
Computacióny Sistemas Vol. 2 No. 1 pp. 24-34
© 1998, CIC-IPN. ISSN 1405-5546 lmpresoenMéxico

Linearizability of n-linear Sirups

Héctor J. Hernández* Dongxing Tang
Centro de Estudios Tecnológicos Lab for Logic and Databases

Instituto de Ingeniería y Tecnología Dept. of Computer Science
Universidad Autónoma de Cd. Juárez New Mexico State University
Cd. Juárez, Chih., México CP 32320 Las Cruces, NM, USA 88003

hector@uacj.mx dtang@cs.nmsu.edu

Article received on June 16, 1998; accepted on September 11, 1998

Abstract

A linear program is easier to evaluate than a nonlinear
programo Hence, given a recursive program, it is desir
able to find an equivalent linear programo However, not
all nonlinear programs are linearizable. Theoretically,
an m-linear program is easier to evaluate than an n
linear program when m < n, since the derivation tree 01
the lormer one is 01 smaller arity than the derivation
tree 01 the latter. Thus, when an n-linear program is
not linearizable, we would like to find another, equiva
lent m-linear program with m < n.

In this paper, we consider two possibilities 01 lin
earizing n-linear sirups. First, we consider the equiva
lence between an n-linear sirup and its derivative or its
general ZYT-linearization, which are linear programs.
We show that the problem 01 determining whether an
n-linear sirup 1.S equivalent to its derivatíve or to its
general ZYT-linearization 1.S NP-hard. We then give a
tighter condition which 1.S necessary and sufficient lor
testing those equivalen ces. The other possibility is to
consider the equivalence between an n-linear sirup and
another m-linear program, m < n, called its k-ZYT
linearization, where k = n-m. We also prove that
the problem 01 determining whether an n-linear sirup
is equivalent to its k -ZYT -linearization is NP -hard.
Then, we present a tighter, exact condition lor testing
whether an n-linear sirup is equívalent to its k-ZYT
linearization. We do not know whether testing any 01
the above equivalences is decidable.

Keywords: deductive databases, optimization, data
log programs, linearization, sirups (single recursive pro
grarns)

OH. J. Hernández is a1so affiliated with: Laboratory for Logic,
Databases, and Advanced Programming of the Department of
Computer Science of New Mexico State University.

1 Introduction

A linear Datalog program is easier to evaIuate than a
nonlinear program [Ullrnan & Van GeIder, 1986] be
cause there is one path in every proof tree. For exarn
pIe, in [Ullrnan, 1989] an efficient KIeene's AIgorithrn
is proposed for cornputing the Generalized Transitive
Closure programo Therefore, given any arbitrary non
linear Datalog prograrn, we would like to find another
linear program which is equivaIent to the original one.
Unfortunately, this probIern is known to be undecidable
in general [Gaifrnan et al., 1993] [Saraiya, 1990].

The linearization of sorne biIinealT Datalog prograrns
has been studied. In particular, given a bilinear sirup
[Kanellakis, 1987] p of the forrn:

1":
p(X¡, ... ,Xn) :-q(Xl,""X,,).
p(Xl, ... , X n) ;- p(Yl,'''' Y,,),P(Zl,'" ,Zn), G.

where G is a conjunction of extensionaI database
(EDB) predicates, we want to know whether pis equiv
alent to the following program p':

1'" :
p(X1 , ••• ,X,,):- q(X1, ... ,X,,).
p(Xl,'" ,X,,) ;- q(Yl,"" Y,,),p(Zl, ... ,Zn), G.

If p is equivalent to p', it is said that p is ZYT
linearizable [Zhang et al., 1990]. It is shown in [Saraiya,
1990] that the problern of testing whether a bilinear
sirup is ZYT-linearizable ís ulldecidable; if G do es not
have repeated predicate narnes and sorne other con
ditions are satisfied, that problern becornes decidable
[Zhang et al., 1990]. Ramakrishnan et al. [Rarnakrish
nan et al., 1993] consider~d a case of ZYT-linearization
in which they allow repeated predicates in G. They
proved that it is NP-hard to determine whether a bilin
ear sirup such as pis ZYT-linearizable.

Notice that a bilinear sirup has two ZYT
linearizations, which are obtaíned by expanding the two
recursive predicates in the recursive rule respectively. In
thís paper, we consider the derivative, which is a linear

24

H. J. Hernández ond D. long: Unearlzablllty o,n-linear Shvps

program that ineludes these two linearizations of the
original programo The derivative of the aboye program
P is the following programo

p" :
p(x¡, ... , X n) :- q(x¡, ... , X n).

p(x¡, ... , X n) :- q(Y¡, ... ,Yn),p(z¡, ... , Zn), G.

p(x¡, ... , X n) :- p(Y¡, ... ,Yn),q(z¡, ... , Zn), G.

If P is equivalent to p", P is called differentiable.
Clearly, the derivative of a program is more gen

eral than its ZYT-linearization, in the sense that the
derivative of a bilinear program contains its ZYT
linearization: when a program is not ZYT-linearizable,
the derivative of a bilinear program can compute more
facts than its ZYT-linearization. The following exam
pIe shows this.

Example 1.1: Given the following bilinear sirup
p(X, Y) :- e(X, Y).
p(X, Y) :- p(X, Z), p(Z, Y), a(X, Z), b(Z, Y).

its ZYT-linearization and derivative are as follows:

p(X, Y) :- e(X, Y).

p(X, Y) :- e(X, Z), p(Z, Y), a(X, Z), b(Z, Y).

p(X, Y) :- e(X, Y).

p(X, Y) :- p(X, Z), e(Z, Y), a(X, Z), b(Z, Y).

p(X, Y) :- e(X, Z), p(Z, Y), a(X, Z), b(Z, Y).

Let us now consider the output of the aboye two lin
ear programs with the following input:

{e(1,2),e(2,3),e(3,4),a(1,2),

a(1,3),b(2,3),b(3,4)}.

It is '1ot difficult to check that the derivative com
putes the fact p(1,4), which is not in the output of
the ZYT-linearization. That is, the derivative can
produce more facts than the ZYT-linearization when
the original program is not ZYT-linearizable. Thus,
the derivative of a given bilinear program approximates
the original program better than its ZYT-linearization
does when the given bilinear program is not ZYT
linearizable. Later, we show that this bilinear sirup is
not differentiable. O

Similar to the derivative of bilinear sirups, the deriva
tive of an n-linear sirup consists of n linear rules which
are obtained by expanding all but one of the recursive
atoms in the recursive rule by the basis rule. However,
when n is large, the number of rules in the derivative is
large. Thus, the derivate is still not efficient to evalu
ate. Hence we consider other ways to linearize n-linear
sirups.

One way is to consider the equivalence of the orig
inal program ,and a program, called its general ZYT
linearization, which is composed of the basis rule and
the recursive rule with all the recursive predicates ex
cept one (arbitrarily eh osen) substituted by the EDB
predicate in the basis rule. The following example illus
trates this.

Example 1.2: Consider the following program that
finds all paths of odd length in e:

p(X, Y) :- e(X, Y).
p(X, Y) :- p(X, U),p(U, V),p(V, Y).

In Section 5, we show that this program is general
ZYT-linearizable. That is, it is equivalent to the fol
lowing linear program:

p(X, Y) :- e(X, Y).

p(X, Y) :- e(X, U), e(U, V), p(V, Y). o

However, not every n-linear sirup is general ZYT
linearizable. Let us show such a programo

Example 1.3: Let P be the following program:
e(S) :- eo(S).
e(S) :- e(T),e(U),e(V),e¡(S,T,U, V).

We want to test whether this program is general
ZYT-linearizable, that is, we want to check whether
P is equivalent to the following program:
p¡ :

e(S) :- eo(S).
e(S):- eo(T),eo(U),e(V),e¡(S,T,U, V).

Let us now consider the following facts as input to P
and PI: {eo(l), eo(2), eo(3), eo(4), eo(5), eo(6), eo(7),
el (8,2,3,4), el (9,5,6,7), el (10,1,8, 9)}.

It is not difficult to check that the fact e(10) is pro
duced from P but not from PI' Hence, the original pro
gram is not general ZYT-linearizable. Note that this
program is shown not to be linearizable in [Afrati &
Cosmadakis, 1989]. O

If an n-linear sirup is not general ZYT-linearizable,
theoretically, it may be interesting to consider whether
it might be equivalent to its k-ZYT-linearization, which
consists of the basis rule and one recursive rule obtained
by replacing the first k (1 ::; k < n' recursive predicates
by the EDB predicate in the basis rule. If they are
equivalent, we say that the original program is k-ZYT
linearizable. Thus, we might check whether P in the
previous example is 1-ZYT-linearizable, that is to check
whether it is equivalent to the following programo
P2 :

e(S) :- eo(S).

e(S) :- eo(T),e(U),e(V),e¡(S,T,U, V).

It is elear that given a bilinear sirup, its 1-ZYT
linearization is its ZYT-linearization [Zhang et al.,
1990]. Moreover, when k = n - 1, then the k-ZYT
linearization is the general ZYT-linearization. Hence,
both derivative and general ZYT-linearization general
ize ZYT-linearization, w hile the k-ZYT-linearization is
the generalization of general ZYT-linearization.

The rest of the paper is organized as follows: Section
2 gives relevant definitions and sorne simple facts on
Cartesian products of relations used in the paper. Sec
tion 3 considers the dilferentiability of a bilinear sirup.
Section 4 generalizes the results in Section 3 and con
siders the derivative of an n-linear program with n 2: 3.
Section 5 generalizes ZYT-linearization to the case of
an n-linear sirup for arbitrary n. Section 6 considers k
ZYT-linearization. Our conelusion is giveri in the last
section.

25

H. J. Hemández ond D. long: UneariZabillty of n-linearSirups

2 Definitions and Basic Facts

This paper considers only Datalog programs, which in
the sequel shall be referred to as programa. We assume
the reader is familiar with standard terminology (see
Ul88,Ul89), and only define some of the relevant, non
standard notation used in the papero

A airup is a program which consists of one recursive
rule and one base, nonrecursive rule [Kanellakis, 1987],
caBed baaia (or inítialization) rule, such that both rules
define the same intensional database (IOB) predicate.
A sirup is simple if its basis rule has only one atom in its
body, Le., its basis rule is of the form p(X1 , X2 , •.• , X n)

:- q(X1 , X2 , ••• ,Xn). In this paper, we restriet ourselves
to such simple programs. A sirup is n-linear if the pred
icate in the head of the recursive rule appears' n times
in its body.

A proof tree is a tree description for the derivation of
an intensional faet by the application of some rules to
extensional faets and the set of intensional facts gener
ated earlier. The leaves of a proof tree must be EDB
literals. The root, as well as any nonleaf node, must be
an IDB literal. Every nonleaf node represents an ap
plication of a rule. The children of such a node are the
subgoals in the body of the rule, instantiated to suitable
EDB and IDB facts, of which the no de is the head.

Given a program P and a database I, P(I) denotes
the output of P when I is its input¡ that is, P(I) is the
least fixed point of P with respect to I [Ullman, 1988].
If r is a rule, r(I) shall denote the output of program { r
} when I is its input. Given two programs P and Q, P
is contained in Q, denoted P ~ Q, if over any database
I, defined only on EDB predicates, P(I) ~ Q(I); P
is contained in Q wrt predicate q, denoted P Q, if
over any database I, defined only on EDB predicates,
~very faet t defined over predicate q in P(I) is also in
Q(1). P is equivalent to Q, written P Q, if P ~ Q
and Q ~ P. P is equivalent to Q wrt predicate q, writ
ten P =q Q, ir P ~q Q and Q ~q P. Note that the
aboye definition of equivalence of two programa is over
extensional databases. If we allow both extensional and
intensional databases as input, the equivalence ia called
uniform equivalence; P =U Q denotes that P is uni
formly equivalent to Q. The problem of testing equiv
alence of two programs is undecidable [Shmueli, 1987],
while the problem. of testing uniform equivalence of two
programs is decidable [Sagiv, 1987].

2.1 	 Graph G and rule Te

In order to prove NP-hardness of the linearization prob
lems studied here, we first show an important result
from [Kanellakis, 1987]. Let G be a graph. Kanellakis
has constructed the following rule from the graph G.

26

ro; q(X, Y,Z, V) ;- q(X, Y,Z, W),'Po(W, V)

rc contains a number of literals for representing the
graph; in particular, !.f!c, which is a conjunction of EDB
literals with occurrences of V and W, is used for that
purpose; in this paper, without los s of generality, we
assume that !.f!c is an EDB atom.

We say that rc is l-bounded if for any I, where
I is a set of atoms defined on q and !.f!c, rc(I)
= rh(I), where the equality is restricted on q
facts, and rh(I), the nonrecursive application of TC
to I, is rh(I) = {q(al, az, a3, a4) I q(aI, az, a3, a4) E
IV 3bI(q(al,aZ,a3,b¡) E I I\!.f!C(bI,a4) El)}.

Kanellakis proved the following result (Theorem 2 in
[Kanellakis, 1987)) that we shall use later in our proofs.

Theorelll 2.1: G is three-colorable iff rc is 1
bounded.

2.2 	 Sorne Results on Cartesian Prod
ucts

We now state some simple results about Cartesian prod
uets of relations that are needed later on in the paper.
Before doing that, we need to define the following. Let
r be a relation. Then, we define

• rO = {f},where f is the empty tuple such that r ' x
l l{ f } 	 { f} X r r for any relation rl; and

r n 1• = r x r n - , if n 2 1.

Lelllllla 2.1: Let r be a relation, let rI be a subset of
r, and assume that r and rI are not empty. Then for any
n, n 2 2, (rxr~-I)U(rI xrxr~-2)U" 'U(r~-I xr)
r n iff TI r.

Proof: The if-part is obvious. For the other direc
tion, let us suppose that r =f. rI' Then let t be a tuple
in r rI. It is not difficult to see that tI, the tupIe in
({ t})n, is not a member of

(r x r~-I) U (r¡ x r x r~-2) U··· U (r~-l x r) (2)

because each of the terms in (2) has n - 1 occurrences
of rI, and t does not belong in rI. O

3 Differentiability .slrups
of bilinear

It is shown in [Ramakri;hnan et al., 1993] that the
problem of deciding whether a bilinear sirup is ZYT
linearizable is NP-hard. In this section, we prove that
the problem of deciding if a bilinear sirup is differen
tiable is also NP-hard¡ we do not know if it is decid
able. In addition, we show a necessary and sufficient
condition of differentiability of bilinear sirups.

H. J. Hernández ond D. Tong: UnearizablBy o,n-linear Slrups

q(Z~, ...• Z~). GI•s(Z¡, ...• Zn). G.

r5:p(X¡ •... ,Xn):- s(Y¡, ... ,Yn).

q(Y{', ... , y~/). q(Zi/•... , Z~), Gil. G.

P3 :

r~/: p(X¡, ... ,Xn):- q(X¡' ...• Xn).
rf/: p(X¡ •... ,Xn) :- q(Y¡, ... , Yn),

p(Zl, ... ,Zn),G.
r~l: p(Xl,""Xn):- p(Yl,""Yn)'

q(Z¡' ...• Zn)'G.
r~1 : p(Xl •... , X n) :- q(Y{, ... , Y~),

q(Z~, ... , Z~), GI ,P(Zl, ... , Zn),G.
r~/: p(Xl, ... ,Xn) :-P(Yl •... ,Yn),

q(Y{I, ... , y~/), q(Zf, ... , Z~), Gil, G.

P3 is obtained from P2 by substituting predicate P for
predicate Sj P2 consists of PI with the recursive predi
cate P replaced by s submitted to P by rule Ti{ plus the
rules T~ and T~; T~ is obtained by expanding the first
recursive atom in the body of TI by TI itself and then
substituting the first two recursive predicates P in the
expanded rule with the exit predicate q and the last re
cursive predicate P with s; G' is G after the expansion of
the first recursive atom of TI; T~ is obtained similarly by
expanding the second recursive atom in the body of rule
TI in P and then substituting the last two predicates P
with the exit EDB predicate q and the first recursive
predicate P with s; Gil denotes G after the expansion in
which we substitute the second recursive atom of TI.

In the following theorem, we show that the problem
of differentiability of P may be reduced to the problem
of testing the equivalence of two linear programs.

Theorem 3.2: Let programs p, PI, and P2 be as
defined aboye. Then, P is differentiable if and only if
PI P2'

Proof: Clearly, PI P2 ~p p. Thus, if pis differ
entiable, we have P ~ PI' Hence, PI =p P2.

Now we prove the other direction. Assume that
PI P2· We shall prove by induction on the height of
a proof tree that every proof tree which derives a fact
t from P has a proof tree from PI which also derives
that fact. For the proof tree with height 1, it is trivial
(because proof trees for facts produced by TO are proof
trees for facts produced by TÓ)'

For the induction, we assume that a fact derived from
a proof tree with height less than h, h > 1, from P can
also be derived by a proof tree from PI'

We now consider a proof tree T from P, which derives
sorne fact p(x), and assume that its height is equal to
h. Since P is bilinear, for each interior node p(v) of T
that has two P suhgoals as children at the second last
level, as shown in Figure l(a), we compact it into an
EDB atom q(v) as a lea! as shown in Figure l(b); we
assume that we mark this node somehow, since we need
to uncompact it later; the aboye x and v are constant
vectors. According to the modifications we made to T,
we change the database from an original relation Q to
sorne new relation QI which contains these compacted
tuples.

1'<') P(')

P P G

I I
q q

(a) (b)

Figure 1: Reducing the height of a proof tree

By the inductive hypothesis, there exists a proof tree
as shown in Figure 2(a), which derives the same tuple
in PI from the new relation QI; the proof tree of the
derivative of a bilinear program looks like a zigzag (one
in which either left-hand or right-hand recursive nodes
are expanded by the basis rule). We next uncompact
all the tuples q(v), which we marked aboye to distin
guish them, in the proof tree and return to the original
database as shown in Figure 2(b); let us use T' to de
note the proof tree obtained in this step. We now prove
that for each sub-proof tree like the one rooted at Pi on
Figure 2(b) there is a proof tree in P2 that computes
Pi, and hence a proof-tree in PI (since P2 ~p p¡). This
shall prove that we can transform a tree like TI into a
proof tree from PI.

We walk up TI, beginning at the bottom until we find
the first interior node Pi with either a left or right branch
that carne from a compact node. Prom the proof tree
rooted at Pi, we can obtain a proof tree in P2 a..'l shown
in Figure 2(c) that derives the same fact Pi: the leftmost
subtree is the counterpart of the leftmost subtree in the
proof tree shown in the box of Figure 2(b), where we
replaced the predicate P by s; the q-facts and G and
GI are the same as in the proof tree shown in the box;
the proof tree rooted at Pi in Figu~e 2(c) represents
an applícation of rule T~ at the topo Since P2 ~p PI,
we have a proof tree from PI which produces the same
fact Pi. The other kind of sub-proof tree transformation
requires the application of rule T~ instead of T~ as aboye.
This completes the proof of this part of the theorem and
the proof of the theorem itself. O

Note that in fact when we test if a bilinear program
is differentiable, we can directly test if its derivative is
equivalent to the original ane. However, Theorem 3.2
shows us a tighter condition since both PI and P2 are
linear. We next use P3 to give a condition to test the
differentiability of p.

Theorem 3.3: Let p, PI, and P3 be as defined pre
viously. Then P is differentiable if and only if PI is
equivalent to P3.

H. J. Hernández ond D. Tong: UnearizablBy o,n-linear Slrups

q(Z~, ...• Z~). GI•s(Z¡, ...• Zn). G.

r5:p(X¡ •... ,Xn):- s(Y¡, ... ,Yn).

q(Y{', ... , y~/). q(Zi/•... , Z~), Gil. G.

P3 :

r~/: p(X¡, ... ,Xn):- q(X¡' ...• Xn).
rf/: p(X¡ •... ,Xn) :- q(Y¡, ... , Yn),

p(Zl, ... ,Zn),G.
r~l: p(Xl,""Xn):- p(Yl,""Yn)'

q(Z¡' ...• Zn)'G.
r~1 : p(Xl •... , X n) :- q(Y{, ... , Y~),

q(Z~, ... , Z~), GI ,P(Zl, ... , Zn),G.
r~/: p(Xl, ... ,Xn) :-P(Yl •... ,Yn),

q(Y{I, ... , y~/), q(Zf, ... , Z~), Gil, G.

P3 is obtained from P2 by substituting predicate P for
predicate Sj P2 consists of PI with the recursive predi
cate P replaced by s submitted to P by rule Ti{ plus the
rules T~ and T~; T~ is obtained by expanding the first
recursive atom in the body of TI by TI itself and then
substituting the first two recursive predicates P in the
expanded rule with the exit predicate q and the last re
cursive predicate P with s; G' is G after the expansion of
the first recursive atom of TI; T~ is obtained similarly by
expanding the second recursive atom in the body of rule
TI in P and then substituting the last two predicates P
with the exit EDB predicate q and the first recursive
predicate P with s; Gil denotes G after the expansion in
which we substitute the second recursive atom of TI.

In the following theorem, we show that the problem
of differentiability of P may be reduced to the problem
of testing the equivalence of two linear programs.

Theorem 3.2: Let programs p, PI, and P2 be as
defined aboye. Then, P is differentiable if and only if
PI P2'

Proof: Clearly, PI P2 ~p p. Thus, if pis differ
entiable, we have P ~ PI' Hence, PI =p P2.

Now we prove the other direction. Assume that
PI P2· We shall prove by induction on the height of
a proof tree that every proof tree which derives a fact
t from P has a proof tree from PI which also derives
that fact. For the proof tree with height 1, it is trivial
(because proof trees for facts produced by TO are proof
trees for facts produced by TÓ)'

For the induction, we assume that a fact derived from
a proof tree with height less than h, h > 1, from P can
also be derived by a proof tree from PI'

We now consider a proof tree T from P, which derives
sorne fact p(x), and assume that its height is equal to
h. Since P is bilinear, for each interior node p(v) of T
that has two P suhgoals as children at the second last
level, as shown in Figure l(a), we compact it into an
EDB atom q(v) as a lea! as shown in Figure l(b); we
assume that we mark this node somehow, since we need
to uncompact it later; the aboye x and v are constant
vectors. According to the modifications we made to T,
we change the database from an original relation Q to
sorne new relation QI which contains these compacted
tuples.

1'<') P(')

P P G

I I
q q

(a) (b)

Figure 1: Reducing the height of a proof tree

By the inductive hypothesis, there exists a proof tree
as shown in Figure 2(a), which derives the same tuple
in PI from the new relation QI; the proof tree of the
derivative of a bilinear program looks like a zigzag (one
in which either left-hand or right-hand recursive nodes
are expanded by the basis rule). We next uncompact
all the tuples q(v), which we marked aboye to distin
guish them, in the proof tree and return to the original
database as shown in Figure 2(b); let us use T' to de
note the proof tree obtained in this step. We now prove
that for each sub-proof tree like the one rooted at Pi on
Figure 2(b) there is a proof tree in P2 that computes
Pi, and hence a proof-tree in PI (since P2 ~p p¡). This
shall prove that we can transform a tree like TI into a
proof tree from PI.

We walk up TI, beginning at the bottom until we find
the first interior node Pi with either a left or right branch
that carne from a compact node. Prom the proof tree
rooted at Pi, we can obtain a proof tree in P2 a..'l shown
in Figure 2(c) that derives the same fact Pi: the leftmost
subtree is the counterpart of the leftmost subtree in the
proof tree shown in the box of Figure 2(b), where we
replaced the predicate P by s; the q-facts and G and
GI are the same as in the proof tree shown in the box;
the proof tree rooted at Pi in Figu~e 2(c) represents
an applícation of rule T~ at the topo Since P2 ~p PI,
we have a proof tree from PI which produces the same
fact Pi. The other kind of sub-proof tree transformation
requires the application of rule T~ instead of T~ as aboye.
This completes the proof of this part of the theorem and
the proof of the theorem itself. O

Note that in fact when we test if a bilinear program
is differentiable, we can directly test if its derivative is
equivalent to the original ane. However, Theorem 3.2
shows us a tighter condition since both PI and P2 are
linear. We next use P3 to give a condition to test the
differentiability of p.

Theorem 3.3: Let p, PI, and P3 be as defined pre
viously. Then P is differentiable if and only if PI is
equivalent to P3.

H. J. Hernández ond D. Tong: Unearizab/1i1y ofn-linear SinJps

p(x)
p(x)

p.
1

Pi
~:
,

,q ,q ~ ,,, ,, ,,
O' : ,,

,
: q q ,
:_.~ ... ,J '

(a) Pl'S proof tree (b) Uncompacted tree TI (c) A proof tree from P2

Figure 2: Proof tree restoration and sub-proof tree transformation

Proof: It is easy to see that Pl ~p P2 ~p 93 ~p p.
Thus, the only-ifpart is trivial. The ifpart follows from
Theorem 3.2. O

The problem of testing whether two Datalog pro
grams are equivalent is undecidable [Shmueli, 1987].
Hence, the tests given by both Theorem 3.2 and Theo
rem 3.3 are noneffective. Fortunately, uniform equiva
Ience is decidable [Sagiv, 1987J and uniform equivalence
implies equivalence. Moreover, by Sagiv [Sagiv, 1987],
to check if P3 is uniformly contaíned in Pl suffices to
check if T3' and T~' are contaíned in PI individually.
Since PI is a linear program, when T3' or T4' is consid
ered as a conjunctive query and its body is viewed as
a database input to Pi, we can search for t,he deriva
tions of PI using a nondeterministic polynomial space
algorithm [Chandra et al., 1981]. Following the aboye
discussion, we have the following theorem.

Theorem 3.4: Let p, Pl, and P3 be as defined previ
ously. Then, P is differentiable if Pi is uniformly equiv
alent to P3. This condition can be tested in polynomial
space.

Example 3.5: Consider the following program: ,
p:

ro : p(X, Y) :- e(X, Y).
rl : p((X, Y) :- p(X, Z),p(Z, Y),

a(X, Z),b(Z, Y).
We want to test whether this program is differen

tiable. It is well-known that the bilinear version of
the transitive closure problem (Le., the recursive rule
TI in 9 without a(X, Z) and b(Z, Y)) is equivalent to
its ZYT-linearization, hence it is differentiable. How
ever, we now show that the aboye program P is not

differentiable. Note that the derivative of P is as fol
lows:
PI :

ró : p(X, Y) :- e(X, Y).
ri : p(X, Y) :- p(X, Z), e(Z, Y), a(X, Z), b(Z, Y).
r~ : p(X, Y) :- e(X, Z),p(Z, Y),a(X, Z),b(Z, Y).

(

To test whether P is differentiable, by Theorem 3.3,
we need to check whether Pl is equivalent to P3 which
tonsists of Pl and rules T~ and T4:
P3 :

ró :. p(X, Y) :- e(X, Y).
ri: p(X,Y) :-p(X,Z),e(Z,Y),a(X,Z),b(Z,Y).
r~: p(X, Y) :- e(X, Z),p(Z,Y), a(X, Z), b(Z, Y).
r~: p(X, Y) :- p(X,Z),e(Z, Z¡),e(ZI, Y),

a(Z, Z¡), b(ZI, Y), a(X, Z), b(Z, Y).
r~: p(X, Y) :- e(X, Z¡), e(ZI, Z),

a(X, ZI), b(ZI, Z),p(Z, Y), a('X, Z), b(Z, Y).

Let us now consider the following set offacts as input:

{e(l, 2), e(2, 3), e(3, 4), e(4,5), a(l, 2), a(3, 4),

a(l, 3), b(2, 3), b(4,5), b(3, 5)}

We can check that PI computes the following p-facts:

{p(1,2),p(2,3),p(3,4),p(4,5),p(1,3),p(3,5)}

while P3 computes p-facts as follows:

{p(l, 2),p(2, 3), p(3, 4),p(4,5), p(l, 3),p(3, 5), p(l, 5)}

Note the difference p(l, 5) between the two outputs.
Thus, P3 is not contaíned in Pi. Therefore, by Theo
rem 3.3, we conclude that the original program P is not
differentiable. O

29

H. J. Hemández ond D. Tong: Unearizabllily of n·linearSirups

4 	 Differentiability of n-linear
sirups

In the preceding section, we concentrated on bilinear
programs. We have shown that it is NP-hard to deter
mine whether a bilinear program is differentiable and we
have also given a necessary and sufficient condition of
its differentiability. In this section, we consider n-linear
programs for arbitrary n. We prove that the problem
of.deciding whether an n-linear sirup is differentiable is
also NP-hard. In addition, we show a necessary and suf·
ficient condition of differentiability oí an n-linear sirup.

Theorem 4.1: It is NP-hard to decide whether an
n-linear sirup is differentiable.

Proof: The proof idea is identical to the one in The
orem 3.1, except that we use the íollowing n-linear pro
gram P in which the recursive predicate has 4n argu
ments; its derivative PI is also shown below.

p:
ro: 	p()(11,)(12,)(13,)(14,)(21,)(ZZ,)(23,)(Z4,··.,

)(»1,)(n2,)(»3,)(»4) :
PO()(11,)(12,)(13,)(14,)(21,)(22,)(23,)(24, ... ,
)(n1,)(»2,)(»3,)(n4).

rl: 	P()(11,)(12,)(13,)(14,)(21,)(22,)(23,)(Z4, ... ,
)(n1,)(n2,)(n3,)(n4) ;
p()(1l,)(12,)(13, Y14, ••. , -, -,-,-),

IPO(Y14,)(14),

p()(2J.,)(22,)(23, Y24, ••• , -, -, -, -),

IPO(YZ4 ,)(24),

.. , ,
P()(n1,)(n2,)(n3, Yn 4, ... , -, -, -, -),

IPO(Y»4,)(n4).

PI ;

r ' . 	p()(11,)(12,)(13,)(14,)(21,)(22,)(23,)(24, ... ,O'
)(nl,)(n2,)(»3,)(»4) ;
PO()(11,)(12,)(13,)(14,)(21,)(22,)(23,)(24, ... ,
)(»1,)(n2,)(»3,)(»4).

r ' 1 .. p()(11,)(12,)(13,)(14,)(21,)(22,)(23,)(24, ... ,
)(»1,)(»2,)(n3,)(n4) ;
p()(ll ,)(12,)(13, Y14,.··, -, -, -, -),
IPO(Y14,)(14),
PO()(21,)(22,)(23, Y24, ... , -, -,-,

IPO(Y24,)(24),
.. "

PO ()(n1 ,)(»2,)(»3, Yn 4, ... ,-, -, -, -),

IPO(Yn4,)(»4).

r ' 2 • . 	 p()(11,)(12,)(13,)(14,)(21,)(Z2,)(23,)(24, ... ,

)(n1,)(»2,)(n3,)(»4) ;
PO()(1l,)(12,)(13, Y14,"" "
IPO (Y14,)(14),
p()(21,)(22,)(23, Y24, ... ,-, -,-,

IPO(Y24,)(24),
PO()(31, X32 ,)(33, Y34,···, -, -, -, -),

IPO(Y34,)(34),
... ,
PO()(nl,)(n2,)(n3, Yn 4, ... , -, -, -, -),

IPG(Yn4,)(n4).

r~; P()(11,)(12,)(lS,)(14,)(21,)(22,)(23,)(Z4, ... ,
)(»1,)(n2,)(nS,)(n4) ;
PO()(ll,)(12,)(13, Y14, ... , -, -, -, -),

IPO(Y14,)(14),
PO()(21 ,)(22,)(23, Y24, . •• , -, -, -, -),

... ,
PO()(n-l)l,)(n-l)2')(n-1)3' Y(n-1)4'
... ,-, -, -), IPG(Y(n-1)4')(n-1)4)'
P()(n1,)(n2,)(n3,Yn4, ... ,-,-, -),

IPG(Yn4,)(n4).

The interested reader is referred to [Tang, 1996] for
the details of the proof. O

4.1 	 Additional Conditions for Differen
tiability of trilinear sirups

Theorem 4.1 establishes a lower bound in the complex
ity oí differentiability oí an n-linear sirup. As in the case
íor bilinear sirups, given an n-linear program p, there
are linear programs P2 and P3 such that P is differen
tiable, Le., equivalent to its derivative PI, if and only if
PI P2 or PI == P3' Those programs are shown next;
G is a conjunction of EDB literals. Theorems 3.2, 3.3,
and 3.4 hold for these programs [Tang, 1996].
p; -

ro ; p()() ;- q()().

TI ; p(X) ;- p(Y),p(Z),p(U), G.

PI
ró

;
;p(X) ;- q(X).

r~ ;p(X) ;-p(Y),q(Z),q(U),G.
r; ;p(X) ;- q(Y),p(Z), q(U), G.
r~ ; p(X) ;- q(Y), q(Z),p(U), G.

P2 :
r~ ; s(X) ;- q(X).
rr ;s(X) ;- s(Y), q(Z), q(U), G.
r~ ; s(X) ;- q(Y), s(Z), q(U), G.
r~ ; s(X) ;- q(Y), q(Z), seU), G.
r~ ; p(X) ;- s(X).
r~1 ;p(X);- s(Y),q(Y'),q(Z'),q(U'),G',q(U),G.
r~2 : p(X) ;- s(Y), q(Z), q(Y'), q(Z'), q(U'), G', G.

r~3 :p(X):- s(y),q(Y'),q(Z'),q(U'),G',
q(Y1 '), q(ZI'), q(U"), Gil ,G.

r~l ; p(X) ;- q(Y'),q(Z'), q(U'), G', 8(Z), q(U), G.
r~2; p(X) ;- q(Y),s(Z),q(Y'),q(Z'),q(U'),G',G.
r~3: p(X) ;- q(Y'),q(Z'),q(U'),G', •

8(Z), q(Y"), q(ZI,), q(UI,), Gil, G .
r~1 :p(X);- q(Y'),q(Z'),q(U'),G',q(Z),8(U),G.
r~2 ; p(X) ;- q(Y), q(Y/), q(Z'), q(Ü'), G1, seU), G.

r~3 ; p(X) ;- q(Y'), q(Z'), q(U'), G1
,

. q(YI'), q(Z"), q(U"), Gil, seU), G.

P3 :
r~' : p(X) ;- q(X).
rr' ;p(X) :- p(Y), q(Z), q(U), G.
r~' ;p(X):- q(Y),p(Z),q(U),G.
r~' : p(X) :- q(Y),q(Z),p(U',G.
r~1 : p(X) ;- p(Y),q(Y'), q(Z'), q(UI), G', q(U), G.

r~' :p(X) :- p(Y),q(Z),q(Y'),q(Z'),q(ÜI),G',G.
r~' :p(X) p(Y),q(Y'),q(Z'),q(Ü'),G',

q(yl,), q(ZI');q(UI ,), Gil, G.

r~': p(X);- q(Y'),q(Z'),q(U'),G',p(Z),q(U),G.
r~'; p(X):- q(Y),p(Z),q(Y'),q(Z'),q(Ü'),G1,G.
r~' ; p(X) :- q(Y'), q(Z'), q(Ü'), G',

H. J. Hernández and D. Tang: Unearizabili#y ofn-linear S/rups

peZ), q(yil), q(Zil), q(Uil), G", G.
r~~; p(X);- q(Y1),q(Z'),q(U'J,G',q(Z),p(Ü),G.

r~{ ;p(X);- q(Y),q(Y'),q(Z'),q(U'),G',p(Ü),G.

r~~ : p(X) q(Y'),q(Z'),q(U'),G',
q(yil), q(Zil), q(Uil), Gil ,p(Ü), G.

Where: P3 is a program obtained from pz by sub
stituting predicate p for predicate s; T~I is obtained by
first expanding the second recursive atom p once in the
body of the recursive rule in p and then substituting
the last four recursive predicates p in the expanded rule
with the exit predicate q and the first p predicate with
s; T~2 is obtained by expanding the last recursive predi
cate p in TI by itself and then substituting the last four
recursive predicates p by the exit predicate q and the
p predicate with s in the body, while rule T53 is ob
tained by expanding both the second and last recursive
predicates p in the body of rule TI by TI itself and then
substituting all recursive predicates except the first one
(which is substituted by s) by the exit predicate q. T~i
and T~i are obtained in the same way.

5 	 General ZYT-linearizability of
an n-linear sirup

So far we have considered the problem of whether a
given n-linear program is equivalent to its derivative.
The derivative of an n-linear program essentially con
sists of n linear rules. However, when the number of lin
ear rules in a program is large, the computation could
be ver y inefficient. Therefore, it is still interesting to
determine whether an n-linear program is equivalent to
a linear sirup when n is large. For example, given the
following n-linear program,
p:

ro: p(XI,XZ, ... ,Xk):-q(XI,XZ, ... ,Xk).
rl: p(Xl,XZ",.,Xk) :-p(Yl,YZ"",Yk},''',

p(ZI, Z2,···, Z/c},p(U¡, Uz, ... , Uk)·

we want to find whether it is equivalent to the fol
lowing linear sirup:
p' :

rh: P(Xl,X2, ... ,Xk):- q(Xl,X2, ... ,Xk).
r~: P(Xl,X2, ... ,Xk):- q(Yl,Y2, ... ,Yk),···,

q(Zl, Z2, ... , Zk),p(Ul, U2,···, Uk)'

where the linear recursive rule is obtained from TI by
substituting predicate q for aH predicates p except the

~

last one (in fact, any predicate p can be chosen). Recall
that p' is called the general ZYT-linearization of p.
Moreover, when p == pI, we say that pis general ZYT
linearizable. R. Ramakrishnan et al. [1993] considered
the case of n = 2. We now generalize their result to the
case of n-linear programs with n ~ 3. In Section 5.1 we
shall show a tighter condition which is necessary and
sufficient to determine this equivalence.

Theorem 5.1: It ís NP-hard to determine whether

a sirup is general ZYT-linearizable.
Proof: We first construct an n-linear program p as

follows:
p:

ro: P(XIl ,XI2, Xl3,XI4, XZ I ,X·22 , X23,X24, ... ,

Xnl,Xn2,Xn3,Xn4) :
po(Xl1 ,XI2, XI3,Xl4, X 21 , X22, X23,X24 , .. . ,

Xnl ,Xn2, X n3,Xn4).

rl 	: p(Xl1 ,X12, Xl3, XI4,X21, X22, X 23, X24, ... ,'

Xnl, Xnz, X n3, X n4) :
p(X11 ,XI 2 ,XI3iYl4, ... ,-, -,-),

'PG(Yl4,XI4),

p(X21,X22 ,X23 ,Y24, ... , -,-,-),

'PG(Y24, X24),

p(Xnl ,Xn 2,Xn 3, Yn4, ... , -, -, -, -),

'PG(Yn4,Xn4).

where l.{Ja is the EDB predicate in Ta, the rule defined
in Section 2.1. We also have the following program p',
the general ZYT-linearization of p:
p' :

rh ; p(Xl1, Xl2,XI3, X 14, X 21 , X22,X23, X 24, ... ,

X n l,Xn2,Xn 3,Xn 4) :
po(Xl1, X12,XI3,X14,X2l, XZ21 X231 X 24", .,

Xnl , X n2 , X n 3, X n4).

r~ : p(XIl,XI2, X13,X14,X21, X22, X23, X 24, ... ,

Xnl,Xn2,Xn3,Xn4) :
po(Xl1, Xl2, Xl3, Y14, ... , -, -, -, -),

'PG(Y14, X14),

PO(X2I, XZ2, XZ3, Y24, ... , -, -, -, -),

'PG (Y24, X 24),

PO(X(n-l)l' X(n-l)21 X(n-l)3, Y(n-I)4,

. .. , -, -, -, -), 'PG(Y(n-l)4' X(n-l).tl,

p(Xnl, X n 2, X n 3, Yn 4,"" -, -, -, -),

'PG(Yn 4,Xn 4).

Then we can prove that pis general ZYT-linearizable

iff Ta is 1-bounded using the same technique as in the
proof of Theorem 3.1. O

5.1 	 Additional Conditions for gen
eral ZYT-linearizability of trilinear
sirups

As in the previous sections, given an n-linear sirup p
there are linear programs pz and P3 such that p is
general ZYT-linearizable if and only if Pi ==p P2 or
Pi P3, where Pi is the general ZYT-linearization of
p. We also have a sufficient condition for testing the
general ZYT-linearizability using P3, as the one given
in Theorem 3.3 for differentiability. For the case n = 3,
if P is the following program, pz and P3 are shown next.
p:

ro : p(X) :- q(X).

TI: p(X) :- p(Y),p(Zj,p(Ü),G.

p' :

rh : p(X) :- q(X).

r~ : p{X) :- q(Y),q(Z),p(tJ),G.

pl/ :

r~ : s(X) ;- q(X).

r~: s(X) :- q(Y),q(Z),s(Ü),G.

r~ ; p(X) :- s(X).

31

http:X(n-l).tl

H. J. Hemóndez ond D. Tong: Uneadz.abllity 01 n-linearSlnJps

r~: P(.X) :- q(Y'),q(Z'),q(Ü'),G',
q(Z), s(O), G.

r~ : p(X) :- q(Y),q(Y').q(Z'),q(Ü'),G',s(O),G.
r~: p(X) :- q(Y'),q(Z'),q(Ü'),G',

q(YI'), q(Zi,), q(UI'), Gil, s(O), G.
ptll :

ro' :p(X) :- q(X).

r~'. : p(X) :- q(Y), q(Z), 1'(0), G.

r~1 : p(X) :- q(Y'), q(Z'), q(ÜI), G',

q(Z), 1'(0), G.
r~1 :p(X):- q(Y),q(YI),q(Z'),q(Ü'),G',

p(O),G.
r~1 : p(X) :- q(YI),q(ZI),q(ÜI),G',

q(yi,), q(Zi,), q(UI'), Gil ,pea), G.

where: pl/l is a program obtained from pll by sub
stituting predicate P. for predicate s; T~ is obtained by
expanding the first recursive predicate P of rule TI by TI
itself and substituting the first four recursive predicates
by the exit predicate q in the basis rule TO, and finally
the predicate P in the expanded rule is replaced by Sj

rule T~ is obtained similarly by expanding the second
recursive predicate Pi rule T~ is obtained by expanding
the first recursive predicate and the second recursive
predicate P simúltáneously in the rule TI by TI itself,
and finally all predicates P except the last one, which is
replaced by s, are replaced by q.

Given a program p as follows,
hanginlient=O.linp :

ro: p(X, Y) :- e(X, Y).
TI : p(X, Y) :- p(X, Zl),P(ZI, Z2) p(Zn-l, Y).

we can use the results in this section to show that it
is equivalent to its general ZYT-linearization:
p' :

r 9:p(X, Y) :- e(X, Y).
TI : p(X, Y) :- e(X,Z¡),e(ZI.Z2), ... ,

e(Zn-2, zn- d.p(Zn-l, Y).

It is well known that the bilinear program to find the
transitive closure is ZYT-linearizable [Ullman, 1989).
From the aboye discussion, therefore, all transitive pro
grams to find al! paths composed of either unit paths
or paths composed of n subpaths can be expressed by
a linear sirup.

6 	 k-ZYT-linearizability of an n

linear sirup

In this section, Wi consider the k-ZYT linearization of
an n-linear sirup p which is obtained from p by sub
stituting the exit predicate in the nonrecursive rule for
the first k ID B predicates in the recursive rule (1 ::S k <
n). This linearization is more general than both the
ZYT-linearization and the general ZYT-linearization.
In the following theorem, we prove that the problem
of determining whether an n-linear sirup is k-ZYT
linearizable is NP-hard. Furthermore, we shall show

32

a tighter sufficient and necessary condition to test k
ZYT-linearizability of an n-linear sirup.

Theorem 6.1: It is NP-hard to determine whether
an n-linear sirup is k-ZYT-linearizable.

Proo!: Let Ta be the rule defined in Section 2.1. We
first construct the following n-linear program, where epa
is the EDB predicate in Ta'S body:
p:

TO: 	 p(XII,XI2,XI3,XI4,X21,X22,X23,X24,
. .. ,Xnl,Xn2,Xn3,Xn4) :
PO(Xll,XI2,X¡3,X¡4.X21.X22,X23. X 24 •.. . ,
Xnl, X,,2, X n3, X n4).

TI: 	p(Xll,X12,XI3,X14,X21,X22,X23,X24, ... ,

X"I,Xn2,Xn3,Xn4) :
p(Xll. X I2, X 13, YI4•... , -, -, -, -),

'PG(Y14, X14),

P(Xkl, Xk2,Xk3, Yk4,···, -, -, -, -),
'PG(Y/c4, Xk4),
p(X(k+l)l' X(k+1)2' X(k+l)3, Y(k+l)4'
... , -, -, -, -), 'PG(Y(k+1)4' X(k+l)4),

p(Xnl,Xn2, X"3, Y"4, ... ,-, -, -, -),
'PG(Yn4,Xn4).

The k-ZYT-linearization of pis:
p' :

r ' . 	 p(Xll,XI2. X I3,XI4,X21,X22,XZ3. X Z4, ...•o'
X"I.Xn2. X n3. X n4) :
PO(Xll,X12,X13,X14,X21,XZ2,X23,X24, ... ,
X nl,Xn2,Xn3,Xn4)'

TI
1 .

• 	 P(Xll.XI2,X13,X14,X21,X22,X23,X24 •. .. ,
X,,1.Xn2,Xn3.Xn4) :
pO(Xl1,XI2,X13, Y14,· .. ,-, -, -l.
'PG(YI4. X 14).

PO(Xkl, Xk2. Xk3, Yk4,···. -, -, -, -),
¡:

'PG(Yk4, Xk4),
p(X(k+l)l. X(k+I)2' X(k+I)3. Y(k+l)4.
. ..• -, -, -, -), 'PG(Y(k+l)4' X(k+l)4),

p(Xnl ,Xn 2, X n 3, Yn 4, ... , -, -. -, -),

'PG(Yn4, X n4).
Again, we can prove that p is k-ZYT-linearizable

iff Ta is 1-bounded using the same technique as in the
proof of Theorem 3.1. O

6.1 	 Additional Conditions for k-ZYT
linearizability of n-linear sirups

Given an n-linear sirup p, there are programs P2 and
P3 which are more "linear" than Pi that is, rules in P2
and P3 contain smaller number of recursive predicates
than rules in p, such that pis k-ZYT-linearizable, Le.,
equivalent to its k-ZYT-linearization PI, if and only if
PI ==p P2 or PI == P3. Allio we have the resut that P
is k-ZYT-linearizable iff it is uniformly equialent to P3.
Those progrmas for the case k = 2 are shown below.
p:

rO: p(X) :- q(X).
TI : p(X) :- p(Xl),P(X2), ... ,p(X~),G.

PI 	:
r~ : p(X) :- q(X).

http:e(X,Z�),e(ZI.Z2

H. J. Hernández ond D. Tong: Unearizabllity o,n-linearSlrups

ri: 	p(X) :- q(Xd,q(X2),P(X3),

... ,p(X:),G.

P2 :
r~ : s(X) :- q(X).
r~ : s(X) :- q(Xl),q(X2),

S(X3), ... ,s(X:), G.
r~ : p(X) :- s(X).

r~ : p(X) :- q(X~), q(X~), .. . ,q(X:,), G' ,

q(X2), S(X3),"" s(X:), G.

r~ ; p(X) ;- q(X¡),q(X~),q(X~), ... ,

q(X:,), G', S(X3),"" s(X:), G.

r~ : p(X) ;- q(Xi) , q(X~), ... ,q(X:,), G',

q(x1'), q(X1'), . .. ,q(x1:), Gil,
S(X3), .. " s(X:), G.

P3 :
r~' : p(X) :- q(X).
rt :p(X) :- q(Xl),q(X2),p(Xa),

... ,p(X:), G.

r~' : p(X) :- q(X~), q(X~), ... , q(X:,), GI
,

q(X2), P(X3),'" ,p(Xn), G.
r~' :p(X);- q(Xl),q(XD,q(X~), .. ,q(X:'),G',

p(X3), ... ,p(X:), G.

r~' :p(X);- q(Xn,q(X~), ... ,q(x:),G',
q(X-n,q(x1'), ... , q(x1:), Gil,
p(Xa), ... ,p(X:), G.

Where: r~ is obtained by expanding the first recur
sive predícate p of rule rI in p and replacing the first
n + 1 recursive predicates p by the exit predicate q in
the basis rule ro, and finally the n 2 left-most occur
rences of predícate p in the body of the expanded rule'
is replaced by Si r~ is obtaíned similarly by expanding
the second recursive predicate p by rule rI; r~ is ob
tained by expandíng the first recursive predicate p and
the second recursive predicate p simultaneously in the
rule rI by rI itself in p, and finally all the first 2n re
cursive predicates pare replaced by q and the last n - 2
recursive predicates pare replaced by 8.

7 Conclusions

In this paper, we have studied three more general lin
earizations of an n-linear sirup for arbitrary n: deriva
tive, general ZYT-linearization, k-ZYT-linearization.
The derivative and general ZYT-linearization general
ize the ZYT-linearization for the more general case con
sidered by R. Ramakrishnan et al., while the k-ZYT•linearization is a generalization of the general ZYT
linearization.

We have shown that the problem of deciding the
possibility of all aboye linearizations for an n-linear
sirup is NP-hard; we do not know if they are de
cidable. In order to test whether an n-linear sirup
is differentiable, general ZYT-linearizable, or k-ZYT
linearizable, we showed a tighter condition respectively
which is both necessary and sufficient instead of directly

testing whether the given n-linear sirup is equivalent to
one of the aboye specific linearizations. Moreover, this
tighter condition gives us the possibility to test lineariz
ability by just testing the uniform equivalence between
two linear programs.

Acknowledgements: This research was partially sup
ported by NSF grant HRD-9353271 (while both authors
were at New Mexico State University). H. J. Hernández
thanks Dr. L. Cabibbo (of Universita di Roma "La
Sapienza") and Professor Domenico Sacca (of Univer
sita della Calabria) for their insightful comments on a
previous version of this papero

References

Afrati F., S.S. Cosmadakis, "Expressiveness of re
stricted recursive queries." In Proceedings 01 Twenty
jjrst Annual ACM Symposium on the Theory 01 Com
putíng, 1989, pp. 113-126.

Chandra, A.K., H.R. Lewis and J.A. Makowsky,
"Embedded Implicational Dependencies and their In
ference Problem." In Proceedings 01 Thirteenth Annual
ACM Symposium on the Theory 01 Computing, pp. 342
354, 1981.

Gaifman, H., H. Mairson, ,Y. Sagiv, and
M.Y. Vardi, "Undecidable optimization problems for
database logíc." Journal o/ the ACM, 40(3):683-713,
July 1993.

Kanellakis, P.C., "Logic Programming and Parallel
Complexity." In Foundations 01 Deductive Databases
and Logic Programmíng (J. Minker, Ed.), pp 545-585,
Morgan Kaufmann, 1987.

Ramakrishnan, R., Y. Sagiv, J.D. Ullman and
M.Y. Vardi, "Logícal Query Optimization by Proof
Tree Transformation." Journal 01 Computer and System
Sciences 47, pp. 222-248, 1993.

Sagiv, Y., "Optimizing Datalog programs." In Foun
dations 01 Deductive Databases and Logic Programming
(J. Minker, Ed.), pp. 659-698, Morgan Kaufmann,
1987.

Saraiya, Y., "Hard problems for simple logic pro
grams." In Proceedings 01 ACM SIGMOD Intl. Con/.
on management 01 Data, pp. 64-73,1990.

Shmueli, O., "Decidability and Expressiveness As
pects of Logic Queries." In Proceedings 01 Sixth ACM

33

H. J. Hernóndez ond D. Tong: Unearlzabllity ofn-linearS/rups

SIGACT-SIGMOD-SIGART Symp. on PrincipIes al
Database Systems, San Diego, CA, pp. 237-249,1987.

Tang, D., "Linearization Based Query Optimization in
Datalog." Ph.D. Dissertation, Department of Computer
Science, New Mexico State University, Nov. 1996.

Ullman, J.D., and A. Van Gelder, "Parallel com
plexity of logic query programs." Algorithmic 3 (1986),
pp. 5-42.

Ullman, J.D., PrincipIes al Database and Knowledge
base Systems, Vol 1, Computer Science Press, 1988.

Ullman, J.D;, Principies al Database and Knawledge
base Systems, Vol 2, Computer Science Press, 1989.

Zhang, W., e.T. Yu, and D. Troy, "Necessary
and sufficient conditions to linearize doubly recursive
programs in logic databases." ACM Transactions on
Databases Systems. Vol. 15, No.3, September 1990,
pp. 459-482.

Hietor J. Hernández received his Bachelor, Master, and
Ph.D. degrees all in Computer Science from Monterrey's
/nstitute 01 Techn%gy (/TESM Campus Monterrey),
Un ivers ity 01 Water/oo, and University 01 A/berta,
respective/y. He was an Assistant Prolessor in the
departments olComputer Science 01 Texas A&M University
and New Mexico State University. He is a Prolessor at
Univsidad Autónoma de Cd Juárez. His research interests
are in database management, particu/ary in query processing.

r

Dongxing Tang received his Ph.D. in Computer Science from
New Mexico State University. He worked as a prolessiona/
computer consu/tant lor VLS/ design ana/ysis too/s in /BM
and network management in AT& T from 1995 lo 1997.'He is
currently working in UTStarcom, /nc. as a computer
specialist in the area oltelecommunication. He is a member
01 the Laboratory lor Logic, Databases, and Advanced
Programming. His research interests inc/ude database
system, logic programming and paralle/ processing.

34

	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

