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Abstract 
Visual model ofan object is presented as composition ofa 
model-shape function and a model-pattern function. Non­
uniformity ofa pattern is defined as a quadratic form related 
to the gradient ofintensity. F or aplanar model, it is proved 
rhat a more precise estimation responds to a greater non­
uniformity. This is applied to develop a c/ass ofsingle-view 
3D-pose estimators exploring extremely non-uniform patterns. 
The estimators are of high precision, fast, robust, and 
algorithmical/y simple. Possib/e application is spacecraft 
docking, or any robot problem permitting usage ofa visual 
mark (target) on remote object. 
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1 Iotroductioo I"More non-uniform picture painted on a known object yields 
a higher precision for visual tracking ofthe object pose". This 

affirmation might intuitively seem true for the readers. First 

part of the paper represents a strict mathematical basement 

for this affrrmation. It will be shown that this affrrmation holds 

only for planar objects. It tums out that in general case the 

slope variation of an object may contribute more Fisher's 

information than a pattem painted on the object. 


The case of planar objects is developed furthermore to a 

new 3D-pose estimator. As it follows from the main theoretic 

result ofthe paper, such an estimator has the highest possible 

precision for planar targets. An important property ofmethod 

presented in the paper is that it does not require preliminary 

feature extraction from the target image. In addition, it is robust, 

fast, and algorithmically simple. 


Past Works 00 Visual Estimators oC 3D­

Pose 

The main application area for the visual 3D-pose tracking is 

robot control. The mutual pose óf a pair of 3D coordinate 

systems is determined as a set of 6 scalar parameters. The 

problem is to estímate these 6 parameters by processing an 

image ofthe remote object.. 

Typically, the processing can be subdívided into two steps: 


(t) Extracting features of the remote object from its image 

(il) Estimating 3D-pose by the features. 

A reliable, fast, and precise method forthe first step presents 

the main difficulty ofvisual processing ofa 3D-pose estimator. 


114 

mailto:xgeorge@hp9000al.uam.mx


G. Khachaturov: Non-Uniformity ofa Pattern and ·the Best· Single View 3D Pose Estlmator 

Assuming that it is performed successfully, for a known 
geometrical model ofthe object, the reconstruction of3D­
pose itself may be considered as a respectively easier 
operation. Indeed, it is reduced to a striet mathematical 
problem of inversion of a known map (say, perspective 
projection) between two Euclidean spaces of small 
dimensions. [Surprisingly, many works dedicated to 
tracking of 3D-pose by visual information are still 
investigating new methods for the second part of the 
problem, leaving the físt one out of consideration.] 

There exist various classífications of estimators of 3D­
pose. The subdivision of visual-based estimators of 3D 
pose as the local and the global ones was proposed by 
Faugeras et al (1984). 

The classic triangulation, which represents the main tool 
of the star navigation, is a simple example of local 
approach. Jarvis (1983) developed a computer vision 
triangulatíon method. However, dealing with a few local 
objects of reference, the precision is low since they 
represent a small part of visual information. Another 
propertY of local approaches is that they depend on the 
performance of extraction of local objects. A similar 
problem arises for the approach by Abidi and Chandra 
(1995) proposing intrinsic distances ofthe remote object 
to estimate its pose. On the other hand, working with many 
local features, the complicated logic oftracking offeatures 
makes this approach inconvenient for practice. Hel-Or and 
Werman (1995) although developed a kind of local 
approach. They propose a technique of uncertainty 
matrixes, whieh aIlows to process and fuse in a uniform 
way the data ofrange and intensity images. 

Kriegman (1992) developed a model-based pose estimator, 
which fínds 3D pose solving polynomial equations for 
surfaces represented as algebraic equations. 

The methods of global approach map the image into an 
Euclidean space where matching with a model is performed. 
A mayor part of such methods must extract local features 
before mapping. As examples ofthe "shape from contour" 
technique applied for pose estimation may be mentioned 
works by Dhome et al (1989), and by Dunker el al (1996). 
Other class of global pose estimators makes use of Hough 
transformo Tanakaet al (1985) apply Hough transform 10 fmd 
known model in ~ 3D scene. Sorne estimators work with Ex­
tended Gaussian Image. The works by Brou (1984) and by 
Kang and Ikeuchi (1993) follow this way. Vinther and Cipolla 
(1994) proposed affine invariants to fínd 3D-pose. 

Aplanar target for 3D-pose estímate was proposed by 
Khachaturov et al (1987). It alIows the measurement of 
parameters of its image without preprocessing of image and 
extraction of local features. 

DeMenthon and Davis (1995) developed a numeric method 

for inverting perspective projection based on linear algebra. 
It works when a model ofthe object shape is known and the 
object features are already extracted from an input image. [So 
this is a method devoted to the second step of processing in 
the classification above.] The advantage ofthis method with 
respectto approaches ofLowe (1985, 1991) and Yuan (1989) 
is that it does not require an initial pose estimate and does not 
require matrix inversion in its iteration loop. 

The work by Laurin and Rioux (1995) makes a contribution 
into the fírst part of the problem. lt apply a sine-coding 
technique to range images. Then the Fourier transform (FT) 
is applied to coded images to estimate 3D pose of objects. 

This technique is close to the one presented in the actual 
paper, since both apply FT and investigate the peaks. 

The primary difference ofthese two approaches is that they 
use different hardware. It generates the semantic difference of 
the input information to process: the range images and, 
respectively, the intensity ones. 

Then, there is a difference in the qualitative properties of 
the two approaches. 

The approach by Laurin and Rioux uses assumption that 
there are a number of planar objects on the scene. This 
approach depends strongly on the performance ofpreliminary 
segmentation ofrange images. The aim ofthe segmentation is 
the separation ofthe planar objects from their background. A 
wrong segmentation leads to bad tracking of3D-pose. 

The method presented below performs processing of 
intensity images of a known target. AIl' occ\usion and other 
perturbations of a wide range do not destroy the method. 
However, not all applications allow using the target. So, the 
presented method is more special, but more reliable. 

2 Non-UniCormity oC a Pattern and 
Precision oC Estimates 

A Mathematical Model oflnput Information 

A complete mathematical model ofthe target image is defmed 
as the quadruple {g, x, 1, G}, where each component is 
described below: 

Let OERI~ denote an unknown vector ofparameters, and y 
denote a point of image space RIti. In particular, O may des­
cribe 3D-pose of remote object, so L=6 in this case, and y 
may be two-dimensional vector ofa point on the visual image 

frame,M=2. 

By defmition, the model ofshape ofan object is a map x(y ,O) 
representing a point x ofa manifold G ofthe same dimension 
M as the one ofthe image space. [In particular, for the case 
ofusual gray-scale images, a model ofshape recovers explicitly 
a point ofG, which is a 2D manifold representing surface ofa 
3D object.] For a known vector O, as y spans entire image 
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space, x(y,n) spans a domain S of G. [For the usual case of 

2D images, we can understand S as the domain ofvisibility 

on G. To construct it, we can place a view-point on the image 

of G, and while the view-point spans the entire image, all 

visible points of G are attributed to S.] 

By definition, the model 01pattern painted on the model 
object is a known real function g(x), where x is a point of G. 

[So, if Gis the surface of a 3D object, g(x) represents the 

gray scale intensity of a pattern painted on G at XE G.] 

The image ley) is defined as a random function with 

expectation g(x(y,n». The random variables l(y.), l(y) 
are assumed to be independent for Y!*Y2' and variance 
cr2=cr2(I(y» does not depend on y. (Say, 1 is the signal plus 

Gaussian white noise). 

Estimate of Pose and Its Precision 

Under an estímatenof.o we understand a point estimate 
[aH used concepts and facts of statistics can be found in a 

book by Cox and Hinkley (1974)], Le. any vector valued 

functional n n (J)E J?f" defined on input images. 

An estimate is called efficient if it provides minimum to the 

functional 1E (11 n n (l) 11 ) d n . So, in a sense, an efficient 
R' 

estimate has the best possible precision. 

In tell1ls ofthe model {g, x, 1, G}, the least squares estimate 

isgiven by 

n =arg min<D(1,n), 

<D(1,n) = J)I(y) g(x(y,n»]2 dy, (1) 

where ley) is an image, and the domain D coincides with the 

imageofG. 

1t is known that for the described model {g, x, 1, G}, the 

least squares estimate is asymptotically efficient. For the case 

under consíderation, it means 

{variance of efficient estimate 

{variance of least squares estimate} 

for each compon\mt of the estímate. Interpreting this 

property for a practical application, we may accept that 
the least squares method reaches the best possible precision. 

For any estímate, the lower bounds of its variances are 

established by the Cramér-Rao inequality. These bounds coinci­
de with variances of an efficient estimate. Hence, for the 
variances ofthe least squares estimate, we may, practically, 

accept values given by bounds ofthe Cramér-Rao inequality. 
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Due to the Cramér-Rao inequality, the covariance matrix of 

the efficient (i.e. having lowest variances) estímate n is given 

as cov(n,nT
) = F-1

, where F is the matrix of Fisher's 

information. For model {g, x, 1, G}, the elements ofFisher's 

matrix F = {Fk.l}k.l=I .... L may be expressed as 

Fk,l _ r~ <'gGxm .q;.. Gxndy 
- .bL...m,n=1,...,M Gxm aOJk Gxn aOJ, , 

Comparison of Precision for Different Non­
Uniformities of the Target-Pattern 

Using the aboye representation ofthe Fisher' s matrix, we will 

study the precision ofleast squares method in dependen ce of 
a property ofthe pattern function g. 

Let define non-uniformity ola patlern g as a quadratic 

form with the matrix QK = 1p(X)pT (x)dx, where 

P(x) = grad g = {;~}1=1 •...• M , XES, and S is defined aboye. 

Let {gJ i=1,2 be a pair of pattern functions and Qg, be their 

non-uniformities. Let ni' i= 1,2, denote the Jeast squares 

estimates ofn given, in accordance with (1), as 

ni = arg min<D K; (l, 0.), 

<D 1', (f,n) = .b[I(y) g¡(x(y;n»f dy. 

Let dornain of visibílity S does not change for a 

sufficiently small variation ofn. 

Under these conditions, the matrix of Fisher' s 

information Fg; , i= 1,2 is represented as 

Gxndy
&;, . 

For quadratic forms with the matrixes A and B of the same 
dimension, we use generally accepted notation A2.B denoting 

that for any vector z, zTAz2:zTBz holds. 

Usingjust presented notation and assumptions, the following 
theorem is true. 

Theorem 1. Let the model ofshape x(y,n) span aplanar object 

G in 3D space and the images ofthis object be produced as 
plane perspective projections. Let the size of G be much less 

than the distance between G and the projection plane.lfnon­

uniformities oftwo pattems {gJi=¡ 2 painted on G are related 

F -I < -IF-1 
as Qg¡ 2:a Q1'2 for a positive value a, then KI - a 1(2' 
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Proof We can rewrite the given aboye representation of 

F¡;¡ in the form 1xTp;p/xdy, where MxL-matrix X is 

- { mm }m=I, ...,M . 
defined as.X - iiwk k=I, ... ,L ,M=2, L=6. Smce x(y,n) 

represents aplanar object and the target-size is much less than 
the distan ce to the target, then X almost does not depend on y. 
Hence, 

, where e is a constant of Jacobian used in the change of 

variable. Hence, for any zERL, 

(2) 

is true, as far as it is the same as 

which, in tum, follows from QI(, ?:aQI(, . 

However, (2) just means F , ;2 aF , from which g g 

F -1 < -lF-1.'(, - a g, follows. + 

For a= 1, QI(, ?: Qg2 means that the pattem g¡ is more non­

uniform than the one ofgl' For z={z¡} with Zk 1 and Zj=O for 

j;tk, the inequality Fg~1 ::::;; Fg~l implies that the variance of 

efficient estímate ofeach component ú\ given by is not greater 

than the one given by ñ . In other words, one has obtained 
l 

Corollary 2. More non-uniform pattern on aplanar 
object provides higher precision of efficient estimates 

of 3 D-pose of the object. 

Now let consider non-uniformity for periodic patterns. Let 

x={x¡,x)and a pattern function giX¡,x2) be a bi-periodic 

function restricted in aplanar domain G. Let for both varia­

bles the number of periods in G be much greater than 1. Let 

the non-uniformity ofpattern g2 defined inside G be a positive 

definite form aIld Q1(2 be the corresponding matrix. Let defi­

ne the pattern g¡(x¡,x), {x¡,x) E G, asgl(xpX) =g2( cu¡,a]) 

with an a> l. Since G contains many periods ofglalong as x¡ 

asx2, then, asymptotically fora large a, Q¡¡, r:ealQg2 holds. 

Repeating literally the scheme of proof of the theorem, one 
. F 2F .. F-1 -2F-1

obtams .'(:::::; a .'(. Invertmg It, g :::::; a g' and 
1 2 -1 ' -2 ~_I 2 

using Corollary 2, one has {F.'(, }k.k :::::; a fF.'(2 h.k where 

[.} Ik are diagonal elements of F¡;~ I for í=1,2. Since {F¡;~l}kk 

and a -2 {Fg~J}k,k are the variances of components of ni' 
i= 1 ,2, we come to 

Corrolary 3. Let all assumptions preceding the theorem 1 be 

true. Let the model of shape correspond to aplanar object in 
3D space and the model of pattem be a periodic pattem 
function, then, asymptotically, proportional increasing ofthe 
frequencies of the pattem function yields inversely 
proportional decreasing ofstandard deviations ofthe efficient 

estimates of all components of 3D-pose. 

Remark 4. At first glance, as the theorem as its corollaries 

could seem trivial for practical application, however it wonh 
mentioning that in general case ofa non-planar model ofobject, 
an affirmation similar to the theorem is not true: More exactly, 

using previous notation, the property 

in general case, does not imply 

lXT(y)p¡(x(y»J( (x(y»X(y)dy?: 

J) X T (y)P2 (x(y»p;r (x(y»X(y)dy . 

A counter-example ofthis kind can be simply presented for Pi 

and X considered as scalar functions of one variable. 
So, for non-planar G the affirmation ofthe theorem is not 

true. The explanation is that the slope variation for a model of 
shape may contribute more Fisher's 'information than non­

uniformity ofpattern. 

3 "The Best" Single-View 3D-Pose 
Estimator 

The theorem and, specially, its Corollary 3 hint a 

straightforward method for increasing of the precision of a 
model-based 3D-pose visual estimator: the non-uniformity of 
a pattem should be increased. 

Theoretically, the only Iimitation for this increasing is given 
by the pixel size and can be found according to the classic 

Kotel 'nikov-Shannon-Whittake: sampling theorem, provided 
a size of digital photos a target 10 be fixed. 

[In this respect, a natural question is how to join variable 

distance to the target with a constant picture size? Practically, 
it can be done by the variation of camera-zoom. 

Namely, the zoom parameter must be included in a 

coordinated way into both mechanisms: 
• 	 lnto the control loop of TV -camera: to provide a fixed 

picture size independently ofdistance. 
• 	 lnto the algorithm estimating 3 D pose: to update characteristics 

ofthe optical system performing perspective projection 
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Of course, maintaining a constant picture-size can be 

provided only for a certain diapason ofdistances between the 

target and 1V-camera. It specifies the working range of the 

corresponding system. The phrase at the beginning of this 

section is valid as long as such a virtual system stays in its 

working range ofdistances. 

The rest of paper deals only with 3D-pose estimation. So, 

we are disregarding here as the control ofcamera-zoom as the 

interaction between both mechanisms, leaving these points 

for practical developments.] 

However, it is not clear how to process an essentially non­
uniform pattern: the least squares method given by (1) does 

not work in this case. 

The spectral methods instead of the straightforward least 

squares method overwhelm this difficulty. 

An Example Of "The Best" Estimator With A 
Planar Target 

This example follows the work by Khachaturov (1998). 

[To prevent misunderstanding, note that this example 

presents áIl estimator processing digital images of aplanar 

target with an utterly non-uniform pattern. The only 

justification ofthe prefix "the best" used for such an estimator 

is given by Corollary 2.] 

The Target and Parameters oflts lmage 

We use a square target. If a target size is much smaller than 

the distance between the camera and the target, then one may 

approximately consider the perspective projection of the 

square target as a parallelogram. So, the target image 

parameters (depicted on FigAa
) may be defined as the triple 

ofvectors {ix' ¡y' i) in the following way. 

The pair {Ix' i) consists, by definition, of two vectors 

oriented as two connected sides of the target-image 

parallelogram. The lengths of i and I coincide, respectively, • y 

with Jengths of the related sides. ie is defined as the vector 

connecting the image-frame origin with the target image center. 

In other words, {i,
x 

i}
y 

represents the form, size, and 

orientation ofthe c'orresponding target image; ic is the target­

image translation inside the frame. 

The Pattern ofTarget 

The model of pattern is given functionally as 

g(x" x2 ) = A[l +cos(2Jl'¡;x,) cos(2Jl'J;x2 )], (3) 
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where {x,..t"z}E[O,I]x[O,I]. Theterm "1" ís íntroduced to make 

the model ofpattern non-negative to look like the intensity of 

a gray-scale image. Varying i; and./;, one can reach non­

uniformity as high as the pixel size permits. 

Properties ofthe Pattern 

An explicit calculation of Qg for g of (3) shows that asi;, 

./;~oo, Qg tends to a diagonal matrix with its diagonal elements 

to be proportional to squares ofthe frequenciesJ;, ./;. So, by 

increasing of f,f, due to the corollary 3, Qg can be made as 
1 2 

large as necessary for the precision ofpose estimates; the pixel 
F. 

size is the only limitation for the increasing. 

Ifg of (3) is defined on the entire plane, its FT is given by 
d 

G: 

f fg (
00 00 

) -i2".(x,,,, +X1 11 1 )dx dx ­ eG ( U p U 2 ) X p X 2 e I 2­

a1 
A{8(u, )8(u ) + [8("1+¡')+8(UI-t¡)1~8(u2+h )+8("2-12)]} (4)

2	 p 

itIt is equal to zero everywhere except the five points 

u(Ob{O,O}, U(!b{fj}, u(2b{ -fj}, uPb{j,-fL U(4b {-f,-f}. p 
I 2 ! 2 I 2 ! 2 

p(5) 

(For details of the reduction of (4), we refer to Brigham 
g(1974». The theoretic result of(4) is not getting much worse 

after restriction of the entire plane of definition of g on the 

unit square [O,I]x[O, 1]: Fig. la gives visualization ofg of (3) 

defined in the unitsquare forJ;=f =8, and Fig. lb is theplotof
2 

1log( 1+IGi), where G represents FT ofg. 

1 

1 
o 

(a) 

f 

e 

t: 
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(b) 

Figure 1. A simulated pattern (a) and (b) log olits F ourier translorm 

Due to Parseval' s theorem (Pratt (1978», IIgW=IIGW. So, all 

distributed in spatial domain energy of the functional pattem 

(3) passes in the spectral domain into the energy concentrated 

at the points (5). As it follows from the next well-known 

property, a similar relation between the modei ofpattem and 

its FT is valid if a linear transformation H is applied to the 

plane of definition ofg: 

Proposition 5. (Egorov and Shubin, 1992). Let x and u be 

vectors 01(he same dimension, G(u) be the FT 01the fimction 

g(x), then the FT 01g(H(x)), is (H~')O (H -'T u) where HI 

is the inverse 01 H, (.) is determinant 01., and .T is 

transposition 01matrix •. 

Estimation 01 Size, Form, and Orientation 01 the 

Target lmage 

The estimation of {i., iy} follows the block-operations 

ofFig.2. 

The FT of the first block of Fig.2 is applied to a small 
fragment ofthe frarne containing the target image. 

The extraction ofnon-zero high-energy points in the second 

block can use (4) in the foIlowing way. Let G(v) be the FT 

entering the second block. Due to (4), at any of the four 

unknown non-ze~o high-energy points v{k), the values 

IG(V<k»)Ik=I...,.¡ are about fourtimes less than IG(v(O»I, v(o'={O,O}. 

So, for an E being a small positive value, the algorithm can 

use IG(v(O») Ias athreshold to localizev(k), k=1,... ,4. In 

other words, if at a non-zero point v, 

IG(v)¡> IG(v(O») Iholds, then vis agood candidate to be 

one ofv(k), k=1, ... ,4. 
The estimation of matrix H in the third block is based on 

the relation (Proposition 5) between the high-energy points 
{v(k)h=o,...,4 of g(H(x» and those {u (k)} k=O,4 of a known 

calibrating image g(x). 

{'o,o .O} b h' fL et Ix,.y,Ic e t e target-lmage parameters or a 

calibrating3D-pose, and U(k) "" {ui k 
) ,U~k)}, k = 0,... ,4, be 

its high-energy points. Due to proposition 5, one may write 

the equations [u(k)F=[ v(k)FH, k=O, ... ,4, where H is unknown 

and U(kJ, v{k} are known. The equation for k=O gives no 

infonnation for the search ofH. The remaining four equations 

spawn eight equations in coordinates to find four elements of 

H. An application of least squares method terminates the 

estimation ofH. 

Extraction ofthe 
. high-energy 

points {V(i)}.,•..• 

Figure 2. The block-diagram olthe estima/ion oll~ and iy 

Estimation olthe Translation Vector ola Target Image 

Unlike the search of {Ix' i,J, which works only with coordinates 
ofhigh-energy points, the estimation ofthe translation vector 

i. explores the values of energy at these points. It ís assumed 

that {i ,i } are known already. 
x y 

Let w be the center ofa window mask M ofthe sarne form, 

size, and orientation as the target image, G
w 

be the FT ofthe 

image inside M, and function Fbe defined as F(w)=IG (V(l»)12 

+ IG (v(2»12+ IG (V(3)W+ IG (V<4»)I2, wherethepoints vii), i"::l, ...,4 

are four non-ze';-o high-en~rgy points ofG 
w 

(v). So, the value 

ofF(w) contríbutes a part ofthe whole energy ofthe image 

inside M. 

The estimate -t of ic is defined as 

le =arg max F(w) (6) 
The rest of ítem gives a justificatíon ofthis rule and reduces 

it to a simple algorithm. 

Let find how F depends on w and ic 

Proposition 6. Let DI' denote the domain 01 intersection 01 
the test window and the tart¡et image. Then lor the target 

pattern gíven by (3) with 1;, h »1, the mathematical 

expectation Ep 01F is asymptotically proportional lo the area 

01DI' provided thelol/owing assumption to be true: 

Assumption. The image inside the difference oltwo sets {a 

window mask \the target image} makes no contríbutíon into 

(he magnitudes 01 {Gw(V(í»}¡=I,....4. 
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Note that practically the assumption means that the image 
inside the complement of the target image has no energetic 
noise with respect to main frequencies ofthe target pattem. 

Proo! In spatial coordinates XI' Xl' the energy of the 
ímageI(xp x 2 ) inside a domain D is 
E Iv ¡'(x,.x,)dx,dx, .LetDbethetestwindowandthe 
intensity function inside the background of the target image 
bezero,then E = 112(xpx2}dx¡dx2.Substitutingg(H(x» 
instead of 1, we see that, for sufficientIy large DI' E is 
asymptotically proportional to the area ofD I due to periodicity 
ofg. Retuming to the representation ofenergy in the spectral 
plane (Parseval's theorem), all energyofFT Gw(v) ofthe mask 

is concentrated at the points {Vi} i"'il, ...,4' 
Hence, for the case ofzero-background, F(w) is also propor­

tional to the area of DI' To finish the proof, note that the 
assumption implies the same effect as zero-valued background 

ofthe target image. 

The area ofD¡can easily be found as an explicit function of 

the wand i for known i. i. e r y 

Figure 3. The auxiliary veclors lo jind Ihe area 01 inlersection 01 

Ihe mask and Ihe largel image. The target image corresponds to the 
parallelogram formed by vectors ir and iy' Another congruent 
parallelogram represents a mask. Translations of target-image and 
mask are ic and w, respectively. So, the vector connecting origins of 
two paralJelograms is ic - w. Its projections on ir and iy are denoted 

bywrand wy' 

Indeed, decomposing the vector i - w into w +w , where the e x y 

vectors Wxand w are parallel with ix and i ' respectively, Fig. y y 

3, we see that the area in question is equal to the module of 

vector product lO." - w)x (i)' - w)l. 

So, ifthe intersection is not empty, EF has the explicit form 

EL.(w, i )= BIU - w)x (i - w)l, where the constant B is r e x.r y y 

unknown. Otherwise, EF(w, i) O. The analytical geometry , e 

technique gives expressions for w 
r 

and w)': 

w 
x 

where unit vectors are defined as 

At last, treating the values ofF(w) as random observations 

ofthe known function E"(ic'w), the unknown vector i, (and, 
by the way, the value B) can be estimated by usualleast squares 
method. Thus, the estimation (6) ofthe vector ic is reduced to 

2 
wlr: =arg min¿ni E¡:((, W n) - F(w n) 1 

an 
where El is a known function and the set {w } consists of 

n 

known test positions ofthe mask center. We are omittíng further 
details ofthis well-known problem. 

3D-Pose Reconstruction 
yi

For given plrameters {i., iy' ;.} of a target-image, the 
p<

recovering of3D-pose is well-known problem ofinversion of 
O)the perspective projection: find space pose of the square by 

characteristics of its projection. 
01

For example, 3D-pose may be represented as the triple tr 
{ex' e)', rM} defined in the caption of Fig. 4. The image 

le 
parameters {ix' iy' ie} are perspective projections of {ex,eyrM}' 
The reconstruction of3D-pose means building {e, e, T } by el 

x y M 

{ix, iy' iJ. 
FThe methods by DeMenthon and Davis (1995) and by Abidi 

and Chandra (I995) deal with such a problem. Since they have S 
good computational properties, the rest of3D-pose estimation 
can follow either method. Nevertheless, we present here o 
another scheme (perhaps, it is not new) just for methodical d 
purposes: maybe, it not so good as mentioped methods, but it ir 
is very short and explicit. tI 

iI 
Let e4 ,eB and e(' (ec is omitted on FigA) be the unit 

vectors outgoing from P to the directions PA, PB, and pe, 
containing the end-points of Ix' ;" and ie, correspondingly. For 
known vectors ¡ , ¡ , ¡ and the position ofP [which is a known 

x y e 

characteristic ofthe optical system], eA' eB and e e mayalso 

be considered as known (we are omitting here their trivial 

explicit expressions). Representing rM as sec , where s is 

unknown distance between P and the target center, the next 

equations hold obviously 

where t
s 
and u" are unknown factors depending on s. 

The property of being unitary vector for e and ex and e 
• x )' 

yields square equations for t and u : I = (e e) = (e e),
• s x' x y' y 

where (.,.) is scalar product. Reducing it 

to 1 = t; - 2t,s(eB ,eC ) + S2 u; - 2u,s(eM e(') + S2 , 

one has the roots 
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el al (1997), which, in particular, contains necessary references 

(f,JI,2 =s(eB' ecJ ± 
(8) 

(U.)1,2 = s(e A,ee) ± 
where s is unknown parameter. Due to (7), orthogonality ofex 

and ey yields the equation for s: 

O=(tseB- sec ' u.e A - sec ) = 
S2 s[t.(eB,eC) +u,(eA,ee)] + fsu,.(eB,eA) (9) 

Finally, substitution ofthe roots (8) ofof 1" and Us into (9) 
yields four polynomial equations for possible values ofs. Real 
positive roots ofthese equations give, by means of(7-8), all 

options for { e x' e y , rM }. 

[Every reconstruction of 3D-pose by perspective image 
ofaplanar target is ambiguous due to the number ofroots of 
these equations. To kili this ambiguity for a practical prob­
lem, for instance, one can use a few planar targets with differ­

ent orientations.] 

Remark: Expressing tbe Control Law in 
Sensor Space 
Note that for an application in robot control, in fact, it ís not 

obligatory to perform the inversion R, ir' i) ~{ex' ey, 'M} 
developed aboye. Moreover, there is no need to find target 

image parameters {i., iy' ¡J Instead, one can express the con­
trol goal directly in the spectral Sensor Space and introduce it 
in robot control loop. (See in this relation the work by Martrinet 

(a) 

on Visual Servoing). For the problem under consideration, 
the sensor space can be formed as RI5 RJ xRJxR3 xJ{lxRl, 

where each R3corresponds to possible values ofa peak ofthe 

function IG(v)1 and its vi' Itmeans practically, that having some 
relation between 3D-pose and behavior ofpeaks in spectral 
domain, the aim of control is to force peaks to be in proper 

places and with proper magnitudes. 

4 Experiments and Discussion 

Experiments 

The necessary and sufficient condition, under which the 

processing ofp.3 works, is a good extraction ofnon-zero high­

energy points. 

An experiment demonstrates this ability ofthe method. 

The Fig. 5" displays a photo that was performed by the stan­

dard camera of OZTM workstation of Silicon Graphics. The 

Ieft target on the photo has frequencies 1;=1;=16 ofthe pattern 

function g corresponding to (3). The right one has 1;=fz=32, 
but its pattern is hardly seen due to the resolution of camera. 

The Fig.5b cuts 128x128-fragment ofthis photo. The 

log(l +IFourier_Transform(Jmageyagment)1) is plotted 

in Fig.5<. The four non-zero high-energyc points are clearly 

seen on the plot. The method works welI in spite ofa conside­

rable occlusion ofthe target and relatively bad light condition. 

A 


B 


e 
(b) 

Figure 4. (a) lmageframe with an image ofthe target. The target image parameters {Ix' iy iJ are depicted schematically inside theframe. 

(b) The same {i. i. i} as projections: Orthogonal vectors e . e belong to the target planeo are attached lo the target center, are parallel 
x )1 e x y

and ofthe same length with corresponding sides ofthe target square; i and i are planar perspective projections ofe and e . Vector r 
r y r 3' M 

connects the center P ofperspective projection with the target center. 
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Figure 5. (a) - A real digital photo; (b) its 128x128 fragment with ¡he target image; (e) - the Fourier transform ofthe fragment. 
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Comparison with the Least Squares Estimates 

Potential precision of the method presented in p.2 coincides 

with the least squares method (LSM) given by (1). 

Indeed, FT is reversible and, hence, the FT ofa target image 
contains the same information as the image itself. Then, after 
FT of an image of our planar target, all Fisher's information 

ofthe original pattem is hidden in the positions ofFT-peaks 

and their values. Consequently, the method ofp.2, based on 
the processing ofthe peaks, takes into consideration the whole 

information ofthe original image. 

Hence, as far as LSM is asymptotically efficient, the 
presented method also has this property. Consequently, in the 

class oi single-view model-based estimators using planar 

model, the method reaches the best possible precision 

increasing frequencies ofthe pattern. 

Let compare the influence of non-uniformity on the 
presented method and LSM. 

We already mentioned that high non-uniformity ofa pattern 
is a strong obstacle for practical application ofleast squares. 

Indeed, for such a pattern, the least squares functional has 
many local extremums, and in additíon, a slight distortion of 
image due to optical transformation ofcamera and secondary 
effects does not permit to reach a good accordance between 

an image I(y) and its model g(x(y,n» even for the case of 

exactly known vector n. 
On the contrary, the presented method works in such a case. 

[Provided the control of zoom mentioned at the middle of 
p.2.] So, in terms ofthe model {g, x,I, G} where gis variable 
and x, 1, G are fixed, we may affirm to the following: unlike 

the presented approach, LSM can not reach in practice the 

highest precision that the model permits. 

Let consider the influence ofperturbations. We can interpret 
perturbations (integrating altogether aIl kinds ofthem: an image 
distortion, an occlusion of target, a partial shadow, etc.) as 
points in sorne functional space. The norm of an element of 

this space evaluates the magnitude of corresponding 
perturbation. For a pattern corresponding to (3), a perturbation 
transforms delta-wise FT-peaks into bell-shaped peaks. 

Irrespectively ofthe exact definition ofthis functional space 

and the norm, a pt:rturbation affects FT-peaks in dependence 
ofthe value of its norm: A wider and lower bell responds to a 

perturbation with greater norm. 

In these terms, the presented method is valid in such a range 

of values of a perturbation norm, which provides 
distinguishability ofFT-peaks. We may say that the presented 
method is robust for perturbatíons belongíng to this range of 

values ofthe norm. 

Although we do not\!xpress explicitly this range, we can 
compare the presented method and LSM on the example of 
Fig. 5b<. An occlusíon like on Fig. 5b surely destroys estimation 
based on LSM. It is not the case for the presented method: a 
good extractability ofthe relevant FT-peaks on Fig. 5< proves 
that this perturbation leaves the image inside the range of 

robustness. 

Computational Aspect 

We discuss here onlythe novel part ofthe presented algorithm, 

i.e., its fast part producing {i., iy' iel. 

Its massive part consists offew (4 or 5) operations ofthe 
Fouriertransform. The complexity offast FT ofa nxn-fragment 
is 0(n110gn). For instance, for n=128 as in experiments of 
Fig. 1, 5, it yields about 105 operations per FR. This value is 
close to provide all necessary computations inside the picture 
acquisition cycle by a single processor. However, FT has 

excellent properties to be processed by a parallel computation, 
and there are FT-co-processors able to perform this routine 

part ofthe presented method practically instantly. 

AIl the rest ofalgorithm requires a few thousand operations. 
So, for development of a real-time system based on the 

presented method, the computational complexity does not 

present any obstacle. 

The presented method is straightforward: it does not require 

any improving ofinput image; itdoes not depend on extraction 

of local features (edgels, for example), or their posterior 
aggregation, etc. Such a property provides reliability of the 

method. On the other hand, ifreal technical factors will violate 
the mathematical model of p.I-2, it permits a relatively sim­

ple analysis ofthe influence of such factors. 

An Extension of the Presented Method 

The choice ofthe function g of(3) is based on properties of 
its FT. In fact, any pattern function with appropriate FT may 

be chosen. This property is that the FT must be zero almost 
everywhere except a few points of spectral plane, at which it 
must have delta-wise character. Choosing such a function in 
spectral dornain, one can construct a new pattem function by 

means ofthe inverse FTof1;his function. [However, it should 
be taken in account, that the inverse may turn out to be a com­

plex function!] Then, printing the inverse, one obtains a good 

target pattern itself. We can use it instead ofg, with all the rest 

ofprocessing ofp.2 to be the same. 
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A Problem: Extension ofthe Approach to 
Non-Planar Targets 
As it foIlows from the results at the beginning ofp.2, the slope­
variation of a target contributes an additional Fisher' s 
infonnation. Theoretically, it can improve considerably the 

precision of30 pose estimates based on aplanar target. 

For instance, one can imagine the model of shape of the 
target as a kind of a "fractal" quasi-planar object similar to 
light reflectors ofa caro An example ofsuch a target is presented 
on Fig. 6. It can be designed to reach a very high slope-variation 

staying the target in a small volume. 

However, the technique ofp.2 is based on the supposition 
that the Fourier transform of a target image is just sum of a 
few o-wise peaks. Otherwise [i.e., ifas the intensity image of 
a target as its FT is rather complicated function], the technique 

proposed in p. 2 do es not work. 

Figure 6. An example ofnon-planar target. 

Our preliminary experiments with such non-planar targets 
gave a negative result: the FT of a target image has too many 
peaks. It does not permit a simple processing oftarget-images. 

So, the problem is how to choose an appropriate target shape 
and its pattern for its FT to have a small number ofpeaks? Or, 
if it is impossible, how to process practically such kind of 
targets, which potentially can increase significantly the per­

• 
formance of30 pose estimators? 

[Of course, LSM corresponding to the formula (1) is a for­
mal solution of such a problem. However, it works only for 
the case when the process of measurements corresponds 
exactly to the model {g, x, 1, G} of p.2. Otherwise, by the 
same reasons as aboye, it does not work in practice for the 
case ofhigh Fisher's information.] 
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5 Conclusion 	 Fa 
M¡

The paper presents a new approach to a numerical 
comparison of precision of the 30 pose estimates for any m 
patterns painted on a target. For the special case of planar HE 
targets, a method based on the Fourier transform if developed Nc 
to reach the highest possible precísion. It is algorithmically Fe 
simple, fast, and robust. The approach can be applied to any 

Pimutual navigation problem that allows usage ofa visual target 
on the tracked object, for example, to spacecraft docking, or JIJ 
to sorne problems of industrial robotics. The problem of fOl 

tracking 30-pose by processing ofnon-planar fractal targets pp
with a high slope-variation is formulated. 

K: 
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