
Computación y Sistemas Vol. 1No. 4 pp. 228-238 
@ 1998, CIC· IPN. ISSN /405-5546 Impreso en México 

Software Process Modeled with Objects: Static View 


Hanna Oktaba 
Universidad Nacional Autónoma de México 


lIMAS Posgrado en Ciencia e Ingenieria de la computación 

Circuito Escolar, Ciudad Universitaria 

México, D.F. 01000 
e-mail: oktaba@servidor.unam.mx 

Guadalupe Ibargüengoitia González 
Universidad Nacional Autónoma de México 


Facultad de Ciencias, Departamento de Matemáticas, 

Circuito Escolar, Ciudad Universitaria, 


México, D.F. 01000 

e-mail: gig@hp.fciencias.unam.mx 


Article received on January. 1998; accepted on March, 1998. 

Abstraet 

This paper presents an attempt to exploring the modeling • 
with objects as a w~ 01 structuring and systematize 
the fundamental concepts 01 the software process (SP) 
with the basic objective 01 understanding them better. 

The classes and relationships between them are used 
to model the static view 01the SP. The relationships 01 
aggregation and association express the structure 01 
dependences between the basic concepts olthe SP, which 
are: the phases, the activities, the products, the roles 

and the agents. The relationship 01inheritance is used 
to express the different specializations 01 the previous 
concepts. 

The general model applies to the detailed description 
01 the phase 01 analysis with the purpose 01 
understanding their basic activities, the involved ro­
les, the generated products and the relationships 
between them. 

Keywords: 

Software Engineering, software process, phase, activity, 
product, role, model of objects. 

-


Introduetion 

The Software Engineering gained importance as a discipline 
when the software systems became so complex that it was no 
longer possible to develop those of handmade way by one 
persono During the last 30 years differetlt methods and technics 
have been developed in order to facilitate the development of 
systems. However, it hardly make scarce 10 years, the interest 
for the Software Process(SP) has arisen, which Fuggetta 
[Fuggetta, 1995] defines as: 

H Jt is a group 01people, organization structures , rules, 

policies, activities and procedures, components 01 soft­
ware, methodologies and tools used or created 
especificaly lor conceptualize, develop, ojJer a service, 

innovate and extend a product 01software. " 

As it becomes clear from this definition, the software 
development process is a very complex activity that involves 
interdiscip linary aspects. 

The SP most relevant characteristics, according to Huff 
[Huff, 1996], are the following: 

Concurrency anddistribution - the SP is a group oltasks 
(activities) carried out,in a concurrent W~, and in ge­
neral, distributed between several people. 
Non determinism and insecurily - the development is non 
deterministic, because each error lound could cause that 
it is necessary to re-do a part 01the work and therelore, 
postpone or cancel other activities. 

228 

mailto:gig@hp.fciencias.unam.mx
mailto:oktaba@servidor.unam.mx


Hanna Oktaba and G.lbargüengoitia: Software Process Modeledwith ObJects: StaHc View 

Evolution and ehanges - the proeess ofsoftware should 
be improved eonstantly in order to obtain better resu/ts 
in the use ofresourees and in the quality ofthe systems 
produeed 
These characteristics underline one of the important areas of 

research in the Software Engineering that is the modeling of 
SP. 

The primary objectives of modeling SP are [Huff, 1996] the 
following: understanding the software process, improving its 
acting (improvement), and carrying out their execution 
(enactment). 

In the literature there exist works modeling the SP with 
several focuses. In [Huff, 1996], they are classified as follows: 

Non exeeutable paradigm- textual or graphieal (e.g. 
IDEFO). 
Paradigm based on states- states automata, Petri nets, 
formal grammars. 
Paradigm based on rules- expert systems, Prolog, systems 
ofplanning. 
Imperative paradigm - Ada like speeifieation language. 
The purpose of this work is to use the object-oriented 

modeling to understand easier the complexity of the static 
structure of the SP, and to teach it to students and groups of 
developers trained in the 00 technology. The idea of using 
the techniques of software development for the description of 
the process is not new [Osterweil, 1987], but it seems that the~ 
use of object-oríented modeling has not been explored 
thoroughly. 

The motivation in order to use the concept of class to model 
the static view of the SP is the following: 

• The relationship ofgeneralizationl specialization between 

classes allows the gradual modeling of the software 
process, classifying the concepts from a very generallevel 
to more specific ones. This graduation helps in the 
understanding of the model. 

• The relationships of aggregation and association offer a 

mechanism to describe the dependences between the 
different concepts that one is modeling. 

Definition of the software process and their 
components 

The software process is a composition of phases, activities, 
artifacts and resources (including the humans). 

The phases, better known as the life-cycle phases of the 
software, constitute significant steps of the software process. 
Each phase contains several activities that are carried out with 
the purpose ofgenerating an important product (artifact), like 
for example, the document of requirements specification or 

the document of designo Examples of phases are: analysis, 
design, code, installation, etc. 

The activities (or tasks) are the key pieces of the process. 
They define the actions (procedures) that must be carried out 
in a given moment ofthe development. In general, an activity 
requires one or more input artifacts and generates the output 
artifact(s). An activity also requires resources, particularly 
human resources, that associates via the concept ofrole. The 
availability ofthe input artifacts and ofthe resources imposes 
certain temporary order in the execution of the activities. 

The artifacts that are the inputs and outputs ofthe activities, 
could be a set ofvery varied documents, for example, diagrams 
of design, code, plans of tests, reports, user's manuals; as 
well as sets ofdocuments of several types. 

The most important resources in the modeling of SP are 
those that are represented by roles, which are able to carry 
out the activities of the process. The roles are assigned to 
agents in tums. An agent is a human being or an automatic 
tool that executes an activity. The resources could also be: 
working hours, money, computer laboratories, etc. For the 
purposes of this paper, we will only consider the roles and the 
human agents as resources. 

Abstract model of the software process 

The object-oriented modeling of the SP begins with the 
identification of the basic classes. 

Software Proeess- it is the class représenting the gene­
ral eoneept that one is modeling. 
Phase- it is the abstraet class representing a phase of 
the software life-cycle. 
Aetivity- it is the abstraet class representing the aetivities 
of the proeess. 
Artifaet- it is the abstraet class representing several 
produets that are generated and exchanged 
Role- tt is the abstraet cla~s representing the several 
roles assoeiated lO the aetivities. 
Agent- ir is the person or tool, that plays a eertain role 
in the proeess. 
The general definitions enunciated in the previous section 

introduce the first relationships of association and aggregation 
between these classes. The class Process Software is made up 
of several instances ofthe Phase class. This class, in tum, has 
several objects ofthe Activity class attached to it. The objects 
ofthis class could be added to other objects ofthe same class, 
because an actívity could be made up of several auxiliary 
activities. The Activity class also adds at least an input artifact 
and an output one, represented by the instances ofthe Artifact 
class. The objects that represent artifacts could also be made 
up ofother artifacts. It also exists certain association between 

229 



Hanna Oklaba and G. Ibargüengoilia: Software Proces$ Mode/edwith Objects: Stafic View 

the Role elass and the instances of the Activity elass and, 
finally, there exists an association between the Agent elass 
and the possible instances of several Role(s) that an agent 
will carry out. The Fig. 1 presents the diagram ofclasses with 
the relationships mentioned in the UML notation [UML, 
1997]. 

Figure 1: Class ~iagram software process. 

Specialization of phases 

Several models of the software development life-cyeles exist. 
The most outstanding examples are: the waterfall model [Royce, 
1970; Bohem, 1981], the spiral model [Bohem,.l988] and the 
iterative and incremental model for the object-oriented 
development [Booch, 1994]. AH these models contain the 
following phases, aIthough they sometimes use different 
terminology: 

Analysis- it represents the activities that lead to the 
understanding and documentation ,of the requirements 
of the software system and the modeling ofthe problem 

domaín. 
The analysis ineludes the customer validatíon of the 

documents that contain the agreement on the scope of the 
system. Desígh- íts objective is to do the mapíng of the 
requírements andthe prob/em domain model for the computer 
environment that wi// malee possib/e the implementation. 

lt contemplates the architectural and the detailed design of 
the components. The design activities verify also that all the 
requirements specified in the analysis are covered. 

Code and Tests- ít is the implementation based on the design 

using programming environments. 

lt contemplates the unitary and integration tests in order to 

verify the correspondence between the designe and the 
implementation. 

Installation- it refers to the system delivery to the c/ient, 
and its setting in operation in the real environment of 
execution. 
lt ineludes the customer and the fmal users validation of 

the system. 
Maintenance- il inc/udes the corrections, modifications 
and extensions lO lhe system after liberation. 
lt ineludes the configuration management and the version 

control.Upon analyzing the activities of maintenance, in any 
of their modalities of correction, modification and extension, 
it is observed that these correspond to the usual activities of 
the development process of a new system with the difference 
that the input artifact belongs to a system already existing 
and, therefore, the procedures in order to carry out these 
activities will have a particular defmition. The configuration 
management and the versions control, that distinguish the 
maintenance phase, should in fact be defined from the 
beginning of a new system development. Consequently, we 
decided not to ¡nclude the maintenance as a different phase 
in the software process by considering that its activities 
correspond to the other phases. 

The specialization of the Phase elass, according to the 
elassification presented here, sample in Fig.2. pi 

J! 
al 

[1 
ac 

~~ S 
JIInstaltation Phase 

d 
CI 

\ 
\ 

Icalle and Test Phase 
ti 
C 

f 
d 

Figure 2: Phases specialization. o 

p 
Specialization ofactivities g. 

o 
The activities ofthe software process are divided in four basic a 
groups: production, control, technology and communication l­
(Fig.3). 

~ 

230 



Hanna Oklaba and G. Ibargüengoilia: Software Process MOde/edwith Objects: Static View 

Activity 

\ 

"" 
. 
""" ' . -,-_...... 

I Communication ' 

Figure 3: Activity specialization. 

Production 

The activities of production are those that conduct directIy 
to the construction ofthe software system in question. Sorne 
examples of the productive activities are: the analysis, the 
design and the codeo Their input artifacts are respectively, 
the customer requirements for the analysis, the analysis 
documents for the design and the design documents for the 
codeo The output artifacts are also obvious. Their actíons could 
be described according to the method or the particular 
technique that is used. For example, for the process based on 
the object-oriented technology the use of the strategies and 
patterns of Coad [Coad el al., 1995] or the use cases of 
Jacobson [Jacobson et al., 1992] could be chosen for the 
analysis; for the design, the techniques of Rumbaugh 
[Rumbaugh el al., 1991] or Booch [Booch, 1994]. Both 
activities could be documented evenly with the UML notation. 
Sorne ofthe object-oriented languages like C+, Smalltalk or 
Java could be chosen for the codeo 

The documentation of work products, including the code 
documentation, is another production activity that is time 
consuming and that requires discipline. Its importance for 
the development team during all the phases of the SP is 
clear. A similar degree of importan ce, for the client and the 
final user, have the manuals of the system whose 
documentation should be also included as a legitimate activity 
of production. 

To the group of production activities the construction of 
prototypes (prototyping) is added. The prototypes serve, in 
general, to clarify any doubts on the requirements definition 
orto confirm the design proposals. The prototypes are almost 
always discarded and do not form part of the final product. 
However, we consider appropriate to include the activity of 
prototype construction as an activity of production because 
it requires the same process as the production of a complex 
system, only that to a minor scale. One could also consider 

the construction of demonstration programs (demos) as the 
production of prototypes, although starting from a system 
that already exists. The FigA shows the first level of 
specialization of the Production class. 

'---_....... -_ ......~--' .... 

'\ 

: 

I-~
'. Proto~ping..... ........ 
 ¡ 
----~I 

..----------_....~\ t=
'o~;'e.nü~l 
l--­ . 

Figure: 4 Production activíties specializatíon. 

Control 

The control activities are those that help to verify the state 
of the process and of the products generated by the other 
activities. Therefore, they specialize in two types: those 
related to the process control and those related to the 
product control (Fig.S). 

I,....._-----, 
Produel Control 

! • __~_-_--- I 

Figure 5: Basic spccialízation of control activities. 

Process control 

The activities devoted to process control are divided in two 
types: those carried out from the point ofview ofthe process 
management and those carried out from the personal 
perspective of each one of the agents that participate in the 
process. A few examples of the management activities of 
process control are the: methodology selection, planning, 
progre ss monitoring, modification of the process and post 

231 



Hanna Oktaba and G. Ibargüengoitia: Software Process Modeled with Objects: Static View 

mortem evaluation upon finishing the project. An example 
ofpersonal control activity ofthe process we mention that 
of the time record that takes an agent to carry out an 
activity. The latter is related to the explicit introduction 
of the time measurement in the SP. Que to it, one could 
carry out the quantitative evaluation of time dedicated to 
the development of the project and to each one of the 
several activities of the process. Fig.6 shows the 
specializations of the Process Control elass. 

,Process Control 

Figure 6: Process control activities specialization, 

Product control 

Another type of control activity is the one which supervise the 
product (product control). The most important activities are those 
devoted to fmd and fIx defects (defect control). To this type of 

activities be long those that correspond to the search of defects 
made by the human agents in the products of analysis, design 
and the code . These activities are: the reviews carried out by 
oneself, the inspections made by colleagues, the verifIcations 
made by the development team, and the validations carried out 
by the client. AIso, in the group devoted to the activity of 
searching defects, are included the compilation and the testing, 

which are carried out with the support .of automated tools. The 
compilation without errors is, of course, considered as part of 
the activity of codeo 

The activity of defect fIxing is the one that removes the 
errors found in the products. When it is code defect fIxing the 
activity is known as debugging. This activity is ineluded as 
a specialization ,corresponding to the defect control. 

Configuration 

A very important aspect ofproduct control is the confIguration 
management that ineludes, among other things, the version 
control. A confIguration defInes the fInal product components 
that are given to the elient. The changes made to the 

232 

components of a confIguration should be properly controlled, TecJ 
documented and eventually reflected as the components' 
version changes. 	 Thea 

evalu 
thoseMeasures 
creat 

Another specialization of the product control activities is the comr 

one that refers to register measures. This in tum specializes in 
the activity dedicated to the registration ofthe products founded 
and fIxed defects (defect record), and another activity which 
refers to the counting ofproduct units (unit record). For example, 
the number of classes in the diagrams of analysis or the number 
of lines of codeo These two activities, defects and units record, 
belong to activities that generate basic measures for the 
quantitative evaluation ofthe quality ofthe product and ofthe 
process. 

Standards definition 

The standards defmition of the work products permit, upon 
adopting these by the members of the development team, the 	 COl 
easy identifIcation and the understanding ofthe same. For this 
reason, we include this activity as another specialization ofthe 	 The 

betvproduct control. Fig.7 shows the several specializations of the 
imp

Product Control class. the: 
corr 
basi 

Product Con'trol thrc 
reql 

(s)'l 

of e 

con 
cou 

!.De~cLCo~
i-- ~--

/ 	
e-TI 

cor 

Figure 7: Product control activities specialization, 



Hanna Oktaba and G.lbargüengoitia: Software Process MOdeledwith Objects: Static View 

xl, Technology Specialization of roles 
Is' 

he 
in 
ed 
eh 
le, 
er 
d, 
le 

le 

In 
le 
is 
le 

le 

The activities oftechnological type are the software and hardware 
evaluation, the staff training on the methodology or tools and 
those that facilitate the reuse. The latter could include the 
creation, management and access to libraries of reusable 
components ( Fig.8). 

Software &Hardware 

Figure 8: Technology activities specialization. 

Communication 

The communication with the customer and that carried out 
between the members of the developement team, is a very 
important aspect of the software process. In great measure 
the succes ofthe project depends on the efficient and on time' 
communication. The activities of communication could be 
basicaly classified in meetings and those that are carried out 
through the exchange ofdocuments or products. The meeting s 
require the attention of more than a person at the same time 
(synchronous communication), while during the exchange 
of documents or products it is not necessary (asyncronous 
communication). In both cases the means of communication 
could be physical (room, mail) or electronic (videoconference, 
e-mail). Fig.9 represents the basic specialization of the 
communication activities. 

Meeting Exchange· ._..-¡ 
.~..._--.._~~ 

.~._~.~-~..~E 
Figure 9: Communication activities specialization. 

The c1assification of roles reflects, in a way, the activities 
classification. On one hand, roles are clearly related to the 
production activities like, for example, the analyst, the designer, 
the programmer. On the other hand, the roles ofprocess control 
are played by the manager or project leader. The roles related to 
the product control could be carried out by the tester of éode and 
the integrator ofthe system. 

Recently, roles of technological type have arisen, like the 
expert in human-machine interfaces, in data bases, in computer 
nets, and aH kinds of roles related to the reusability, like: the 
evaluator ofthe reusability at company level, the manager of 
the reusable component libraries and the reusable components 
supplier. As the technological part one could also add the ro­
les related with the training in the development te.chniques 
and the tools. 

With regard to the communication, projects' have been' 
mentioned in which it is useful to have people whose role is 
that of being used as bridge between the technical team and 
the customer, or the technical team and the manager. of the 
project or simply between several subteams ofthe same project 
[Coplien, 95]. This type of roles could help reducing the 
amount of communications between the members of the 
project, and any misunderstandings (which can lead to re­
doing the work) due to the lack of opportune information. 

Finaly, we included the role of customer that plays an 
important part in some activities ofthe SP, like the definition 
of requirements or the validation of the products. 

Fig. 10 shows the hierarchy of classes that represents the 
specialization of roles. 

/' 

i~PIoduction ROlel 
~-'--~I 

~~Jl~~l 
~s~g~ t~~~~ 

;~ .....-~~ 

Figure 10: Roles specialízation. 

233 



Hanna Oktaba and G.lbargüengoitia: Software ProcessModeledwifh Objects: Stafic View 

Artifacts specialization 

The activities need the input artifacts and, in general, they 

generate the output artifacts. It is not surprising then, that their 

cIassification reflects the cIassification of the activities in great 
measure. 

In order to begin the activities ofthe SP we need a document 
that defines the basic requirements of the cIient (customer 
request). This document could be part of a contract with a 
customer, or it could be an initial description of the system 
made by the developement company that wants to take out the 
product to the general market. 

The artifacts, that are generated and circulate while the 
different activities of production are carried out, are the 
documents of analysis, design and codeo 

The documents generated for control purposes could be 
specialized in those which support the process control and 
those used for the product control. Examples of documents 
for the process control are: the project plan, the schedule, the 
checklists, the time recording log and the document that 
summarizes the information on the project. In tum, examples 
ofdocuments for the product control are: the list ofverification 
(checklist) in order to make revisions of products, the test 
plan, the registration ofunits ofthe product and the registration 
ofthe defects ofthe product. 

Among the documents oftechnological type we find..the 
methodology definitions, the standard descriptions (for 
example, the standard ofcode) or the descriptions of reusable 
components. 

Moreover, there al so exist documents generated by the 
communication activities like, for example, the electronic mail 
messages or paper reports of the meetings. Fig.l1 represents 
the class hierarchy that models the artifacts. 

Agents specialization 

In general, there are two types of agents: humans and tools. 
Fig. 12 offers the corresponding diagram. For the purpose of 
this work, only human agents will be considered. 

Sta tic model of tbe analysis pbase 

The object mQdel of software process shown in the previous 
section uses the relationship ofinheritance in order to classify 
the basic concepts involved. This classification does not seek 
to be neither complete nor exhaustive. Its purpose is only to 
show the way one could understand the complexity ofthe soft­
ware process stepby step. 

As a case ofstudy we present the object model which helps 
to understand and deepen in the anlysis phase specializing 
the activities, the roles and the artifacts involved. 

234 

act 
pr< 
an( 

bet 
the 
me 
tec 
ph: 
ass 
tra 

Figure 11: Artifacts specialization. 

lAgen_t_i I 

E 
~ ....... ~ 


í \ 
~.~.~ 

ToolI p~~son.~ 
\ 

~~ 

F 

Figure 12: Agent specialization. T 

P 
le 

Analysis pbase activities 
tI 
tI 

The basic activities of the analysis phase are those that lead to 
the defmition ofthe requirements of a system and of the abstract 
modeling of the problem,domain. In order to carry out these 
activities in an efficient way we also incIude the activities of 
process control that allow the resources planning, the monitoring 
and the evaluation of the plan execution. 

The activities ofproduct control are also incorporated. The 
activities ofthis type are the internal revision and the validation 
made in conjuction with the c1ient. 

c 



The phase of analysis requires also communication 
activities between the client, the analyst and the leader of the 
project in order to carry out the basic activities of production 
and control. 

Fig.13 shows the relationship of aggregation that occurs 
between the AnalysisPhase class and the classes that model 
the activities that have been mentioned before. The general 
model of activities (Fig.3) also contemplates the activities of 
technological type. In order to simplify the modeling of the 
phase of analysis, it was supposed that the agents that will 
assume the roles for this phase do not require an additional 
training in technological aspects. 

[~ntr~~ 
/.¡--~~, 

// "-" 

~Pro~;~s co~i;ol I 

7~~¡ 

L~lalll1in-;ml \ 

~-=J \ 

~t~o-;;~:J 
¡'-.m ¡ 

Figure 13: Analysis phase relatíon with activities. 

Roles of the analysis phase 

The minimum roles involved in the analysis phase are: the 
project leader, the analyst and the customer. The project 
leader's reponsability is to carry out the activities ofprocess 
control. Fig.14 models the association relationship between 
the class Manager and the activities of the analysis phase 
that correspond to it. 

The analyst róle consists executing the activities of 
production like the definition of requirements and the 
creation of the abstract model of the system. The analyst 
is also responsible to do the revisions of their products in 
order to guarantee their better quality. Fig.15 shows the 
assoCÍation relationship between the corresponding 
activities and the analyst. 

o 
:t 
e 
If 

g 

e 
n 

Hanna Oktaba and G. Ibargüengoitia: Soflware Process Modeledwith ObJects: static View 

Figure 14: Manager relation with the control process activities. 

Requirements 

Figure 15: Analyst rclation with the production control acitvities. 

It corresponds to the customer to do the validation of the 
analysis artifacts in order to discover any possible defects or 
misunderstandings. Fig.16 shows the relationship between 
the Customer class and the validation activity. 

Figure 16: Customer relation with the product control activity. 

235 



C 

Hanna Oktaba ond G. Iborgüengoitio: Software Process Modeledwith Objects: StaHc View 

The revision activities done by the analyst and those of 
alvalidation, carried out by the client take as the input artifacts 

the requirements documents or the analysis models, and they 
Inreturn the same documents with the modifications request or, 
th~simply, approved. In the first case, the returned documents 
fmserve as the input to the corresponding production actívities 
imand the process is repeated until the revision and the validation 
m(

are approbatory. Figs.20 and 21 relate the corresponding 
classes. 

Production Artifact 

Figure 20: Review activity relation with the inputJoutput artivacts. 

Figure 21: Validation activity and its relation with the inputJoutput 

artifacts. 

Fil!
The planning activity, that initializes the phase of analysis, 

del
takes, as a starting point, the customer requests and generates 
the plan of aetivities with a schedule and the responsabilities An 
assignation. The monitoring activities take the plan and the 

anl 
products of analysis as an input and conclude with the plan 

th~ 
in which the progress or a modified plan is registered. The the 
final evaluation ofthe phase of analysis generates a summary 
ofthe resources, times, costs, etc., of this phase. Fig.22 shows 
the aggregation relationship between the corresponding classes 
for the planning activíty. The monitoring and the final 
evaluation diagrams are similar. 

Figure 22: Planning activity and its relation with the inputJoutput 

artifacts. 

Communication activities 

In general, the communication activities such as meetings or 
the exchange of documents (Fig. 9), do not have a great 
importance and are eonsiaered as something implicit. However, 
the communication between the agents involved through their 

alroles in the system development has a crucial importance for 
the success of the team work. In the case of the analysis phase 

GImodeling we eonsider important to introduce the explicit 
decommunication activities which help to carry out the activities 

of another type. an 

Documents and products ofthe analysis phase 

The artifacts that are managed during the phase of analysis are 
shown in Fig.l7. The initial document is the defmition of the 
basic requests made bythe client, which, ingeneml, are specified 
before we start the project. The centrol products of this phase 

are: the detailed specification of the requirements and the 
document ofthe abstraet model of the system. The last could be 
made up of several doeuments whose content depends on the 
method ofmodeling seleeted for the analysis phase. The analysis 
phase control doeuments are the plan and fmal summary. 

Figure 17: Analysis artifacts hierarchy. 

Relationship between the input and output 
artifacts and the analysis activities 

The aetivity of requirements definition converts the initial 
requests of the customer in a more precise specifieation. This 
document is used as an input for the modeling aetivity which, 
according to the applied method, leads to the construction of 

one or more models of the problem domain. Figs.18 and 19 
relate the input and output artifaets to the production activities 
ofthe analysis phase. 

Figure 18: Requirements definition activity and its relation with the 

input I output artifacts. 

Figure 19: Analysis modeling activity relation with the inputJoutput 

artifacts. 

23'6 

C 



Honno Oktobo ond G. Iborgüengoitio: Software Process Modeledwlth ObJects: Static View 

Communication between the client and the )f 
analystts 

:y 
In the analysis phase there exist at least two activities that require r, 
the communication between the customer and the analyst. The ts 
frrstone is during the requirements specification, which is almost 
imposible without direct meetings between both parts. Fig.23 

n 
models the corresponding relationships between the classes. 

g 

and the final evaluation the project leader needs to 
communicate with the analyst. The form of communication 
could vary. It does not matter if it takes place through meetings 
or documents exchange, the problem is that it should be 
effective and opportune. Fig. 25 models the relationships 
between the corresponding classes in the case ofthe planning 
activity. Other activities ofprocess control are modeled in a 
similar way. 

s. 

Jt 

s, 
:s 

y 

's 
:s 

)f 

at 
:1", 

:ir 
)r 

:it 
es 

Figure 23: Meeting activity and its relation with the requirements 
definti ti on. 

Another occasion for the communication between customer and 
analyst occurs during the validation ofthe analysis artifacts. In 
this case, it is enough to carry out the communication through 
the documents exchange (Fig.24). 

Figure 24: Exchange activity and its relation to validation. 

Communication between the project leader 
and the analyst 

Good communication between the members of the 
development team is very important. Particularly, in the 
analysis phase, in order to make the planning, the monitoring 

Figure 25: Communtication activity and its relation to the planning 
activity. 

Conclusions and future works 

This paper presents an attempt to exploring the object-oriented 
modeling as a form of structuring and systematize the funda­
mental concepts of the software processes. The basic goal is 
to understand them better. 

The abstracts classes and the relationships between them 
were used to model the general view of the SP. The 
relationship of inheritance was used in order to express the 
different specializations of the basic concepts as activities, 
artifacts, roles and agents. 

The elassification shown here is not complete. One could 
create new specializations according to the type of activities 
that one wants to inelude. What we have been able to verify 
is that the relationship of inherÍtllnce between classes is a 
good vehiele to clssify the information in this respect. 

In the second part, we developed an example applying the 
general model to the analxsis phase specifying the static 
structure of the basic activities of production, control and 
communication, the involved roles and the generated artifacts. 
The modeling through relationships of specialization, 
aggregation and association of classes allowed the gradual 
expression of the dependences between several elements of 
the process. It was also easier to deepen in details. 

237 



Hanna Oktaba and G. Ibargüengoitia: Software Process Modeledwith Objects: Sfafic View 

We consider that the model is general and simple enough to 
be used as a guide for teaching in the area of Software 

Engineering and for the training of development teams. We 
have distinguished between the different roles, different 

activities of production, process control, product control, 
communication, and different description ofartifacts. W éhope 

we are offering a model complete enough, so that it can be 

useful in the practice in order to define concrete models of 
processes. 

The future work ís to contínue the static modelíng of the 
other basic phases ofthe software process. The general purpose 
is to define the mínimum set of roles, activities and artifacts 
that cover the complete process. 

On the other hand, it could be interestíng to explore the 
dynamic views (interaction diagrams and state-transition 
diagrams) ofthe object model in orderto inelude the sequence 

aspects of theactivities execution and their temporary 

dependences. 

References 

Bohem, B., Software Engineering Economics, Prentice Hall, 
1981. 

Bohem, B., "A Spiral Model of Software Development and 

Enhancement", en Thayer, Richard, ed. Software Engineering 
Project Management, IEEE Computer Society Tutorial, Catalog 
Number EH0263-4, 1988, pp.1l8-127. 

Booch, G., Object-Oriented Analysis and Design, with 
Applications 2nd edn. Redwood City, CA: The Benjaminl 

Cummins Publishíng Company, 1994. 

de Champeaux, D., Object-Oriented Development Process 
and Metrics, Prentice Hall, 1997. 

Coad, P. with D. North and M. Mayfield, Object Models 
Strategies, Patterns and Applications, Yourdon Press, Prentice 
Hall, 1995. 

Coplien, J. O., "A Generative Development-Process Pattem 
Language", en Pattern Languages of Program Design, 
Reading, MA: Addison Wesley, 1995, pp.183-237. 

Finkelstein, A., J. Kramer and B. Nuseibeh (Eds.), Soft­
ware Process Modelling and Technology, , Research Studies 
Press, John Wiley & Sons, 1994. 

Fuggetta, A., JI Processo Software, Aspetti strategici e 
organizzativi, il Cardo edítore in Venezia, 1995. 

Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design 
Patterns - Elements of Reusable Object-Oriented Software, 
ReadingMA: Addíson-Wesley, 1994. 

238 

Huff, K. E., "Software Process Modelling", in Software 
Process, Eds. A. Fuggetta and A. Wolf, Trends in Software 4, 
J.Wíley&Sons Ltd., 1966, pp.I-24. 

Jacobson, l., M. Chisterson, P. Jonsson and G. Overgaard, 
Object-Oriented Software Engineering - A use case driven 
approach, Addison-Wesley, 1992. 

Lehman, M. M., "Process Models, Process Programs, 
Programming Support", Proceedings of 9th International 
Conference ofSoftware Engineering, March 30-April2, 1997, 
Monterey, Cal., USA, pp.l4-16. 

Osterweil, L., "Software Processes Are Software Too", 
Proceedings of 9th lnternational Conference of Software 
Engineering, March 30-April 2, 1997, Monterey, Cal., USA, Ah 
pp.2-13. 

Royce, W. W., "Managing the Development of Large Soft­ The 
ware Systems", en Thayer, Richard, ed. Software Engineering avail 
Project Management, IEEE Computer Society Tutoríal, a sel 

Catalog Number EH0::263-4, 118-127, 1988. Reimpreso de obj€l. 
We;Proceedings of IEEE WESCON, 1970, pp.I-9. 
the 1 

Rumbaugh, J., M. Blaha, W. Remerlani, F. Eddy and W. undE 
Lorensen, Englewood Cliffs, NJ: Prentice Hall, 1991. OOUfl 

UML: Unified Modeling Language, Rational Software 
Corporation, Version 1.0, 13 January 1997. Ke~ 

ness 
Hanna Oktaba was awarded a PhD degree in Computer Scienee, at 
the University ofWarsaw. in Poland, in 1981. rrom 1974 to 1983 
she had an assistantship and then a leetÍJreship in the Computer 
Seienee Faeulty oftlte University ofWarsaw. Sínee 1993 and to the 
present day, she gives lectures on Computer Science to Master 
1"""'"=----...., students of the IIldAS, Instituto de Investiga­

ciones en Matemáticas Aplicadas y en Siste­
mas (Research Institute of Applied 
Mathematies and Systems), at the Universidad 
Nacional Autónoma de México (UNAM). rrom 
Mareh 1990 to May 1997, she eoordinated the 
above postgraduate eourse. Her main areas of 
interest are: Object Oriented Technology, Soft­

___---' ware Engeneering and Qualíty Models. 

Guadalupe Ibargüengoitia G. has got a Masters degree in Computer 
1"""'"-------, Science awarded by the UIvAM. She leetures 


at the Alathematies Deparrment of the 

UNAM's Sclence Faeulty since 1975. She 

teaches Computer Scienee subjeets in 

Mathematíes and Computer Science eourses, 

at the UNAAf. She has a leetureship in the 

Computer Seience Alasters eourse of the 

lIMAS sine e 1993. Her main areas ofin/eres 


~=====;;;;.¡ 	are: Software Engeneering, Objeet Oriented 

Teehnology and Data Bases. 


~~¡~~ 
~~t 

,- s~-


	228_ART. 1
	229_ART. 1
	230_ART. 1
	231_ART. 1
	232_ART. 1
	233_ART. 1
	234_ART. 1
	235_ART. 1
	236_ART. 1
	237_ART. 1
	238_ART. 1

