Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/14665
Título : Decision Tree based Classifiers for Large Datasets
Otros títulos : Clasificadores basados en arboles de decisión para grandes conjuntos de datos
Autor : Anilu, Franco-Arcega
Jesús Ariel, Carrasco-Ochoa
Guillermo, Sánchez-Díaz
José Francisco, Martínez-Trinidad
Palabras clave : Keywords: Decision trees, supervised classification, large datasets.
Fecha de publicación : 6-mar-3013
Editorial : Computación y Sistemas; Vol. 17 No. 1
Citación : Computación y Sistemas; Vol. 17 No. 1
Citación : Computación y Sistemas;Vol. 17 No. 1
Resumen : Abstract: In this paper, several algorithms have been developed for building decision trees from large datasets. These algorithms overcome some restrictions of the most recent algorithms in the state of the art. Three of these algorithms have been designed to process datasets described exclusively by numeric attributes, and the fourth one, for processing mixed datasets. The proposed algorithms process all the training instances without storing the whole dataset in the main memory. Besides, the developed algorithms are faster than the most recent algorithms for building decision trees from large datasets, and reach competitive accuracy rates.
URI : http://www.repositoriodigital.ipn.mx/handle/123456789/14665
ISSN : 1405-5546
Aparece en las colecciones: Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
95_Art. 9_Vol. 17 No. 1.pdfReport on PhD Thesis366.15 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.