

ON THE INTERACTIONS OF OZONE WITH MANGANOUS HEXACYANOFERRATES

E. REGUERA,* J. FERNÁNDEZ-BERTRÁN and J. DUQUE

National Center for Scientific Research, P.O. Box 6990, Havana, Cuba

(Received 4 May 1993; accepted 20 August 1993)

Abstract—The ozonization of manganous ferro- and ferricyanides has been studied in the solid state using IR, Mössbauer and XRD techniques. Ferrocyanides are oxidized to ferricyanides without disruption of the complex anions, while Mn^{2+} is oxidized to the Mn^{3+} and Mn^{4+} states. On aging the Mn^{3+} and Mn^{4+} species are reduced to Mn^{2+} . The ferricyanide is not reduced to ferrocyanide, except in the case of the mixed K, Mn salt. The unstable product $Mn_3^{4+}[Fe^{III}(CN)_6]_4 \cdot xH_2O$ has been determined as a cubic species with $a_0 = 10.36(1) \text{ Å}$.

Ozone is a strong oxidizing agent, capable of transforming Mn²⁺ in solution to Mn³⁺, Mn⁴⁺, Mn⁶⁺ and Mn⁷⁺ species. It also oxidizes ferrocyanides to ferricyanides in solution and in the solid state. In the present communication we present a study of ozonization of the solid manganous hexacyanometallates Mn₂[Fe^{II}(CN)₆]·8H₂O, Mn₃[Fe^{III}(CN)₆]·14H₂O and K₂Mn[Fe^{II}(CN)₆]·4H₂O, which we will label Fe^{II}Mn²⁺, Fe^{III}Mn²⁺ and Fe^{II}K₂Mn²⁺, respectively. The reactions have been followed by IR, Mössbauer and XRD techniques.

EXPERIMENTAL

Potassium ferro- and ferricyanides (BDH) and $MnCl_2$ (Merck) were all commercial samples. The mixed $K_2Mn[Fe^{II}(CN)_6] \cdot 4H_2O$ salt was obtained by mixing aqueous solutions of $K_4[Fe^{II}(CN)_6] \cdot 3H_2O$ and $MnCl_2$. The precipitate was filtered, washed with distilled water, dried in air up to $60^{\circ}C$ and kept in a desiccator. In order to avoid contamination with K, the manganous ferro- and ferricyanides were prepared from the corresponding acids, as reported in the literature.

Ozone was produced from dried oxygen as an O_3/O_2 mixture in a glass ozonizer with a metal high-voltage electrode. The O_3 concentration in this mixture was ca 20 mg dn⁻³L, measured by UV spectrophotometry at 254 nm.

IR spectra were recorded on an M80 Carl Zeiss spectrometer in Nujol mulls between CaF_2 windows, with a maximum error of ± 2 cm⁻¹. The XRD powder patterns were obtained using an HZG-4 diffractometer (Carl Zeiss) with monochromated Cu- K_{α} radiation. The degree of hydration was determined by thermogravimetric analysis (TGA) using MOM Q-1500 equipment.

Mössbauer spectra were recorded at room temperature with a 57 Co in rhodium source and in the transmission mode using a constant acceleration spectrometer. A special cell was used to obtain the Mössbauer spectra in situ under a controlled flow of the O_3/O_2 mixture. Before recording the Mössbauer spectra in situ, the samples were kept for some hours in an ozone atmosphere. All Mössbauer spectra were fitted with an iterative least-squares minimization algorithm using Lorentzian line shapes to obtain the values of the isomer shift (δ) , quadrupole splitting (Δ) , line-width (Γ) and relative area (A).

RESULTS AND DISCUSSION

Ozonization of Mn₃[Fe^{III}(CN)₆]₂·14H₂O

The complex $Fe^{III}Mn^{2+}$ has a cubic structure with $a_0 = 10.503(4)$ Å, similar to other Prussian Blue analogues.⁷ TGA shows the presence of up to 14 water molecules per formula weight. The Fe^{III} is octahedrally coordinated to six carbon atoms, $[Fe^{III}C_6]$, while the Mn^{2+} is octahedrally coordinated to four nitrogen and two oxygen atoms of

^{*}Author to whom correspondence should be addressed.