, a hop 
backwards is carried out on the path. Otherwise the ant adds the selected node sk to its path, updates locally the 
pheromone, Eq. (7), and reduces TTLk by one hop.  The query process ends when the expected number of results has 
been found or TTLk reaches zero. In both cases the search agent is killed, indicating the end of the query.    
 
6 Experimental Analysis of the NAS Algorithm 
  
In this section, we describe two experiments carried out on the NAS algorithm. The objective of the first experiment 
is study the performance of NAS in comparison with algorithms proposed in the literature, SemAnt and Random-
Walk. The objective of the second experiment is to examine the contribution of each local environment strategy to 
the performance of the NAS algorithm.  

 
6.1 Experiments Setup   
The NAS algorithm was implemented to solve SQRP instances. The application of the NAS algorithm requires the 
specification of the problem instance to solve and the definition of the control parameters of the algorithm. In our 
implementation, an SQRP instance is determinated by three separate files: topology, repositories, and queries. We 
generated the experimental instances as follows. 

The generation of the topology (T) is based on the method of Barabási et al. [4] to create a non-uniform network 
with a scale-free distribution. In the scale-free or power law distribution, a reduced set of nodes has a very high 
degree and the rest of the nodes have a small degree. All networks generated have 1,024 nodes and bi-directional 
edges. The number of nodes was selected based on recommendations by Michlmayr [10] and Di Caro [6]. 

In the P2P model, each peer manages a local repository (R) of resources and offers its resources to other peers. 
We generated these repositories using “topics” obtained from ACM Computing Classification System taxonomy 
(ACMCCS). This database contains a total of 910 distinct topics. Also the content distribution is a power law:  few 
nodes contain many topics in their repositories and the rest of the nodes contain few topics. 

For the generation of the queries (Q), each node was assigned a list of possible topics to search. This list is 
limited by the total amount of topics of the ACMCCS. During each step of the experiment, each node has a 
probability of 0.1 to launch a query, selecting the topic uniformly at random within the list of possible topics of the 
node. The probability distribution of Q determines how often the query will be repeated in the network. When the 
distribution is uniform, each query is duplicated 100 times on average. 

The topology and the repositories were created static, whereas the queries were launched randomly during the 
simulation. Each simulation was run for 20,000 time units (queries). The average performance was studied by 
computing three performance measures each 100 units of time:  
Average hops, defined as the average amount of links travelled by a search agent until its death (that is, reaching 
either maxResults = 10 or maxTTL = 25). Average hit-rate, defined as the average number of resources found by 
each search agent until its death and Average efficiency, defined as the average hit-rate divided by the average hops.  

The control parameters of the algorithm are specified in a file containing a global static configuration of the 
NAS algorithm parameters. The configuration of the NAS algorithm used in the experimentation is shown in Table 
2. In the first column is the parameter value and the in second column is given a description of the parameter. These 
parameter values were based on recommendations done by Michlmayr [10] and Dorigo [7]. 
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6.2 Comparative study of the NAS algorithm 
In this experiment, the performance of the NAS algorithm is compared against the SemAnt [10] and Random-Walk 
[3] algorithms. For the experimentation with three algorithms we use the general specifications described in Section 
6.1.  

To carry out the experiment with the SemAnt algorithm with the same conditions, we only changed the 
parameter number of links. For SemAnt [10], the number of connections range between 4,000 and 10,000 which does 
not affect the performance of the algorithm. Hence, we fixed the number of the links to 7,000 links, choosing an 
intermediate value in that range.  

 
Table 2. Configuration parameter of the NAS algorithm 

Parameter Definition 
ρ= 0.07 Local pheromone evaporation factor 
α= 0.07 Global pheromone evaporation factor 
 τ0 = 0.009 Pheromone table initialization 
ID_HOP0 = 0.001 Initial value of the table of distances to previously encountered resources 
β = 2 Relative importance of DDC and ID_HOP with respect to the pheromone 
q0 = 0.9 Relative importance between exploration and exploitation 
maxResults =10 Maximum number of results to retrieve 
maxTTL = 15 Time-to-live of the search agents 
w = 0.5 Relative importance of the resources found and the time-to-live 

 
The experimental values for the SemAnt algorithm were obtained from [10]. For the average hit-rate variable 

the SemAnt algorithm shows values from 0.8 to 2.1 hits per query. However, for the NAS algorithm, the average hit-
rate ranges from 9.5 to 10 hits per query. On the other hand, the average hop count of the SemAnt algorithm starts 
out at 23 and lowers to 16 hops per query during the operation of the algorithm, whereas the NAS algorithm, starts at 
the average hop of 12.5 and then diminishing to 12 hops per query. Finally, the average efficiency of the SemAnt 
algorithm improves from 0.034 to 0.13 hits per hop, while for the NAS algorithm, as shown in Figure 5, it increases 
from an initial value of 0.76 up to 0.84 hits per hop. 

 

 
Fig. 5. Performance of NAS Algorithm average efficiency 

 
For the experiment with the Random-Walk (RW) algorithm, we also used the general specifications described in 

Section 6.1. Figure 6(a) shows the average hit-rate for both RW and NAS algorithms. The behavior changes slightly 
over time. That is, the average hit-rate in RW varies between 1 to 0.5 hits per query, while in NAS, the average hit-
rate varies between 9.6 to 10 hits per query. Similarly Figure 6(b) shows the average hop count for both RW and 
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NAS algorithms. The behavior of the RW does not evolve; the average hop count keeps around 15 hops per query, 
from the beginning to the end. However in NAS the behavior evolves, starting at 12.5 and lowering down to 12 hops 
on average. Finally, Figure 6(c) shows the average efficiency for both RW and NAS algorithms. In the RW 
algorithm, the behavior does not evolve; the average efficiency keeps around 0.5 hits per hop. For NAS the behavior 
does evolve; so that the average efficiency increases from 0.76 to 0.84 hits per hop. 
 

 

 

 
Fig. 6. Comparison of NAS Algorithm against Random-Walk Algorithm. a) average hits-rate,  

b) Average hops and c) average efficiency 
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6.3 Experiments for the Analysis of the Local Environment Strategies of NAS Algorithm 
In this experiment, the performance of the NAS algorithm is analyzed experimentally in order to determine the 
contribution of each of the three used local strategies – modified LR, DDC, and Lookahead – to increase the 
performance of the NAS algorithm.  
 

 

 

 
Fig. 7. Comparisons of NAS Local Environment Strategies. a) Average HITS, 

b) Average HOPS and c) Average Efficiency 
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For evaluating the contribution of modified LR, DDC and Lookahead strategies were eliminated. The 
contribution of DDC was evaluated eliminating only Lookahead; modified LR was kept because DDC is included in 
it. Similarly, Lookahead was evaluated without modified LR and DDC. For the experiment with the NAS algorithm, 
we used the general specification described in Section 6.1, with the exception of three parameters: maxResult =5, 
maxTTL=10, and q0 = 0.90.  

Figure 7(a) shows the average hit-rate performed during a set of queries with NAS and three different 
configurations of NAS: modified LR, DDC and Lookahead. For the modified LR and DDC, the algorithms start 
approximately at 0.5 hits per query; at the end, the average hit-rate increases to 2 hits per query. For Lookahead and 
NAS the average hit-rate starts at 4.3 and after 1,000 queries the behavior changes; for Lookahead the average hit-
rate ends at 4 and for NAS ends at 5.  On the other hand, Figure 7(b) shows the average hops performed during in a 
set of queries with NAS and three different configurations. For modified LR and DDC, the behavior is approximately 
the same; the average hop count starts at 10 and ends at 9.5 hops per query. However, the Lookahead and NAS start 
at 7.8 and after 1500 queries, the behavior changes; for Lookahead the average hop count ends at 8 and for NAS ends 
at 6.9 hops per query. Finally, Figure 7(c) shows the average efficiency. For the modified LR and DDC, the behavior 
is approximately the same; at the beginning the efficiency is around 0.05, at the end the efficiency increases to 0.2 
hits per hop. However, for the Lookahead and NAS, the behavior evolves such that the average efficiency stars at 
0.55 and after 1,500 queries, the behavior changes; for Lookahead, the average efficiency ends at 0.5, for NAS, the 
average efficiency ends at 0.7. Hence, the best performance was obtained with the combination of these three 
strategies.  

Besides, the results reveal that for the specified configuration, the Lookahead method shown the biggest 
contribution to the final performance of NAS, giving an efficiency of 0.5 hits per hop. While the DDC and modified 
LR had a similar impact of 0.2 hits per hop. In experimentations with other configurations [13], the analyzed 
strategies have shown different contributions. Due to this result, it becomes relevant to study further the relations that 
exist between the problem characteristic and the algorithm parameter configuration in order to yield a bigger benefit 
of each one local strategy proposed for NAS.   
 
7 Conclusions and future work 

 
For the solution of the Semantic Query Routing Problem (SQRP), we proposed a novel algorithm called NAS that is 
based on existing ant colony algorithms but incorporating local environment strategies: modified LR, DDC, and 
Lookahead. Three functions are used to learn from past performance: importance of hits (HIT), importance of time-
to-live (ITL_HOP), and importance of distance (ID_HOP). This combination results in a lower hop count and an 
upper hit count, outperforming two algorithms proposed in related work, Random-Walk and SemAnt.  

Our analysis and simulations confirm that the proposed techniques are more effective at improving search 
efficiency. Specifically the NAS algorithm in the efficiency shows six times better performance efficiency, than the 
SemAnt, and seventeen times better performance than the Random-Walk. We observe that upon including learning 
and characterization with modified LR and DDC respectively, the algorithm evolves to reach an average of 2 hits 
with 9.5 hops per query. Adding only exploration with Lookahead, the algorithm keeps a constant performance of 4 
hits with 8 hops. Combining all the three strategies the NAS algorithm evolves to yield 5 hits per 6.9 hops. As 
observed, the best results were obtained in the combination of proposed strategies.  

We plan to study more profoundly the relation among SQRP characteristics, the configuration of NAS 
algorithm and the local environment strategies employed in the learning curve of ant-colony algorithms, as well as 
their effect on the performance of hop and hit count measures.  
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