
Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in
P2P Networks

Sistema de Colonia de Hormigas Autoadaptativo para el Problema de Direccionamiento de
Consultas Semánticas en Redes P2P

Claudia Gómez Santillán1,2, Laura Cruz Reyes2, Eustorgio Meza Conde1, Elisa Schaeffer3

and Guadalupe Castilla Valdez2
1Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional (CICATA- IPN).

Carretera Tampico-Puerto Industrial Altamira, Km.14.5. Altamira,Tamps.,México.
2Instituto Tecnológico de Ciudad Madero (ITCM). 1ro. de Mayo y Sor Juana I. de la Cruz s/n CP. 89440, Tamaulipas, México.

3 Facultad de Ingeniería Mecánica y Eléctrica (FIME-UANL), Avenida Universidad s/n. Cd. Universitaria, CP. 66450, San
Nicolás de los Garza, N.L. México.

cggs71@hotmail.com, lcruzreyes@prodigy.net.mx, emezac@ipn.mx,
elisa@yalma.fime.uanl.mx, gpe_cas@yaoo.com.mx.

Article received on July 17, 2009; accepted on November 05, 2009

Abstract
In this paper, we present a new algorithm to route text queries within a P2P network, called Neighboring-Ant
Search (NAS) algorithm. The algorithm is based on the Ant Colony System metaheuristic and the SemAnt
algorithm. More so, NAS is hybridized with local environment strategies of learning, characterization, and
exploration. Two Learning Rules (LR) are used to learn from past performance, these rules are modified by three
new Learning Functions (LF). A Degree-Dispersion-Coefficient (DDC) as a local topological metric is used for
the structural characterization. A variant of the well-known one-step Lookahead exploration is used to search the
nearby environment. These local strategies make NAS self-adaptive and improve the performance of the
distributed search. Our results show the contribution of each proposed strategy to the performance of the NAS
algorithm. The results reveal that NAS algorithm outperforms methods proposed in the literature, such as
Random-Walk and SemAnt.
Keywords: Search Process, Internet, Complex Network, Ant Colony System, Local Environment,
Neighbor.

Resumen
En este documento, proponemos un nuevo algoritmo para ruteo de consultas textuales dentro de una red P2P,
llamado Neighboring-Ant Search (NAS). El algoritmo está basado en la metaheurística Ant Colony System (ACS)
y el algoritmo SemAnt. Además, NAS está hibridizado con estrategias del ambiente local de aprendizaje,
caracterización y exploración. Dos reglas de aprendizaje (LR) son usadas para aprender del rendimiento pasado,
esas reglas son modificadas por tres Funciones de Aprendizaje (LF). Un Coeficiente de Dispersión del Grado
(DDC) es usado como una métrica topológica local para la caracterización estructural. Una adaptación del bien
conocido método de exploración de adelanto (one-step Lookahead) es usado para explorar el ambiente cercano.
Estas estrategias locales proveen a NAS una capacidad auto-adaptativa que mejora el rendimiento de la búsqueda
distribuida. Los resultados experimentales muestran la contribución de cada estrategia propuesta para el
rendimiento del algoritmo NAS. Estos resultados revelan que el algoritmo NAS obtiene mejores resultados que los
algoritmos propuestos en la literatura existente tales como Random-Walk y SemAnt.
Palabras Clave: Proceso de Búsqueda, Internet, Redes Complejas, Sistema de Colonia de Hormigas, Ambiente
Local, Vecindad.

1 Introduction

The popularity of peer-to-peer (P2P) systems is motivated by the benefits offered to the end user. In contrast to the
traditional Web, a P2P system does not need to rely on any dedicated centralized servers, which makes P2P networks
reliable and fault tolerant. Hence a user can easily join a network and leave when necessary, giving rise to

mailto:elisa@yalma.fime.uanl.mx�

434 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

unstructured self-organizing networks. Due to the unstructured nature, these applications often employ a flooding-
based data search mechanism, which generates severe communication overhead and limits the growth of P2P
systems. These systems together with the underlying Internet are considered complex dynamic distributed networks
for their size and constantly evolving interconnectivity. In complex dynamic distributed networks, global knowledge
collection is not a feasible approach to handle queries on shared resources. In these circumstances, each query needs
to determine locally its behavior, without resorting to a global control mechanism.

Digital technologies and new standards make it possible to produce music, movies, pictures, images, and textual
information in a digital form with reasonable quality. Internet is the essential, cheapest and most convenient way to
manage digital files, to sell, buy, and share digital content. Such a popular application like the World Wide Web
(WWW) has not been convenient enough to share files. Sharing content on the WWW requires infrastructure (a
HTTP server) and makes it difficult for individual users to share their files in an easy and independent way. The files
published on the WWW are available for search only after their respective sites are crawled and indexed by existing
centralized search engines. Since such operations may take a significant amount of time, users have no direct control
over the published files to make them available for immediate search. These disadvantages make the use of
traditional applications for file sharing complicated [13].

In 1999 the P2P systems arose as a response to the increased demand for file sharing. These systems are formed
by interconnected peers that offer their resources to other peers within the network. The participants connect and
disconnect constantly, producing changes in the structure of the network. Due to the unstructured nature, applications
mainly employ flooding-based data search mechanisms. Flooding-based search generates vast amounts of Internet
traffic that limits the growth of peer-to-peer systems. The obvious problems that appeared with the growing
popularity of peer-to-peer file sharing systems are two: a) the poor accuracy of the information search and b) the
traffic caused by the flooding-based search. Measurements have shown that peer-to-peer systems are the main source
of Internet traffic [13],[10],[11], making the development of new approaches to avoid flooding an important research
challenge.

The Semantic Query Routing Problem consists in each peer deciding, based on a keyword in the query, to which
neighboring peer to resend the text query. To avoid flooding, the goal is to maximize the number and the quality of
query results, while minimizing the use of the resources of the network. Existing approaches for query routing in P2P
networks range from simple broadcasting techniques to sophisticated methods [13],[10],[11]. Due to the fact that
P2P networks are based on non-central authorities and high-growing dimension, the challenge for query routing is
the development of methods that adapt themselves to dynamic environments. Such intelligent adaptation must be
based only on the local knowledge of each peer. Among the intelligent mechanisms successfully applied to several
problems in distributed systems, lie the ant-colony methods. The metaheuristic of Ant Colony System, proposed by
Dorigo [12], solves optimization problems based on graphs. Many ant algorithms have been specifically designed for
handling routing tables in telecommunications. However, there are very few ant algorithms for handling routing
tables in the Semantic Query Routing Problem [10].

In this paper, we present a novel algorithm for distributed text query routing. The algorithm, called the
Neighboring-Ant Search (NAS), is based on two well-known ant algorithms: the Ant Colony System [7] and the
SemAnt [10]. Additionally, NAS is hybridized with local strategies of learning, characterization, and exploration.
Three functions are employed to learn from past performance. The first function is used to evaluate the NAS
performance based on the found and expected results. The second function qualifies the NAS performance based on
the available time for the searching. The third function qualifies each peer depending on the distance towards a
previously found resource. A topological metric based on the number of connections of each peer is used for the
structural characterization. An adaptation of the well-known one-step Lookahead search is used to explore the
neighbor peers of the nearby environment [11]. These three strategies contribute with the main goal of the
application which is to find a greater amount of resources in the least amount of time.

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 435

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

2 Background

In order to place the research in context, this section is divided in four parts. The first part defines, explains, and
models the peer-to-peer complex networks. The second part explains and formally defines the Semantic Query
Routing Problem. The third part explains and defines the Lookahead exploration and the Degree-Dispersion-
Coefficient local metric. The last part refers to the Random-Walk algorithm.

2.1 Peer-to-Peer Complex Networks
P2P systems are formed by interconnected peers that offer their resources to other peers within the network. Hence a
P2P network is a distributed system that can be modeled as a graph. Each peer in the network is represented by a
node (also called a vertex) of the graph. The interactions among the peers are represented by the connections (also
called the edges) of the graph. In P2P networks, the nodes are capable of self-organization for the purpose of sharing
resources, without requiring the mediation or support of a server or centralized authority [2].

More so a P2P system, together with the underlying communication network (typically Internet), forms a
complex system that requires autonomous operation through mechanisms of intelligent search [10]. Amaral [1]
published a classification for different types of systems and categorized them into simple, complicated, and complex
systems. Complex systems are those systems that have (typically) a very large number of components, the
connections among them may evolve over time, and the roles of the components may vary. In many studies, complex
systems are modeled as networks, giving rise to the concept of complex networks and, within this context, the term
P2P Complex Networks.

One of the main motivations for modeling systems as P2P complex networks is the flexibility and generality of
the abstract representation that allows handling properties such as dynamic topology in a natural way. A recent
methodology for modeling complex systems, called Autonomous Oriented Computing (AOC), was proposed by Liu
[12]. AOC consists in the formulation of a tuple that represents the general model of the system, i.e.: <{e1,
e2,…,ei,…,eN}, E,Φ}>, where {e1,e2,…,ei,…,eN} is a subset of size N of autonomous entities, E is the environment in
which the entities reside, and Φ is the objective function of the global system. Each entity is a basic element with a
well-defined goal within the complex system. To achieve its goal, it has attributes that describe its behavior rules,
current state, and an evaluation function. We use the AOC notation to model P2P systems as follows: i) the entities
are the agents that surf in the network with the objective of finding resources; ii) the environment is the P2P network
and iii) the objective function is to find the maximal set of resources in the shortest possible time. A more detailed
description of our querying system based on intelligent agents is given in Section 4.

2.2 The Semantic Query Routing Problem
The problem of locating textual information in a P2P network over the Internet is known as Semantic Query Routing
Problem (SQRP). The goal of SQRP is to determine the shortest paths from a node that issues a query to nodes that
can appropriately answer it (by providing the requested information). The query traverses the network moving from
the initiating node to a neighboring node and then to a neighbor of the neighbor and so forth until it locates the
requested resource (or gives up in its absence). This type of propagation is known as flooding and it is the most
common search strategy in P2P networks. Algorithms for SQRP must consider several factors, ranging from
hardware and software characteristics to user behavior. Due to its complexity [10],[1],[12],[6], solutions proposed to
SQRP typically limit to special cases. Yang et al. [6] propose AntSearch that controls the quantity of flooding using a
simple learning technique, whereas Michlmayr [10] proposes the SemAnt algorithm for learning from user behavior.

Formally, SQRP is defined with the description of an Instance and an Objective that must be satisfied by a
solution algorithm such as the ant-based algorithm proposed in this work. Instance: given a P2P network represented
by a graph T, a set of contents distributed in the nodes called repositories R, and a set of semantic queries Q launched
by the nodes. Each query can be launched from any node in the time T

0
, ∀T

0
 ∈ Z, assuming a discrete-time

process. The node that originally launches a query (or receives a query from other node) in time T
0
+i, ∀i ∈ Z+

∪{0}, can locally process the query and/or forward a copy of the query to a set of nearby nodes at time T
0
+(i+1).

The query processing finishes when a stop condition has been satisfied, whether either the maximal quantity of

436 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

resources has been found or th time-to-live value specified for the query is reached. Objective: find a set of paths
among the nodes launching the queries and the nodes containing the resources, such that the quantity of found
resources is maximized and the quantity of steps given to find the resources is minimized.

2.3 Lookahead and the Degree-Dispersion-Coefficient
A node i is a neighbor of a node j if the two nodes i and j are connected by an edge (i, j) in the graph that models the
system. The set of all neighbors of a node i is denoted by ()iΓ . In an undirected simple graph, that is, a graph in
which the edges are considered bidirectional communication channels and each pair of nodes may be connected by at
most one edge, the degree of a node is the number of neighbors it has.

A well-known strategy based on local information is the one-step Lookahead exploration method [11].
Lookahead is employed in algorithms to examine neighboring resources up to a certain level before deciding how to
proceed with the search. In this work, we assume that each node knows the resources of the first-level neighbors.

In order to locally focus the exploration strategy we use the Degree-Dispersion-Coefficient (DDC) function
[14]. DDC is based on local information that through the dispersion of the degree of a node measures the differences
between the degree of a node and the degrees of its neighbors, this is:

()()
()
iDDC i
i

σ
µ

= , (1)

Where the degree variation of the set { ()}i i∪ Γ
[]2 2

()()
j i i i

j i

i

k k
i

N

µ µ
σ ∈Γ

− + −
=

 ∑
, the average degree found in the

set {i ∪ Γ(i)} ()()
j i

j i

i

k k
i

N
µ ∈Γ

+
=

 ∑ , Ni is the number of nodes in {i ∪ Γ(i)}, and, ki and kj are the degree of nodes i and j

respectively.

2.4 Random-Walk Algorithm
The Random-Walk (RW) search algorithm is a blind search technique where the nodes of the network possess no
information on the location or contents of the requested resource, unless the resource resides in the node itself . Let G
be a graph that models the network and v a node in G. A T-hop Random-Walk from v in G is a sequence of dependent
random variables X0,..., XT defined as follows: X0 = v with probability 1 and for each i = 1,...,T, the value for Xi is
selected uniformly at random among the nodes in 1()iX −Γ , that is, among the neighbors of the node of the preceding
step. In others words, a Random-Walk begins at a node and on each step moves to a neighbor of the current node,
until it arrives to a node that meets the goal. In our P2P model, the goal is met when a node contains the requested
resource [3]. Optionally, one could include the DCC function into the Random-Walk algorithm. A simple
modification to include such a structural preferentiality is to choose uniformly at random two neighbors, calculate
their DCC values, and move on to the neighbor with higher DCC.

3 Related Work

The success of SQR algorithms in P2P file-sharing networks lies on search mechanisms that have received special
attention [10][6]. We summarize here some of the most relevant proposals for semantic query routing using Ant-
Colony Algorithms. These algorithms are based mainly on a learning structure named pheromone. This structure is
used for establishing indirect communication between ants about their past performance. The pheromone table (τ) is
used as a query routing table.

Michlmayr [10] proposes a distributed SQRP algorithm for P2P networks called SemAnt and includes an
evaluation of the parameter configuration that affects the performance of the algorithm. Michlmayr aims for an

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 437

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

optimal ratio between network traffic and quantity of results and compares the performance of SemAnt with the
Random-Walk algorithm using the following metrics: i) Resource Usage define as the number of links traveled for
each query within a given period of time, ii) Hit Rate defines as the number of resource found for each query within
a given period of time, and iii) Efficiency defined as the ratio of resource usage to hit rate. Dividing the number of
links traveled by the number of resources found, gives the average number of links traveled to find one resource.

Yang et al. [6] propose an algorithm called AntSearch for non-structured P2P networks. In AntSearch, each pair
of nodes stores information on the level of success of past queries as well as on the pheromone levels of the
immediate neighbors. The work of Yang et al. was motivated by the need to improve search performance in terms of
the traffic in the network and the level of information recovery. Yang et al. use three metrics to measure the
performance of the AntSearch. One is the number of searched files for a query with a required number of results,
given N as: a good search algorithm should retrieve the number of results over but close to N. The second one is the
per result costs that defines the total amount of query messages divided by the number of searched results; this
metric measures how many average query messages are generated to gain a result. Finally, search latency is defined
as the total time taken by the algorithm.

Di Caro and Dorigo [4] propose AntNet that is designed for packet-switched networks. The ants collaborate in
building routing tables that adapt to current traffic in the network, with the aim of optimizing the performance of the
entire network. AntNet uses global information on the nodes of the network in order to choose the destination nodes.
Di Caro and Dorigo focused on standard metrics for performance evaluation, considering only sessions with equal
costs, benefits and priority and without the possibility of requests for special services like real-time. In AntNet
framework, the main measures are: i) throughput correctly delivered bits/sec, ii) delay distribution for data packets
(sec), and iii) network capacity usage for data and routing packets, expressed as the sum of the used link capacities
divided by the total available link capacity.

Most relevant aspects of former works have been incorporated into the proposed NAS algorithm. The
framework of AntNet algorithm is modified to correspond to the problem conditions: in AntNet the final addresses
are known, while NAS algorithm does not know a priori the nodes where the resources are located. On the other
hand and different to AntSearch, the SemAnt algorithm and NAS are focused on the same problem conditions, and
both use algorithms based on AntNet algorithm. However, the difference between the SemAnt and NAS is that
SemAnt only learns from past experience, whereas NAS takes advantage of the local environment. This means that
the search in NAS takes place in terms of the classic local exploration method of Lookahead [11], the local structural
metric DDC, and three local functions of the past algorithm performance. These three performance functions are
described in the following section.

4 Classical Learning Rules Modified by the Proposed Learning Functions

The classic ACS algorithm is formed by two rules – selection and update – that allow the convergence of the system
towards better results. Modifications of these rules were made with the goal of adapting the ACS algorithm to the
SQRP. Also, new functions were added such as the DDC topological metric, the Lookahead method, and three
Learning Functions: hit importance, time-to-live of the agent, and distance towards a resource that improve the
performance of the system in terms of the objective of the problem. The additions of these functions improved the
system performance and are explained in detail in this section.

4.1 Learning Functions
This section describes the new proposed Learning Functions (LF) and so is divided into three parts. The first function
defines the hit importance, the second function defines the time-to-live importance, and the last function defines the
distance importance. With these three LF, introduced in the classical learning rules, the agents search the resources.

Hit Importance Function (HIT), shown in Eq. (2), qualifies the performance of the search agent k (that is, an
ant that represents a query), based on the found result (resultsk), and the expected result (maxResults):

438 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

kresults
HIT =

maxResults
, (2)

where resultsk represents the amount of results found by the ant k and maxResults is the amount of results requested.
The value of the HIT function is applied in the global updating function, Eq. (8), with the purpose of guiding the
queries toward routes that provide the greatest possible amount of found resources. This HIT value is registered in
each node of the path traversed by the search ant, as shown in Figure 1.
Importance of Time-to-live Function (ITL_HOP), qualifies the performance of the search agent k, based on the
time-to-live used to find one resource (TTLk) and the maximum time-to-live originally assigned:

k

maxTTLITL_HOP =
2×TTL

, (3)

where TTLk is the partial time-to-live of the ant k until the moment, and maxTTL is the maximum time-to-live
assigned to an ant for a query. These time measures are given in terms of the number of hops and correspond
respectively with the given steps and the maximum steps allowed to each ant. The result is applied into the global
updating rule, Eq. (8), with the overall goal of decreasing the time-to-live necessary to find a set of resources. The
ITL_HOP value is registered in each node of the path traversed by the ant until the node with the last resource is
found, as shown in Figure 2.

Importance of Distance Function (ID_HOP), for the agent k, shown in Eq. (4), qualifies each node s, which is a
neighbor of the current node r, depending on the distance towards a previously found resource t:

, of
-1

k
r,s,t

r,s,t

hID_HOP = r s route k
h

∀ ∈

 (4)

when r is the current node, s is the evaluated node, t is the found resource, k is the ant agent, hk is the total number of
steps taken by the agent, and hr,s,t is the number of hops from the source to an evaluated resource node. Once an ant k
generates a route to a resource t, the function ID_HOPr,s,t is applied to each node belonging to this route to increase
its importance in terms of the distance to a found resource node with respect to the length of the route. This function
is obtained through the inverse of the total number of hops hk made by the ant on the route to the resource found,

TTLk = 5
maxTTL= 25
ITL_HOP = 2.5

resultsk = 3
maxResults = 5
HIT = 0.6

Fig. 1. Example of the calculation of the HIT function

Fig. 2. Example of the calculation of the ITL_HOP
function

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 439

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

divided by the relative number of hops hr,s,t from the source to the node evaluated s, which is a neighbor of the
current node r, as is shown in Figure 3.

4.2 Classical Learning Rules (LR)
This section describes the modifications made to the two classical learning rules, originally proposed by Dorigo [7]
in the ACS algorithm. The first rule is called state transition; with this rule the next node to be visited is selected.
The transition rule uses two strategies: exploitation and exploration. The second rule is called updating; with this
rule the ant updates the nodes in the traversed path. The updating rule uses two strategies: local and global updating
of the pheromone. All strategies are used to feedback the system on successful routes.

Fig. 3. Example of the calculation of the ID_HOP function

The modified state transition rule of NAS is formulated by Eqs. (5) and (6). This:

{ } { }, , , , 00,arg max _ , if (exploitation)

, otherwise (biased exploration),
n n nn r L t L r L tL n L DDC ID HOP q q

s
S

β
τ∀ ∈

 ⋅ + ≤ =

 (5)

where r is the current node where the ant k is located, u belongs to the set of neighboring nodes of r, Vk is the set of
nodes visited by the ant k, τ is the pheromone table, t is the searched resource, β is the parameter that determines the
relative importance between the pheromone and the DDC with ID_HOP, q is a random number, and q0 determines
the relative importance of exploitation versus exploration. In case that q ≤ q0, the exploitation strategy is selected: it
selects a node that provides a greater amount of pheromone and better connectivity with smaller numbers of hops
toward a resource. Otherwise the exploration strategy, Eq. (6), is selected:

, , , ,
, , , ,

, , , ,
()

_
(),

_
k

r u t u r u t
r u t r u t

r i t i r i t
i r i V

DDC ID HOP
S f p p

DDC ID HOP

β

β

τ

τ
∀ ∈Γ ∧ ∉

 ⋅ + = =
 ⋅ + ∑

 , (6)

where S selects a node applying a random selection function f based on the well-known roulette-wheel selection to
favor nodes with higher connectivity, stronger pheromone trail, and a shorter distance to a requested resource. This
exploration strategy stimulates the ants to search for new paths. Note that the pseudorandom variable is modified by
the DDC topological metric and the ID_HOP learning function.

The ACS updating rule is composed of both local and global updating. Hence the modified updating rule in this
work is given in Eqs. (7) and (8). The local update strategy of NAS is formulated by:

, , , , 0(1)r s t r s tτ ρ τ ρ τ← − ⋅ + ⋅ , (7)

hk = 5
hr,s,t= 1, for r=1 and s =2
hr,s,t= 3, for r=3 and s =4
ID_HOPr,s,t = 1/5, for r=1 and s =2
ID_HOPr,s,t = 3/5, for r=3 and s =4

440 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

where r is the current node where the ant k is located, s is the current neighboring node where the ant is going to
move, t is the searched resource, τ is the pheromone table where the ant does the local updating, 0τ is the
initialization value of the pheromone, and ρ is the local evaporation factor of the pheromone. Each time an ant
decides to move towards a node by the state transition rule, some pheromone is deposited at each node that has been
visited to establish a trend towards the most frequently visited nodes.
On the other hand, the modified global update strategy, given by Eq. (8), is computed each time that a resource is
found and is applied to each node belonging to the route that lead to the discovery of the resource:

[], , , ,(1) (1) _ , of r s t r s t w HIT w ITL HOP r s path kτ α τ α← − ⋅ + ⋅ ⋅ + − ⋅ ∀ ∈ , (8)

whereα is the global evaporation factor of the pheromone, and w is a weight factor that controls the relative
importance between the resource found (HIT function) and the time-to-live (ITL_HOP function). The amount of
pheromone deposited depends on the quality of the solution obtained, the amount of resources found, and the time-
to-live of the ant at time of discovery.

5 Multi-agent Architecture and Parallel Pseudocode

In this section we describe the NAS algorithm for the Semantic Querying Routing Problem. We first present an
agent-based architecture and then a parallel pseudocode.

Multi-Agent System Architecture. The overall system architecture is shown in Figure 4. It comprises two
elements: i) the environment (E) which is a static P2P complex network, with a probability distribution for the
network topology (T), understood as a set of linked nodes with local information about their neighboring nodes, ii)
the agents {{e1}, {e2}, {e3}} that can be of three kinds, depending on their role: query, search, and retrieval. In the
NAS algorithm the agents are represented as ants, each agent is either an ant that carries a query (Q) or a node of the
network that launches the query; each node also has its own repository (R).

The query agents {e1} represent stationary ants located in the nodes that launch queries and their role is to
create search agents. The search agents {e2} represent ants born in a node that launches a query. Their role is to
move through network following a set of rules. These agents operate through the state transition that chooses
between exploratory or exploitatory movements through Eqs. (5) and (6). Each time that an action is activated the
local update module conducts local evaporation from the pheromones table through Eq. (7). In order to evaluate its
performance, an agent records the routes that have been selected, and each time it finds a resource, it creates a
retrieval agent. The Lookahead strategy verifies if a resource exists in the current node or in its neighborhood. The
time-to-live of a search agent is set at maxTTL, but the agent could also ceases to operate upon reaching the expected
amount of results maxResult. All modules rely on control parameters that must be configured properly to ensure
good performance of the system. The retrieval agents {e3} are ant created whenever a result is found in a node.
These agents are responsible for evaluating the performance of the search agents and updating with feedback the
pheromone table. With this feedback, done through Eq. 8, the route that was traversed by the search agent up the
resource is updated on the pheromone table and returned to the end user.

NAS Algorithm Parallel Pseudocode, is a metaheuristic algorithm, where a set of independent agents called
ants cooperate indirectly and sporadically to achieve a common goal. The algorithm has two objectives: it seeks to
maximize the number of resources found by the ants and to minimize the number of steps taken by the ants. NAS
guides the queries toward nodes that have better connectivity using the local structural metric DDC [14]. Since the
DDC, in order to minimize the hop count, measures the differences between the degree of a node and the degrees of
its neighbors, the more frequent that a query is carried towards a resource a better path is selected. This is, the rate of
optimization of a query depends directly on its popularity.

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 441

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

Fig. 4. NAS Architecture

Table 1. NAS algorithm pseudo code

01 parallel // Concurrent activity of query agents
02 for each query in rk create a search agent k with TTLk= maxTTL and Hitsk=0
03 while Hitsk < maxResults and TTLk > 0 // Concurrent activity of search agents
04 // Phase 1: The evaluation of results
05 if the unvisited sk ∈ { rk ∪ Γ(rk)} has the searched resource // Lookahead strategy
06 rk = append sk to pathk
07 Hitsk = Hitsk +1
09 Local Pheromone Update (Eq. 7)
10 Global Pheromone Update (Eq. 8) // Concurrent activity of retrieval agents
11 else // Phase 2: The state transition
12 if rk is a leaf node or does not have an unvisited neighbor ,
14 remove the last node from pathk
15 else
 sk = apply the transition rule with the DDC function (Eqs. 5 and 6)
16 rk = append sk to pathk
18 Local Pheromone Update (Eq. 7)
 TTLk = TTLk -1
19 kill the search agent

The NAS algorithm performs in parallel all the queries using query agents. The role of each query agent is to

create a search agent when a query is launched in a corresponding node. The activity of each search agent consists
of two main phases. The first phase, the evaluation of results (lines 04-10 of the pseudocode in Table 1) implements
the classical Lookahead technique. That is, an ant k, called search agent and located in a node rk, verifies if the

ENVIRONMENT (E)

P2P NETWORK

SEARCH AGENT

Performance
Evaluation

Retrieval Agent
Creation

(Lookahead)

Action Selector
Environment

Characterization
(τ , DDC y ID_HOP)

Learning
Local Update

Changes

Knowledge

Generator of
exploitatory

actions

Goals for Learning

Generator of
exploratory

actions

Learning
Global Update

(ID_HOP)

Performance Evaluation

(HIT, ITL_HOP)

RETRIEVAL AGENT

Feedback

QUERY AGENT

Search Agent Creation

agents {e1}

agents{e2}

agents {e3}
Q

R Repositories

Queries

Topology

R

R

R

R

R
R

R

R

R
R

R

Q2
Q1

Q3

ENVIRONMENT (E)

P2P NETWORK

SEARCH AGENT

Performance
Evaluation

Retrieval Agent
Creation

(Lookahead)

Action Selector
Environment

Characterization
(τ , DDC y ID_HOP)

Learning
Local Update

Changes

Knowledge

Changes

Knowledge

Generator of
exploitatory

actions

Goals for Learning

Generator of
exploratory

actions

Learning
Global Update

(ID_HOP)

Performance Evaluation

(HIT, ITL_HOP)

RETRIEVAL AGENT

Feedback

QUERY AGENT

Search Agent Creation

agents {e1}

agents{e2}

agents {e3}
Q

R Repositories

Queries

Topology

R Repositories

Queries

Topology

R

R

R

R

R
R

R

R

R
R

R

Q2
Q1

Q3

442 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

resource exists in an unvisited node sk that belongs to its neighborhood, including itself. If the resource is found, the
ant adds the node sk to its path, updates the number of occurrences of the queried resource Hitsk, reduces the ant time
TTLk by one hop, performs the local pheromone update according to Eq. (7), and performs the global pheromone
update according to Eq. (8). The global updating of the pheromone is a concurrent activity of the ants called
retrieval agents; the route to the resource is updated on the pheromone table and returned to the end user. In the case
that the evaluation phase fails, a second phase, the state transition (lines 11-18 of the pseudocode in Table 1) is
carried out. This phase selects through random number q, Eq. (5), a neighbor node s. In the case that there is no new
node towards which to move, that is to say, the node is a leaf or all neighbor nodes have been visited, a hop
backwards is carried out on the path. Otherwise the ant adds the selected node sk to its path, updates locally the
pheromone, Eq. (7), and reduces TTLk by one hop. The query process ends when the expected number of results has
been found or TTLk reaches zero. In both cases the search agent is killed, indicating the end of the query.

6 Experimental Analysis of the NAS Algorithm

In this section, we describe two experiments carried out on the NAS algorithm. The objective of the first experiment
is study the performance of NAS in comparison with algorithms proposed in the literature, SemAnt and Random-
Walk. The objective of the second experiment is to examine the contribution of each local environment strategy to
the performance of the NAS algorithm.

6.1 Experiments Setup
The NAS algorithm was implemented to solve SQRP instances. The application of the NAS algorithm requires the
specification of the problem instance to solve and the definition of the control parameters of the algorithm. In our
implementation, an SQRP instance is determinated by three separate files: topology, repositories, and queries. We
generated the experimental instances as follows.

The generation of the topology (T) is based on the method of Barabási et al. [4] to create a non-uniform network
with a scale-free distribution. In the scale-free or power law distribution, a reduced set of nodes has a very high
degree and the rest of the nodes have a small degree. All networks generated have 1,024 nodes and bi-directional
edges. The number of nodes was selected based on recommendations by Michlmayr [10] and Di Caro [6].

In the P2P model, each peer manages a local repository (R) of resources and offers its resources to other peers.
We generated these repositories using “topics” obtained from ACM Computing Classification System taxonomy
(ACMCCS). This database contains a total of 910 distinct topics. Also the content distribution is a power law: few
nodes contain many topics in their repositories and the rest of the nodes contain few topics.

For the generation of the queries (Q), each node was assigned a list of possible topics to search. This list is
limited by the total amount of topics of the ACMCCS. During each step of the experiment, each node has a
probability of 0.1 to launch a query, selecting the topic uniformly at random within the list of possible topics of the
node. The probability distribution of Q determines how often the query will be repeated in the network. When the
distribution is uniform, each query is duplicated 100 times on average.

The topology and the repositories were created static, whereas the queries were launched randomly during the
simulation. Each simulation was run for 20,000 time units (queries). The average performance was studied by
computing three performance measures each 100 units of time:
Average hops, defined as the average amount of links travelled by a search agent until its death (that is, reaching
either maxResults = 10 or maxTTL = 25). Average hit-rate, defined as the average number of resources found by
each search agent until its death and Average efficiency, defined as the average hit-rate divided by the average hops.

The control parameters of the algorithm are specified in a file containing a global static configuration of the
NAS algorithm parameters. The configuration of the NAS algorithm used in the experimentation is shown in Table
2. In the first column is the parameter value and the in second column is given a description of the parameter. These
parameter values were based on recommendations done by Michlmayr [10] and Dorigo [7].

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 443

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

6.2 Comparative study of the NAS algorithm
In this experiment, the performance of the NAS algorithm is compared against the SemAnt [10] and Random-Walk
[3] algorithms. For the experimentation with three algorithms we use the general specifications described in Section
6.1.

To carry out the experiment with the SemAnt algorithm with the same conditions, we only changed the
parameter number of links. For SemAnt [10], the number of connections range between 4,000 and 10,000 which does
not affect the performance of the algorithm. Hence, we fixed the number of the links to 7,000 links, choosing an
intermediate value in that range.

Table 2. Configuration parameter of the NAS algorithm

Parameter Definition
ρ= 0.07 Local pheromone evaporation factor
α= 0.07 Global pheromone evaporation factor
 τ0 = 0.009 Pheromone table initialization
ID_HOP0 = 0.001 Initial value of the table of distances to previously encountered resources
β = 2 Relative importance of DDC and ID_HOP with respect to the pheromone
q0 = 0.9 Relative importance between exploration and exploitation
maxResults =10 Maximum number of results to retrieve
maxTTL = 15 Time-to-live of the search agents
w = 0.5 Relative importance of the resources found and the time-to-live

The experimental values for the SemAnt algorithm were obtained from [10]. For the average hit-rate variable

the SemAnt algorithm shows values from 0.8 to 2.1 hits per query. However, for the NAS algorithm, the average hit-
rate ranges from 9.5 to 10 hits per query. On the other hand, the average hop count of the SemAnt algorithm starts
out at 23 and lowers to 16 hops per query during the operation of the algorithm, whereas the NAS algorithm, starts at
the average hop of 12.5 and then diminishing to 12 hops per query. Finally, the average efficiency of the SemAnt
algorithm improves from 0.034 to 0.13 hits per hop, while for the NAS algorithm, as shown in Figure 5, it increases
from an initial value of 0.76 up to 0.84 hits per hop.

Fig. 5. Performance of NAS Algorithm average efficiency

For the experiment with the Random-Walk (RW) algorithm, we also used the general specifications described in

Section 6.1. Figure 6(a) shows the average hit-rate for both RW and NAS algorithms. The behavior changes slightly
over time. That is, the average hit-rate in RW varies between 1 to 0.5 hits per query, while in NAS, the average hit-
rate varies between 9.6 to 10 hits per query. Similarly Figure 6(b) shows the average hop count for both RW and

444 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

NAS algorithms. The behavior of the RW does not evolve; the average hop count keeps around 15 hops per query,
from the beginning to the end. However in NAS the behavior evolves, starting at 12.5 and lowering down to 12 hops
on average. Finally, Figure 6(c) shows the average efficiency for both RW and NAS algorithms. In the RW
algorithm, the behavior does not evolve; the average efficiency keeps around 0.5 hits per hop. For NAS the behavior
does evolve; so that the average efficiency increases from 0.76 to 0.84 hits per hop.

Fig. 6. Comparison of NAS Algorithm against Random-Walk Algorithm. a) average hits-rate,

b) Average hops and c) average efficiency

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 445

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

6.3 Experiments for the Analysis of the Local Environment Strategies of NAS Algorithm
In this experiment, the performance of the NAS algorithm is analyzed experimentally in order to determine the
contribution of each of the three used local strategies – modified LR, DDC, and Lookahead – to increase the
performance of the NAS algorithm.

Fig. 7. Comparisons of NAS Local Environment Strategies. a) Average HITS,

b) Average HOPS and c) Average Efficiency

446 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

For evaluating the contribution of modified LR, DDC and Lookahead strategies were eliminated. The
contribution of DDC was evaluated eliminating only Lookahead; modified LR was kept because DDC is included in
it. Similarly, Lookahead was evaluated without modified LR and DDC. For the experiment with the NAS algorithm,
we used the general specification described in Section 6.1, with the exception of three parameters: maxResult =5,
maxTTL=10, and q0 = 0.90.

Figure 7(a) shows the average hit-rate performed during a set of queries with NAS and three different
configurations of NAS: modified LR, DDC and Lookahead. For the modified LR and DDC, the algorithms start
approximately at 0.5 hits per query; at the end, the average hit-rate increases to 2 hits per query. For Lookahead and
NAS the average hit-rate starts at 4.3 and after 1,000 queries the behavior changes; for Lookahead the average hit-
rate ends at 4 and for NAS ends at 5. On the other hand, Figure 7(b) shows the average hops performed during in a
set of queries with NAS and three different configurations. For modified LR and DDC, the behavior is approximately
the same; the average hop count starts at 10 and ends at 9.5 hops per query. However, the Lookahead and NAS start
at 7.8 and after 1500 queries, the behavior changes; for Lookahead the average hop count ends at 8 and for NAS ends
at 6.9 hops per query. Finally, Figure 7(c) shows the average efficiency. For the modified LR and DDC, the behavior
is approximately the same; at the beginning the efficiency is around 0.05, at the end the efficiency increases to 0.2
hits per hop. However, for the Lookahead and NAS, the behavior evolves such that the average efficiency stars at
0.55 and after 1,500 queries, the behavior changes; for Lookahead, the average efficiency ends at 0.5, for NAS, the
average efficiency ends at 0.7. Hence, the best performance was obtained with the combination of these three
strategies.

Besides, the results reveal that for the specified configuration, the Lookahead method shown the biggest
contribution to the final performance of NAS, giving an efficiency of 0.5 hits per hop. While the DDC and modified
LR had a similar impact of 0.2 hits per hop. In experimentations with other configurations [13], the analyzed
strategies have shown different contributions. Due to this result, it becomes relevant to study further the relations that
exist between the problem characteristic and the algorithm parameter configuration in order to yield a bigger benefit
of each one local strategy proposed for NAS.

7 Conclusions and future work

For the solution of the Semantic Query Routing Problem (SQRP), we proposed a novel algorithm called NAS that is
based on existing ant colony algorithms but incorporating local environment strategies: modified LR, DDC, and
Lookahead. Three functions are used to learn from past performance: importance of hits (HIT), importance of time-
to-live (ITL_HOP), and importance of distance (ID_HOP). This combination results in a lower hop count and an
upper hit count, outperforming two algorithms proposed in related work, Random-Walk and SemAnt.

Our analysis and simulations confirm that the proposed techniques are more effective at improving search
efficiency. Specifically the NAS algorithm in the efficiency shows six times better performance efficiency, than the
SemAnt, and seventeen times better performance than the Random-Walk. We observe that upon including learning
and characterization with modified LR and DDC respectively, the algorithm evolves to reach an average of 2 hits
with 9.5 hops per query. Adding only exploration with Lookahead, the algorithm keeps a constant performance of 4
hits with 8 hops. Combining all the three strategies the NAS algorithm evolves to yield 5 hits per 6.9 hops. As
observed, the best results were obtained in the combination of proposed strategies.

We plan to study more profoundly the relation among SQRP characteristics, the configuration of NAS
algorithm and the local environment strategies employed in the learning curve of ant-colony algorithms, as well as
their effect on the performance of hop and hit count measures.

References

1. Amaral, L. A. N., & Ottino, J. M. (2004). Complex Systems and Networks: Challenges and Opportunities for

Chemical and Biological Engineers, Chemical Engineering Scientist, 59(1), 1653–1666.

A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks 447

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

2. Androutsellis-Theotokis Stephanos & Diomidis Spinellis (2004). A Survey of Peer-to-Peer Content
Distribution Technologies. ACM Computing Surveys, 36(4), 335–371.

3. Arora, S., & Barak, B. (2009). Complexity Theory: A Modern Approach. New York: Cambridge University
Press.

4. Barabasi, A., Albert & R., Jeong, H. (1999). Mean-Field theory for Scale-free Random Networks. Physical A,
272(1), 173–189.

5. Cruz-Reyes, L., Gómez S. C., Aguirre L. M., Schaeffer E., Turrubiates L.T., Ortega I. R., & Fraire H. H.
(2008). NAS Algorithm for Semantic Query Routing System for Complex Network. International Symposium on
Distributed Computing and Artificial Intelligence 2008 (DCAI 2008), Advances in Soft Computing, 50, 284-292.

6. Di Caro, G. & Dorigo, M. (1998). AntNet: Distributed Stigmergy Control for Communications Networks.
Journal of Artificial Intelligence Research, 9(1), 317-365.

7. Dorigo, M. & Gambardella, L. M. (1997). Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, 1(1), 53-66.

8. Erdős, P. & Rényi, A. (1960). On the Evolution of Random Graphs. Publications of the Mathematical Institute
of the Hungarian Academic of Sciences. 5(1), 17-61.

9. Liu, J., XiaoLong, J. & Kwok, C.T. (2005). Autonomy Oriented Computing /From Problem Solving to Complex
System Modeling. New York: Kluwer Academic Publisher.

10. Michlmayr, E. (2007). Ant Algorithms for Self-Organization in Social Networks. PhD Thesis, Vienna University
of Technology. Austria, Vienna.

11. Mihail, M., Saberi A. & Tetali P. (2006). Random Walks with Lookahead in Power Law Random graphs.
Internet Mathematics, 3(2), 147-152.

12. Ortega R., Meza E., Gómez C., Cruz L., & Turrubiates T. (2007). Impact of Dynamic Growing on the
Internet Degree Distribution. Polish Journal of Environmental Studies, 16(1), 117-120.

13. Sakaryan G. (2004). A Content-Oriented Approach to Topology Evolution and Search in Peer-to-Peer Systems,
PhD Thesis, University of Rostock. Rostock, Germany.

14. Yang, K. & Wu, C., Ho, J. (2006). AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer
Networks. IEICE Transactions on Communications, 89(9), 2300-2308.

Claudia Gómez S. was born in Mexico in 1971. She is a doctoral student at National Polytechnic Institute, Mexico.
She received her MS degree in Computer Science from the Leon Institute of Technology, Mexico, in 2000. Her
research interests are optimization Techniques, complex network and autonomous agents.

Laura Cruz-Reyes was born in Mexico in 1959. She received the PhD (Computer Science) degree from National
Center of Research and Technological Development, Mexico, in 2004. She is a professor at Madero City Institute of
Technology, Mexico. Her research interests include optimization techniques, complex networks, autonomous agents
and algorithm performance explanation.

448 Claudia Gómez Santillán, et al.

Computación y Sistemas Vol. 13 No. 4, 2010, pp 433-448
ISSN 1405-5546

Eustorgio Meza received the PhD (Oceanic Engineering) deegree from Texas A&M University, College Station,
U.S.A. He received the MS degree in Computer Science (AI) from Institute of Technology and Advanced Studies of
Monterrey, Mexico. He is a Professor at Research Center in Applied Science and Advanced Technology from
National Polytechnic Institute. His research interests are oceanology, complex Network.

Elisa Schaeffer was born in Finland in 1976. She received the PhD (Science in Technology) degree from Helsinki
University of Technology, Finland, in 2006. She is a teaching researcher at the Graduate Program in Systems
Engineering (PISIS), at the Faculty of Mechanical and Electrical Engineering (FIME), Universidad Autonoma de
Nuevo Leon, Mexico. Her research interests include nonuniform networks, graph clustering and optimization of
network operation

Guadalupe Castilla. is a doctoral student at Madero Institute of Technology, Mexico. She received her MS degree in
Computer Science from the Leon Institute of Technology, Mexico, in 2002. Her research interests are optimization
Techniques.

	1 Introduction
	2 Background
	2.1 Peer-to-Peer Complex Networks
	2.2 The Semantic Query Routing Problem
	2.3 Lookahead and the Degree-Dispersion-Coefficient
	2.4 Random-Walk Algorithm
	3 Related Work
	4 Classical Learning Rules Modified by the Proposed Learning Functions
	4.1 Learning Functions
	4.2 Classical Learning Rules (LR)
	5 Multi-agent Architecture and Parallel Pseudocode
	Multi-Agent System Architecture. The overall system architecture is shown in Figure 4. It comprises two elements: i) the environment (E) which is a static P2P complex network, with a probability distribution for the network topology (T), understood as...
	NAS Algorithm Parallel Pseudocode, is a metaheuristic algorithm, where a set of independent agents called ants cooperate indirectly and sporadically to achieve a common goal. The algorithm has two objectives: it seeks to maximize the number of resourc...

	6 Experimental Analysis of the NAS Algorithm
	7 Conclusions and future work

