Computacion y Sistemas Vol. I No. 4 pp.228-238
© 1998, CIC-IPN. ISSN 1405-5546 Impreso en México

Software Process Modeled with Objects: Static View

Hanna Oktaba
Universidad Nacional Auténoma de México
IIMAS Posgrado en Ciencia e Ingenieria de la computacién
Circuito Escolar, Ciudad Universitaria
Meéxico, D.F. 01000
e-mail: oktaba@servidor.unam.mx

Guadalupe Ibargiiengoitia Gonzalez
Universidad Nacional Auténoma de México
Facultad de Ciencias, Departamento de Matematicas,
Circuito Escolar, Ciudad Universitaria,
México, D.F. 01000
e-mail: gig@hp.feiencias.unam.mx

Article received on January, 1998; accepted on March, 1998.

Abstract

This paper presents an attempt to exploring the modeling ,
with objects as a way of structuring and systematize
the fundamental concepts of the software process (SP)
with the basic objective of understanding them better.

The classes and relationships between them are used
to model the static view of the SP. The relationships of
aggregation and association express the structure of
dependences between the basic concepts of the SP, which
are: the phases, the activities, the products, the roles
and the agents. The relationship of inheritance is used
to express the different specializations of the previous
concepls.

The general model applies to the detailed description
of the phase of analysis with the purpose of
understanding their basic activities, the involved ro-
les, the generated products and the relationships
between them.

Key words:

Software Engineering, software process, phase, activity,
product, role, model of objects.

228

Introduction

The Software Engineering gained importance as a discipline
when the software systems became so complex that it was no
longer possible to develop those of handmade way by one
person. During the last 30 years different methods and technics
have been developed in order to facilitate the development of
systems. However, it hardly make scarce 10 years, the interest
for the Software Process(SP) has arisen, which Fuggetta
[Fuggetta, 1995] defines as:
“ It is a group of people, organization structures , rules,
policies, activities and procedures, components of soft-
ware, methodologies and tools used or created
especificaly for conceptualize, develop, offer a service,

H

innovate and extend a product of software.’

As it becomes clear from this definition, the software
development process is a very complex activity that involves
interdisciplinary aspects.

The SP most relevant characteristics, according to Huff
[Huff, 1996], are the following:

Concurrency and distribution - the SP is a group of tasks

(activities) carried out in a concurrent way , and in ge-

neral, distributed between several people.

Non determinism and insecurity - the development is non

deterministic, because each error found could cause that

it is necessary to re-do a part of the work and therefore,

postpone or cancel other activities.

mailto:gig@hp.fciencias.unam.mx
mailto:oktaba@servidor.unam.mx

Hanna Oktaba and G. Ibarglengoitia: Software Process Modeled with Objects: Stafic View

Evolution and changes - the process of software should
be improved constantly in order to obtain better results
in the use of resources and in the quality of the systems
produced.

These characteristics underline one of the important areas of
research in the Software Engineering that is the modeling of
SP.

The primary objectives of modeling SP are [Huff, 1996] the
following: understanding the software process, improving its
acting (improvement), and carrying out their execution
(enactment).

In the literature there exist works modeling the SP with
several focuses. In {Huff, 1996}, they are classified as follows:
Non executable paradigm- textual or graphical (e.g.

IDEF0).

Paradigm based on states- states automata, Petri nets,

formal grammars.

Paradigm based on rules- expert systems, Prolog, systems

of planning.

Imperative paradigm - Ada like specification language.

The purpose of this work is to use the object-oriented
modeling to understand easier the complexity of the static
structure of the SP, and to teach it to students and groups of
developers trained in the OO technology. The idea of using
the techniques of software development for the description of
the process is not new [Osterweil, 1987], but it seems that the |
use of object-oriented modeling has not been explored
thoroughly.

The motivation in order to use the concept of class to model
the static view of the SP is the following:

s The relationship of generalization/ specialization between
classes allows the gradual modeling of the software
process, classifying the concepts from a very general level
to more specific ones. This graduation helps in the
understanding of the model.

¢ The relationships of aggregation and association offer a
mechanism to describe the dependences between the
different concepts that one is modeling.

Definition of the software process and their
components

3

The software process is a composition of phases, activities,
artifacts and resources (including the humans).

The phases, better known as the life-cycle phases of the
software, constitute significant steps of the software process.
Each phase contains several activities that are carried out with
the purpose of generating an important product {artifact), like
for example, the document of requirements specification or

the document of design. Examples of phases are: analysis,
design, code, installation, etc.

The activities (or tasks) are the key pieces of the process.
They define the actions (procedures) that must be carried out
in a given moment of the development. In general, an activity
requires one or more input artifacts and generates the output
artifact(s). An activity also requires resources, particularly
human resources, that associates via the concept of role. The
availability of the input artifacts and of the resources imposes
certain temporary order in the execution of the activities.

The artifacts that are the inputs and outputs of the activities,
could be a set of very varied documents, for example, diagrams
of design, code, plans of tests, reports, user’s manuals; as
well as sets of documents of several types.

The most important resources in the modeling of SP are
those that are represented by roles, which are able to carry
out the activities of the process. The roles are assigned to
agents in turns. An agent is a human being or an automatic
tool that executes an activity. The resources could also be:
working hours, money, computer laboratories, etc. For the
purposes of this paper, we will only consider the roles and the
human agents as resources.

Abstract model of the software process

The object-oriented modeling of the SP begins with the
identification of the basic classes.

Software Process- it is the class représenting the gene-

ral concept that one is modeling.

Phase- it is the abstract class representing a phase of

the software life-cycle.

Activity- it is the abstract class representing the activities

of the process.

Artifact- it is the abstract class representing several

products that are generated and exchanged.

Role- it is the abstract class representing the several

roles associated to the activities.

Agent- it is the person or tool, that plays a certain role

in the process.

The general definitions enunciated in the previous section
introduce the first relationships of association and aggregation
between these classes. The class Process Software is made up
of several instances of the Phase class. This class, in turn, has
several objects of the Activity class attached to it. The objects
of this class could be added to other objects of the same class,
because an activity could be made up of several auxiliary
activities. The Activity class also adds at least an input artifact
and an output one, represented by the instances of the Artifact
class. The objects that represent artifacts could also be made
up of other artifacts. It also exists certain association between

———————

229

Hanna Oktaba and G. IbargUengoitia: Soflware Process Modeled with Objects: Stafic View

the Role class and the instances of the Activity class and,
finally, there exists an association between the Agent class
and the possible instances of several Role(s) that an agent
will carry out. The Fig.I presents the diagram of classes with
the relationships mentioned in the UML notation [UML,
1997].

SoftwareProcess
1T
Phase
| (
Afact :1 Activity | I Role

1
Agent

Figure 1: Class diagram software process.

Specialization of phases

Several models of the software development life-cycles exist.
The most outstanding examples are: the waterfall model [Royce,
1970; Bohem, 1981], the spiral model [Bshem,. 1988] and the
iterative and incremental model for the object-oriented
development [Booch, 1994]. All these models contain the
following phases, although they sometimes use different
terminology:

Analysis- it represents the activities that lead to the

understanding and documentation of the requirements

of the software system and the modeling of the problem
domain.

The analysis includes the customer validation of the
documents that contain the agreement on the scope of the
system. Desigh- its objective is to do the maping of the
requirements and the problem domain model for the computer
environment that will make possible the implementation.

It contemplates the architectural and the detailed design of
the components. The design activities verify also that all the
requirements specified in the analysis are covered.

e

230

Code and Tests- it is the implementation based on the design

using programming environments.

It contemplates the unitary and integration tests in order to
verify the correspondence between the designe and the
implementation.

Installation- it refers to the system delivery to the client,

and its setting in operation in the real environment of

execution.

It includes the customer and the final users validation of
the system.

Muaintenance- it includes the corrections, modifications

and extensions to the system after liberation.

It includes the configuration management and the version
control.Upon analyzing the activities of maintenance, in any
of their modalities of correction, modification and extension,
it is observed that these correspond to the usual activities of
the development process of a new system with the difference
that the input artifact belongs to a system already existing
and, therefore, the procedures in order to carry out these
activities will have a particular definition. The configuration
management. and the versions control, that distinguish the
maintenance phase, should in fact be defined from the
beginning of a new system development. Consequently, we
decided not to include the maintenance as a different phase
in the software process by considering that its activities
correspond to the other phases.

The specialization of the Phase class, according to the
classification presented here, sample in Fig.2.

e

Phase
///' '\\
Analysis Phase Installation Phase
/ \
Design Phase Code and Test Phase

Figure 2: Phases specialization.

Specialization of activities

The activities of the software process are divided in four basic
groups: production, control, technology and communication
(Fig. 3).

Hanna Okiaba and G. bargiengoitia: Software Process Modeled with Objects: Stafic View

Activity
e 4 » 7
Cai // \\ T
Production / N Communication.
/ b |
E— AN —
/ 5
Control Technology

Figure 3: Activity specialization.

Production

The activities of production are those that conduct directly
to the construction of the software system in question. Some
examples of the productive activities are: the analysis, the
design and the code. Their input artifacts are respectively,
the customer requirements for the analysis, the analysis
documents for the design and the design documents for the
code. The output artifacts are also obvious. Their actions could
be described according to the method or the particular

technique that is used. For example, for the process basedon -

the object-oriented technology the use of the strategies and
patterns of Coad [Coad et al., 1995} or the use cases of
Jacobson [Jacobson et al., 1992] could be chosen for the
analysis; for the design, the techniques of Rumbaugh
[Rumbaugh ef al., 1991} or Booch [Booch, 1994]. Both
activities could be documented evenly with the UML notation.
Some of the object-oriented languages like C+, Smalltalk or
Java could be chosen for the code.

The documentation of work products, including the code
documentation, is another production activity that is time
consuming and that requires discipline. Its importance for
the development team during all the phases of the SP is
clear. A similar degree of importance, for the client and the
final user, have the manuals of the system whose
documentation should be also included as a legitimate activity
of production.

To the group of production activities the construction of
prototypes (prototyping) is added. The prototypes serve, in
general, to clarify any doubts on the requirements definition
or to confirm the design proposals. The prototypes are aimost
always discarded and do not form part of the final product.
However, we consider appropriate to include the activity of
prototype construction as an activity of production because
it requires the same process as the production of a complex
system, only that to a minor scale. One could also consider

the construction of demonstration programs (demos) as the
production of prototypes, although starting from a system
that already exists. The Fig.4 shows the first level of
specialization of the Production class.

Production
v A\
T A4 A L .
Analysls / 1 \ - Prototyping
| \ VVVVVVVVVVV —
Design Coding Documenting

Figure: 4 Production activities specialization.

Control

The control activities are those that help to verify the state
of the process and of the products generated by the other
activities. Therefore, they specialize in two types: those
related to the process control and those related to the
product control (Fig.5).

Control

o v

e
-
[———— f

Process Control

Product Control

Figure 5: Basic specialization of control activities.

Process control

The activities devoted to process control are divided in two
types: those carried out from the point of view of the process
management and those carried out from the personal
perspective of each one of the agents that participate in the
process. A few examples of the management activities of
process control are the: methodology selection, planning,
progress monitoring, modification of the process and post

231

Hanna Oktaba and G. IbargUengoitia: Soffware Process Modeled with Objects: Static View

mortem evaluation upon finishing the project. An example
of personal control activity of the process we mention that
of the time record that takes an agent to carry out an
activity. The latter is related to the explicit introduction
of the time measurement in the SP. Due to it, one could
carry out the quantitative evaluation of time dedicated to
the development of the project and to each one of the
several activities of the process. Fig.6 shows the
specializations of the Process Control class.

.Process Control
Management Personal
Y4 ARY v

‘Methodoloay Selecti \ Evaluation T'iﬁéﬁecordin
g‘ethﬁ‘logy Selection // \ [E g

~ y \]
[Plannin { [Monitoring | | Modifing T,
It I]

Figure 6: Process control activities specialization.

Product control

Another type of control activity is the one which supervise the
product (product control). The most important activities are those
devoted to find and fix defects (defect control). To this type of
activities belong those that correspond to the search of defects
made by the human agents in the products of analysis, design
and the code . These activities are: the reviews carried out by
oneself, the inspections made by colleagues, the verifications
made by the development team, and the validations carried out
by the client. Also, in the group devoted to the activity of
searching defects, are included the compilation and the testing,
which are carried out with the support of automated tools. The
compilation without errors is, of course, considered as part of
the activity of code.

The activity of defect fixing is the one that removes the
errors found in the products. When it is code defect fixing the
activity is known as debugging. This activity is included as
a specialization gorresponding to the defect control.

Configuration

A very important aspect of product control is the configuration
management that includes, among other things, the version
control. A configuration defines the final product components
that are given to the client. The changes made to the

———

232

components of a configuration should be properly controlled,
documented and eventually reflected as the components’
version changes.

Measures

Another specialization of the product control activities is the
one that refers to register measures. This in turn specializes in
the activity dedicated to the registration of the products founded
and fixed defects (defect record), and another activity which
refers to the counting of product units (unit record). For example,
the number of classes in the diagrams of analysis or the number
of lines of code. These two activities, defects and units record,
belong to activities that generate basic measures for the
quantitative evaluation of the quality of the product and of the
process.

Standards definition

The standards definition of the work products permit, upon
adopting these by the members of the development team, the
easy identification and the understanding of the same. For this
reason, we include this activity as another specialization of the

product control. Fig.7 shows the several specializations of the

Product Control class.

. Product Control_
« MY
// \ ‘Standards Definition
\\\ I
{ DelectConil_ }Meai! Configuration Management
Ox v

/ \ \ . v .-
/) Defect Record; | Unit Record , Version Controf
/ I foct Rec] % 7j B ——

/
Defect Finding | [Defect Fixing |
t‘v\
e Debuggin
| Human ‘@

.

AARTY
/ \
/. \\

‘ Review | Verification

IR

~.

Testing
=—

Figure 7: Product control activities specialization.

Hanna Oktaba and G. IbargUengoitia: Soffware Process Modeled with Objects: Static View

Technology

The activities of technological type are the software and hardware
evaluation, the staff training on the methodology or tools and
those that facilitate the reuse. The latter could include the
creation, management and access to libraries of reusable
components (Fig.8).

7— f v

Software & Hardware Evaluation

e
i

Figure 8: Technology activities specialization.

Communication

The communication with the customer and that carried out
between the members of the developement team, is a very
important aspect of the software process. In great measure

the succes of the project depends on the efficient and on time-

communication. The activities of communication could be
basicaly classified in meetings and those that are carried out
through the exchange of documents or products. The meetings
require the attention of more than a person at the same time
(synchronous communication), while during the exchange
of documents or products it is not necessary (asyncronous
communication). In both cases the means of communication
could be physical (room, mail) or electronic (videoconference,
e-mail). Fig.9 represents the basic specialization of the
communication activities.

!
~ Communication

. > 4 ‘\

— N

(Exchange |
1

Figure 9: Communication activities specialization.

Specialization of roles

The classification of roles reflects, in a way, the activities
classification. On one hand, roles are clearly related to the
production activities like, for example, the analyst, the designer,
the programmer. On the other hand, the roles of process control
are played by the manager or project leader. The roles related to
the product control could be carried out by the tester of code and
the integrator of the system.

Recently, roles of technological type have arisen, like the
expert in human-machine interfaces, in data bases, in computer
nets, and all kinds of roles related to the reusability, like: the
evaluator of the reusability at company level, the manager of
the reusable component libraries and the reusable components
supplier. As the technological part one could also add the ro-
les related with the training in the development techmques
and the tools.

With regard to the communication, projects have been’
mentioned in which it is useful to have people whose role is
that of being used as bridge between the technical team and
the customer, or the technical team and the manager of the
project or simply between several subteams of the same project
[Coplien, 95]. This type of roles could help reducing the
amount of communications between the members of the
project, and any misunderstandings (which can lead to re-
doing the work) due to the lack of opportune information.

‘Finaly, we included the role of customer that plays an
important part in some activities of the SP, like the definition
of requirements or the validation of the products.

Fig. 10 shows the hierarchy of classes that represents the
specialization of roles.

’_Me“,
I o i— SV
:Ciﬂ‘m%_ {ﬁ ¥ ECQTE_U_Qlcat'IOn“ROIE
’ D . S
g@’;ﬁa@ Ly
. 7“")
[Traim | [ReuseRole
H T
— Expert
P Y‘Y‘\ .
Process Contol R Product Control Role

Yy » ‘¥
| Manager| | Leader | [MOduleTese: rﬂle@tﬂ

1 P B

Figure 10: Roles specialization.

233

Hanna Oktaba and G. Ibarglengoitia: Software Process Modeled with Objects: Stafic View

Artifacts specialization

The activities need the input artifacts and, in general, they
generate the output artifacts. It is not surprising then, that their
classification reflects the classification of the activities in great
measure.

In order to begin the activities of the SP we need a document
that defines the basic requirements of the client (customer
request). This document could be part of a contract with a
customer, or it could be an initial description of the system
made by the developement company that wants to take out the
product to the general market.

The artifacts, that are generated and circulate while the
different activities of production are carried out, are the
documents of analysis, design and code.

The documents generated for control purposes could be
specialized in those which support the process control and
those used for the product control. Examples of documents
for the process control are: the project plan, the schedule, the
checklists, the time recording log and the document that
summarizes the information on the project. In turn, examples
of documents for the product control are: the list of verification
(checklist) in order to make revisions of products, the test
plan, the registration of units of the product and the registration
of the defects of the product.

Among the documents of technological type we find the
methodology definitions, the standard descriptions (for
example, the standard of code) or the descriptions of rensable
components.

Moreover, there also exist documents generated by the
communication activities like, for example, the electronic mail
messages or paper reports of the meetings. Fig.11 represents
the class hierarchy that models the artifacts.

Agents specialization

In general, there are two types of agents: humans and tools.
Fig. 12 offers the corresponding diagram. For the purpose of
this work, only human agents will be considered.

Static model of the analysis phase

The object model of software process shown in the previous
section uses the relationship of inheritance in order to classify
the basic concepts involved. This classification does not seek
to be neither complete nor exhaustive. Its purpose is only to
show the way one could understand the complexity of the soft-
ware process step by step.

As a case of study we present the object model which helps
to understand and deepen in the anlysis phase specializing
the activities, the roles and the artifacts involved.

cmpos—

234

FES 3 Paper Doc
Analysis Doc Code Y ANRA TN =——
! Standards | -
= \\ AN
DeSigﬂ Doc Control Artifact Reu;;e Dog Pmcedurii
v« vy -
7 g \\
Process Control Artifac Product Control Artifact

,,,,,,,, TN Test Plan
Plan | / ! \ Summary JARE N
""" — | E__ Checkfist | | RN
Schedule, | | —— sfect Log
]; Milestones Unit Log -
R

Time Recording Log

Figure 11: Artifacts specialization.

Person

Figure 12: Agent specialization.

Analysis phase activities

The basic activities of the analysis phase are those that lead to
the definition of the requirements of a system and of the abstract
modeling of the problem.domain. In order to carry out these
activities in an efficient way we also include the activities of
process control that allow the resources planning, the monitoring
and the evaluation of the plan execution.

The activities of product control are also incorporated. The
activities of this type are the internal revision and the validation
made in conjuction with the client.

Hanna Oktaba and G. Ibargbengoitia: Software Process Modeled with Objects: Static View

The phase of analysis requires also communication
activities between the client, the analyst and the leader of the
project in order to carry out the basic activities of production
and control.

Fig.13 shows the relationship of aggregation that occurs
between the AnalysisPhase class and the classes that model
the activities that have been mentioned before. The general
model of activities (Fig.3) also contemplates the activities of
technological type. In order to simplify the modeling of the
phase of analysis, it was supposed that the agents that will
assume the roles for this phase do not require an additional
training in technological aspects.

' Manager

7 |

Planning_]

Monitaring E;:Ejation i

Figure 14: Manager relation with the control process activities.

VVPcoductControlA ;

Requirements Definition Analysis Modeling

Analysis Phase
%—7\3— R '-'-—Emmuniéation 1
- Control
Praduction T
/‘ ‘FProcess Control __ o
— Product Control
Analysis ; Az Y L -‘—f
‘ Planiing \ EvaMa‘ﬁSJM / X
N | / :
! \\ - l__ - / , Validation
™ Monlton'ngj Review | . _
I N =
Requirements Definition N
Analysis Modeling

Figure 13: Analysis phase relation with activities.

Roles of the analysis phase

The minimum roles involved in the analysis phase are: the
project leader, the analyst and the customer. The project
leader’s reponsability is to carry out the activities of process
control. Fig.14 models the association relationship between
the class Manager and the activities of the analysis phase
that correspond to it.

The analyst rdle consists executing the activities of
production like the definition of requirements and the
creation of the abstract model of the system. The analyst
is also responsible to do the revisions of their products in
order to guarantee their better quality. Fig.15 shows the
association relationship between the corresponding
activities and the analyst.

Figure 15: Analyst relation with the production control acitvities.

It corresponds to the customer to do the validation of the
analysis artifacts in order to discover any possible defects or
misunderstandings. Fig.16 shows the relationship between
the Customer class and the validation activity.

Customer |

IS |

i

(ProductContrp[

Figure 16: Customer relation with the product control activity.

235

Hanna Oktabao and G. Ibarglengoitia: Soffware Process Modeled with Objects: Stalic View

Documents and products of the analysis phase

The artifacts that are managed during the phase of analysis are
shown in Fig.17. The initial document is the definition of the
basic requests made by the client, which, in general, are specified
before we start the project. The central products of this phase
are: the detailed specification of the requirements and the
document of the abstract model of the system. The last could be
made up of several documents whose content depends on the
method of modeling selected for the analysis phase. The analysis
phase control documents are the plan and final summary.

Astifact
v A
e ! S
- |
Customer Request | | Production Artifact Control Artifact
,,,,,,,] <
_ f .
Analysis Doc Process Control Artifact
, \ 4 \
Requirements Analysis Mode! Plan Summary

E

Figure 17: Analysis artifacts hierarchy.

Relationship between the input and output
artifacts and the analysis activities

The activity of requirements definition converts the initial
requests of the customer in a more precise specification. This
document is used as an input for the modeling activity which,
according to the applied method, leads to the construction of
one or more models of the problem domain. Figs.18 and 19
relate the input and output artifacts to the production activities
of the analysis phase.

input output,

Customer Request | Requirements Definition

Requirements }

8

Figure 18: Requirements definition activity and its relation with the
input / output artifacts.

input

} Requirements N

Analysis Modeling | (O\mpm
T

| | .

Figure 19: Analysis modeling activity relation with the input/output
artifacts.

236

The revision activities done by the analyst and those of
validation, carried out by the client take as the input artifacts
the requirements documents or the analysis models, and they
return the same documents with the modifications request or,
simply, approved. In the first case, the returned documents
serve as the input to the corresponding production activities
and the process is repeated until the revision and the validation
are approbatory. Figs.20 and 21 relate the corresponding
classes.

] input o T —
Production Aract o Reew | Production Arfact

) oulptit e
N . | Production Artifact

Figure 21: Validation activity and its relation with the input/output
artifacts.

The planning activity, that initializes the phase of analysis,
takes, as a starting point, the customer requests and generates
the plan of activities with a schedule and the responsabilities
assignation. The monitoring activities take the plan and the
products of analysis as an input and conclude with the plan
in which the progress or a modified plan is registered. The
final evaluation of the phase of analy{is generates a summary
of the resources, times, costs, etc., of this phase. Fig.22 shows
the aggregation relationship between the corresponding classes
for the planning activity. The monitoring and the final
evaluation diagrams are similar.

input

E—

~~~~~~~~~~ oulput ——
Planning | . Plan

~

Customer Request

|
|

Figure 22: Planning activity and its relation with the input/output
artifacts.

Communication activities

In general, the communication activities such as meetings or
the exchange of documents (Fig. 9), do not have a great
importance and are considered as something implicit. However,
the communication between the agents involved through their
roles in the system development has a crucial importance for
the success of the team work. In the case of the analysis phase
modeling we consider important to introduce the explicit
communication activities which help to carry out the activities
of another type.



Hanna Oktaba and G. Ibarglengoitic: Software Process Modeled with Objects: Static View

Communication between the client and the
analyst

In the analysis phase there exist at least two activities that require
the communication between the customer and the analyst. The
first one is during the requirements specification, which is almost
imposible without direct meetings between both parts. Fig.23
models the corresponding relationships between the classes.

and the final evaluation the project leader needs to
communicate with the analyst. The form of communication
could vary. It does not matter if it takes place through meetings
or documents exchange, the problem is that it should be
effective and opportune. Fig. 25 models the relationships
between the corresponding classes in the case of the planning
activity. Other activities of process control are modeled in a
similar way.

Manager
Analyst
Tﬁ 1
input output - input : output
CostomerRequest | | Requirements Definifon | Requirements Customer Requestl Planning - Plan
& 4
Meeting
I Commurication

Customer

Figure 23. Meeting activity and its relation with the requirements
defintition.

Another occasion for the communication between customer and

analyst occurs during the validation of the analysis artifacts. In-

this case, it is enough to carry out the communication through
the documents exchange (Fig.24).

{
Production Artfact mptf\ Validation Oj{fm Production Arfact
Exchange
Analyst

Figure 24: Exchange activity and its relation to validation.

Communication between the project leader
and the analyst

Good communication between the members of the
development team is very important. Particularly, in the
analysis phase, in order to make the planning, the monitoring

Analyst

8

Figure 25: Communtication activity and its relation to the planning
activity.

Conclusions and future works

This paper presents an attempt to exploring the object-oriented
modeling as a form of structuring and systematize the funda-
mental concepts of the software processes. The basic goal is
to understand them better.

The abstracts classes and the relationships between them
were used to model the general view of the SP. The
relationship of inheritance was used in order to express the
different specializations of the basic concepts as activities,
artifacts, roles and agents.

The classification shown here is not complete. One could
create new specializations according to the type of activities
that one wants to include. What we have been able to verify
is that the relationship of inherithnce between classes is a
good vehicle to clssify the information in this respect.

In the second part, we developed an example applying the
general model to the analysis phase specifying the static
structure of the basic activities of production, control and
communication, the involved roles and the generated artifacts.
The modeling through relationships of specialization,
aggregation and association of classes allowed the gradual
expression of the dependences between several elements of
the process. It was also easier to deepen in details.

237



Hanna Oktaba and G. ibargbengoitia: Software Process Modeled with Objects: Stalic View

We consider that the model is general and simple enough to
be used as a guide for teaching in the area of Software
Engineering and for the training of development teams. We
have distinguished between the different roles, different
activities of production, process control, product control,
communication, and different description of artifacts. We hope
we are offering a model complete enough, so that it can be
useful in the practice in order to define concrete models of
processes.

The future work is to continue the static modeling of the
other basic phases of the software process. The general purpose
is to define the minimum set of roles, activities and artifacts
that cover the complete process.

On the other hand, it could be interesting to explore the
dynamic views (interaction diagrams and state-transition
diagrams) of the object model in order to include the sequence
aspects of the activities execution and their temporary
dependences.

References

Bahem, B., Software Engineering Economics, Prentice Hall,
1981.

Béhem, B., “A Spiral Model of Software Development and
Enhancement”, en Thayer, Richard, ed. Soffware Engineering
Project Management, ITEEE Computer Society Tutorial, Catalog
Number EH0263-4, 1988, pp.118-127.

Booch, G., Object-Oriented Analysis and Design, with
Applications 2nd edn. Redwood City, CA: The Benjamin/
Cummins Publishing Company, 1994.

de Champeaux, D., Object-Oriented Development Process
and Metrics, Prentice Hall, 1997.

Coad, P. with D. North and M. Mayfield, Object Models -
Strategies, Patterns and Applications, Y ourdon Press, Prentice
Hall, 1995.

Coplien, J. O., “A Generative Development-Process Pattern
Language”, en Pattern Languages of Program Design,
Reading, MA: Addison Wesley, 1995, pp.183-237.

Finkelstein, A., J. Kramer and B. Nuseibeh (Eds.), Sofi-
ware Process Modelling and Technology, , Research Studies
Press, John Wiley & Sons, 1994,

Fuggetta, A., /] Processo Software, Aspetti strategici e
organizzativi, il Cardo editore in Venezia, 1995.

Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software,
Reading MA: Addison-Wesley, 1994,

238

Huff, K. E., “Software Process Modelling”, in Software
Process, Eds. A. Fuggetta and A. Wolf, Trends in Software 4,
J.Wiley&Sons Ltd., 1966, pp.1-24.

Jacobsen, 1., M. Chisterson, P. Jonsson and G. Overgaard,
Object-Oriented Software Engineering - A use case driven
approach, Addison-Wesley, 1992,

Lehman, M. M., “Process Models, Process Programs,
Programming Support”, Proceedings of 9th International
Conference of Software Engineering, March 30-April 2, 1997,
Monterey, Cal., USA, pp.14-16.

Osterweil, L., “Software Processes Are Software Too”,
Proceedings of 9th International Conference of Software
Engineering, March 30-April 2, 1997, Monterey, Cal., USA,
pp.2-13.

Royce, W. W., “Managing the Development of Large Soft-
ware Systems”, en Thayer, Richard, ed. Software Engineering
Project Management, IEEE Computer Society Tutorial,
Catalog Number EH0263-4, 118-127, 1988. Reimpreso de
Proceedings of IEEE WESCON, 1970, pp.1-9.

Rumbaugh, J., M. Blaha, W. Remerlani, F. Eddy and W.
Lorensen, Englewood Cliffs, NJ: Prentice Hall, 1991,

UML: Unified Modeling Language, Rational Software
Corporation, Version 1.0, 13 January 1997.

Hanna Oktaba was awarded a PhD degree in Computer Science, at
the University of Warsaw, in Poland, in 1981. From 1974 10 1983
she had an assistantship and then a lectureship in the Computer
Science Faculty of the University of Warsaw. Since 1993 and to the
present day, she gives lectures on Computer Science to Master
students of the IIMAS, Instituto de Investiga-
ciones en Matemdticas Aplicadas y en Siste-
mas (Research Institute of Applied
Mathematics and Systems), at the Universidad
Nacional Auténoma de México (UNAM). From
March 1990 to May 1997, she coordinated the
above postgraduate course. Her main areas of
interest are; Object Oriented Technology, Sofi-
ware Engeneering and Quality Models.

Guadalupe Ibargiiengoitia G. has got a Masters degree in Computer
Science awarded by the UNAM. She lectures
at the Mathematics Depariment of the
UNAM’s Sclence Faculty since 1975. She
| teaches Computer Science subjects in
| Mathematics and Computer Science courses,
at the UNAM. She has a lectureship in the
o | Computer Science Masters course of the
HMAS since 1993, Her main areas of interes
are: Software Engeneering, Object Orienied
Technology and Data Bases.




	228_ART. 1
	229_ART. 1
	230_ART. 1
	231_ART. 1
	232_ART. 1
	233_ART. 1
	234_ART. 1
	235_ART. 1
	236_ART. 1
	237_ART. 1
	238_ART. 1

