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Abstract. In cooperative systems causal ordering delivery 
has been used to resolve problems of coherency of type 
producer-consumer. Causal order delivery is important for 
distributed systems since it allows an asynchronous 
execution to participants. When time delivery constraints 
are considered, ensuring causal delivery becomes more 
complex, as is the case for synchronous cooperative 
systems, such as Telemedicine and Teleimmersion. In these 
systems, the messages (units of data of continuous and 
discrete media) have an associated lifetime that determines 
the period of useful time in which the messages must be 
delivered. On the other hand, generally in these systems 
there is no time for retransmit them when messages are 
lost.  Causal order with time constraints has previously 
been addressed, and it is called causal−∆  order. In this 
paper, we present an efficient causal−∆  distributed 
algorithm for unreliable networks that is characterized by 
the use of a forward error correction (FEC) scheme and a 
distributed method to calculate the message lifetime based 
on relative time points (i.e. no global time is used). We 
show the efficiency of our causal−∆  algorithm in terms 
of the control information attached per message. 
Keywords: Cooperative systems, Group communication, 
Causal order. 
 
Resumen. En los sistemas cooperativos el ordenamiento 
causal ha sido usado para resolver problemas de 
coherencia de tipo productor-consumidor. La entrega de 
orden causal es importante en general para los sistemas 
distribuidos debido a que permite a los participantes una 
ejecución asíncrona. Cuando las restricciones de entrega 
en tiempo real son contempladas, asegurar la entrega 
causal se vuelve más complejo, como es el caso para los 
sistemas cooperativos síncronos, tales como Telemedicina y 
Teleinmersión. En estos sistemas, los mensajes (datos 
continuos y discretos) tienen asociado un tiempo de vida 
que determina el periodo de tiempo útil en cual los 
mensajes deben ser entregados, y por el otro lado, en 
general en estos sistemas, cuando los mensajes son 

perdidos no existe tiempo para retransmitirlos. El orden 
causal con restricciones de tiempo ha sido previamente  
estudiado, y es nombrado orden causal−∆ . En este 
trabajo, presentamos un algoritmo distribuido causal−∆  
eficiente sobre redes no fiables, nuestro algoritmo se 
caracteriza por el uso de un esquema de corrección de 
errores hacia delante (FEC) y un método distribuido para 
calcular el tiempo de vida de un mensaje basado en 
puntos de tiempo relativo (ningún tiempo global es 
utilizado). Mostramos la eficiencia de nuestro algoritmo 

causal−∆  en términos de la información de control unida 
a cada mensaje. 
Palabras clave: Sistemas cooperativos, Comunicación en 
grupo, Orden causal. 

1   Introduction 

Although synchronous cooperative systems have 
been a major research focus in computer supported 
cooperative work (CSCW) for over two decades, 
there is still a lack of protocols oriented to support 
their communication requirements, which guarantee, 
at runtime, ordering dependencies and time 
constraints. In this sense, causal protocols have 
been used in cooperative systems mainly to resolve 
problems of coherency of type producer-consumer 
(Plesca et al. 2005, Pomares et al. 2002). In 
general, the causal order delivery (Birman et al. 
1993) ensures that for each participant in the system 
the events (send and delivery of messages) will be 
seen in the cause-effect order as they occur in the 
system. 

Many works concerning protocols of causal 
ordering delivery exist (Pomares et al. 2004; Birman 
et al. 1993; Kshem-kalyani et al. 1998). The 
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previous algorithms assume a reliable transmission 
without an associated lifetime per message. These 
works are not suitable for synchronous cooperative 
systems since these systems intrinsically have time 
constraints that are not considered by them. 

 Synchronous cooperative systems are 
characterized by two main time constraints. First, the 
information units (continuous and discrete) have an 
associated lifetime that establishes the period of 
time in which the information (messages) must be 
received; a message that arrives after its lifetime is 
useless and, consequently, discarded. The second 
constraint establishes that there is no time for 
retransmission when messages are lost. In order not 
to greatly affect the quality of service, a forward 
recovery scheme is preferable over a backward 
recovery scheme (Perkins et al. 2003). 

Causal order with time constraints has previously 
been addressed by Baldoni (1998), and it is called 

causal−∆  order. In his work, Baldoni ensures 
causal−∆  order by using a global clock. In our work, 

we propose an algorithm that ensures causal−∆  
order in unreliable networks while avoiding the use 
of global references. To achieve this, we propose an 
original FEC mechanism and a method to calculate, 
in a distributed manner, the lifetime per message for 
continuous and discrete media units. The FEC 
mechanism ensures that causal order delivery is 
accomplished even in the presence of lost 
messages. The lifetime in our work is calculated 
based on relative time points1

We apply our FEC mechanism and our 
distributed lifetime method to extend the minimal 
causal broadcast algorithm presented in Pomares et 
al. 2004. This minimal algorithm only sends control 
information about messages with an immediate 
dependency relation (IDR). Messages related by an 
IDR have a causal distance (see Definition 4) of one 
(i.e. no intermediate causal message exists between 
them). In order to support delays and loss of 
messages, we introduce redundancy on the control 
information by sending information about messages 
with a causal distance greater than one. One 
interesting aspect of our FEC mechanism, as we will 
show in Section 4, is that the redundancy is 

. Our work is intended 
for the transmission of continuous data, such as 
audio and video, and discrete data such as text and 
still images. 

                                                  
1 A relative time point establishes a reference point from which 

it is possible to calculate a period of time. 
 

dynamically adapted according to the behavior of 
the system. 

The rest of the article is structured in the 
following way: Section 2 presents the most relevant 
related works concerning the causal−∆  ordering. In 
Section 3, the system model is described and the 
background information is presented. Next, we 
present in Section 4 our causal−∆ order algorithm 
with our proposed FEC mechanism and the 
distributed life-time method. A sketch of the 
algorithm correctness proof is presented in Section 
5. Finally, some conclusions are pre-sented in 
Section 6. 

2   Related Work 

The most important work that tackles the problem of 
causality and time constraints was presented by 
(Baldoni et al. 1998). Baldoni addresses the problem 
of causality and time constraints by introducing the 
∆-causal order. Informally, the causal−∆  order says 
that a message m is ∆ -causally-related to another 
message m´ if m causally precedes m’ and arrives 
before its deadline. Baldoni ensures message 

causal−∆  order by using a reference global clock. 
More specifically, by using a global clock, Baldoni 
determines if a message accomplishes the causal 
order and the time delivery constraints. The 

causal−∆  order defined by Baldoni is correct; 
however, the use of a global clock is not suitable for 
distributed communication systems where the 
message transmission delay is not negligible 
(Lamport et al. 1978).  

Several causal−∆  algorithms exist (Baldoni et al 
1996; Prakash et al. 1997; Tachikawa et al. 1997) 
that ensure causal ordering in the presence of lost 
messages and time delivery constraints; however, to 
achieve this, all of them use some type of global 
reference (shared memory, wall clock, master-slave 
scheme, etc). 
 
3   Preliminaries 

3.1  The System Model 

Processes: The application under consideration is 
composed of a set of processes P = {j, k,…} 
organized into a group that communicates by 
passing non reliable broadcast asynchronous 
messages. 
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Messages: We consider a finite set of messages M, 
where each message m∈M is identified by a tuple 
m=(p,t), where p∈P is the sender of m, denoted by 
Src(m),  and t is the sequential ordered logical clock 
for messages of p when m is broadcasted. The set of 
destinations of a message m is always P.  
Events: Let m be a message. We denote by 
send(m) the emission event of m by Src(m), and by 
delivery(p,m) the delivery event of m to participant 
p∈P. The set of events associated to M is then the 
set E= {send(m) : m∈M} ∪ {delivery(p,m) : m ∈ M ∧ 
p ∈P}. The process p(e) of an event e∈E is defined by 
p (send(m))= p and p (delivery(p,m))=p. The set of 
events of a process p is Ep={ e∈E :p(e)=p}.  

3.2  Background and Definitions 

The Happened-Before Relation. The happened-
before relation was defined by Lamport (1978). The 
happened-before relation establishes possible 
precedence dependencies in a set of events without 
using physical clocks. It is a strict partial order (i.e. 
irreflexive, asymmetric and transitive) defined as 
follows:  

 
Definition 1. The causal relation “→” is the least 
partial order relation on E satisfying the following 
properties: 
1. If a and b are events belonging to the same 

process, and a was originated before b, then 
a→b. 

2. If a is the send message of a process, and b is 
the reception of the same message in another 
process, then a→b. 

3. If a→b and b→c, then a→c. 
 

By using Definition 1, we define that a pair of events 
are concurrent related “a || b” only if  

 
¬ (a→b ∨ b→a) 

 
The precedence relation on messages denoted 

by m→m’ is induced by the precedence relation on 
events, and is defined by: 

 
m→m’ ⇔ send(m)→ send(m’) 

 
The Immediate Dependency Relation. The 
Immediate Dependency Relation (IDR) introduced in 
Pomares et al. 2004 is the propagation threshold of 
the control information regarding the messages sent 

in the causal past that must be transmitted to ensure 
a causal delivery. We denote it by ↓, and its formal 
definition is the following: 
 
Definition 2. Immediate Dependency Relation 
“↓” (IDR): 
 

a↓b⇔[(a → b) ∧ ∀ c ∈ E, ¬(a → c→ b) ] 
 

Thus, an event a directly precedes an event b, if 
no other event c belonging to E exists, such that a 
precedes c and c precedes b. We note that the IDR 
relation is the transitive reduction of the Lamport’s 
relation. This is important because if the delivery of 
messages respects the order of the diffusion for all 
pairs of IDR related messages, then the delivery 
respects the causal order for all messages 
(Pomares et al. 2004). This property is formally 
defined for the broadcast case as follows: 
 
Property 1: 

∀ m,m’ ∈ M, if send(m) ↓ send(m’) ⇒ ∀p ∈ P : 
delivery(p,m) → deliver(p,m’) then send(m) →  

send(m’) ⇒ ∀p ∈ P : delivery(p,,m) → delivery(p,m’) 
 
The ∆ -Causal Ordering. The causal−∆  ordering 
has been introduced in Baldoni et al. 1998; it is 
formally defined for the broadcast case as follows: 
 
Definition 3. A set of events E satisfies the 

causal−∆  ordering if: 
1. All events that arrive in ∆ are delivered within ∆. 

All other events are considered to be lost or 
discarded, and therefore, are never delivered. 

2. All delivery events respect causal ordering, 
i.e. 

 
∀ m,m’∈ M,  if send(m)→ send(m’), then ∀p ∈ P : 

delivery(p,m) → delivery(p,m’) 
 

The Causal Distance. The causal distance 
identifies the number of causal messages that exist 
in a linearization between a pair of messages in the 
system (Lopez et al. 2005). Formally, the causal 
distance is defined as follows: 

 
Definition 4. Let m and m’ be messages, the 
distance d(m,m’) is defined for any pair m and m’ 
(send(m)→ send(m’)), such that d(m,m’) is the 
integer n for some sequence of messages (mi, i= 
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0...n), with m= m0 and m’=mn, such that 
send(mi)↓send(mi+1) for all i =0…n-1. 

4   The ∆-Causal Order Algorithm 

In order to avoid the use of a global clock, we 
propose an original FEC mechanism and a 
distributed lifetime method that verifies if a message 
satisfies or not its deadline. In this section we give a 
general description of each mechanism separately, 
and then integrate them to the minimal broadcast 
causal algorithm. 

4.1  The FEC Mechanism 
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Fig. 1. Example scenarios and their associated IDR graph 

 
All FEC mechanisms introduce some kind of 
redundancy to support the loss of information. The 
redundancy in causal algorithms represents the 
number of times that information about a causal 
message is sent in the system. The causal algorithm 
presented in Pomares et al. 2004, which uses the 
IDR relation, is minimal because the IDR relation 
identifies the necessary and sufficient causal 
information that needs to be sent attached per 
message (denoted in this paper by H(m)). Even 
when this is a minimal algorithm, redundant control 
information is still transmitted in some 
communication scenarios. Our FEC mechanism 
identifies and uses this inherent redundancy in order 
to be efficient and will only add extra redundancy 
when it is needed. The purpose of adding extra 
redundancy is to increase the probability that causal 
order delivery will be obtained, even in the presence 
of lost messages and significant network delays.   

 
 
 

Redundancy and the IDR relation 
 
To ensure causal ordering, the minimal algorithm 
only sends control information attached to each 
message about messages with an immediate 
dependency relation. For two messages that are 
IDR-related (m↓m’), the causal distance is equal to 
one (d(m,m’)=1). Note that for the serial case, a 
message m has only one immediate predecessor 
(best case), and that a message m can have at most 
n immediate predecessors, one for each process.  

For the serial case, for messages that are IDR-
related, there is no redundancy in the control 
information sent. For example, in the serial scenario 
depicted in Figure 1a, message m3 only sends causal 
information  about message m2 (H(m3) ={m2=( p3, 
t2)})  and message m2 only sends information about 
message m1 (H(m2) ={m1=( p1, t1)}). In this case, if a 
message is lost, the causal order delivery can be 
violated. As shown in Figure 1a, the causal order 
delivery is violated because at the reception of 
message m3, process p5 cannot determine if a 
message preceding m2 exists or not. With the IDR 
information on m3, process p5 can only detect that it 
missed message m2. In order not to stop the system 
execution, process p5 considers message m2 as lost 
and then delivers m3. In this scenario, m1 can be 
delivered after m3, which violates the causal 
ordering. 

For the concurrent relation, inherent redundancy 
exists on the causal information sent. For example, 
in the scenario depicted in Figure 1b, messages m2 
and m3 have the same immediate predecessor m1, 
and therefore m2 and m3 send information about 
message m1 (H(m2)= H(m3)={m1=( p1, t1)}). If either 
message m2 or m3 is lost, message m1 can still be 
detected as shown in Figure 1b. In this scenario, m2 
is lost and m3 successfully arrives at p5. With the 
IDR information on m3, process p5 determines that m1 
exists, which precedes message m3. To deliver m3, 
process p5 establishes message m1 as lost. In this 
scenario, m1 arrives at p5 after the delivery of 
message m4, but since message m1 has been 
established as lost, it is immediately discarded. 
Therefore, causal order is ensured.   

 
Our Proposal 
 
In order to support the loss of messages, we 
propose to increase the redundancy in the control 
information sent per message by sending 
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information about causally-related messages with a 
causal distance greater than one. For example, in 
Figure 1a, if we establish a causal distance of two 
(causal_distance = 2), this means that message m3 
must send information about m2 and m1. 

To be efficient, the redundancy is increased 
considering the inherent redundancy introduced by 
the IDR relation. We formally define that redundancy 
about a message m, denoted by redundancyp(m), 
determines the number of times that the information 
about a causal message m has been seen 
(received) by a participant p. As previously 
described, the redundancy increases as the number 
of concurrent messages increases. Taking into 
account redundancyp(m) with a causal distance 
greater than one (causal_distance > 1), we establish 
that a message m’ must include information about a 
causal message m (m→m’) only if the following 
propagation constraints are satisfied: 
 

PC1: d(m,m’) ≤ causal_distance and 
PC2: causal_distance > redundancyp(m)   

   
With both of these PCs, the control information 

sent per message is dynamically adapted to the 
behavior of the system by only introducing 
redundancy when it is needed. For example, with 
causal_distance = 2, message m3, shown in Figure 
1a, must send causal information about m2 and m1 
(H(m3)={m2, m1}) because p4 has redundancy(m1) 
equal to one and a causal distance of d(m1,m3) = 2 
and d(m2,m3) = 1, respectively. Nevertheless, for the 
scenario presented in Figure 1b, message m4 must 
send information only about messages m2 and m3 
(H(m4)={m2, m3}),  and not about m1, even when 
d(m1,m4) = 2.  This is done because the 
redundancy(m1) seen by p4 is equal to 2, and 
therefore, it does not satisfy the second PC.  

We note that the value of redundancyp(m) can 
differ between participants since it is calculated from 
the messages received by each one.  

In a general case, according to the analysis 
presented in Appendix I, it is sufficient to take a 
causal_distance equal to 5 since the probability that 
three or more consecutive and/or concurrent 
messages can be lost is very low. 

4.2 The Distributed Lifetime Method 

The distributed lifetime method identifies two cases. 
one case for continuous media data, and another 
case for discrete media data. In the transmission of 

continuous media data, such as audio and video it is 
possible to establish relative time points (ReTPs) , 
since the messages are periodically sent, and this 
ReTPs can be used to determine if the units of data 
satisfies or not its lifetime.  Nevertheless, the ReTPs 
must be dynamically established in order to support 
random transmission delays. For the case of 
discrete media units is totally different since they are 
no periodical, which means that the period of time 
between emissions is variable. For this reason, we 
propose for a discrete media unit to calculate its 
lifetime based on the lifetime of the causally-related 
messages of continuous media that are included in 
its causal control information. Next, we will present 
the lifetime method for continuous media followed by 
the method for discrete media. 

 
Establishing Relative Time Points and Deadline 
Points for Continuous Media 
 
In order to establish the relative time points and 
deadline points, we assume that the transmission of 
data, such as audio and video, is executed by 
transferring messages at a relatively constant rate, 
and that these messages are sequentially 
timestamped. By taking into account these 
hypotheses, we establish a ReTP at the reception of 
the most recent message. For example, in Figure 2, 
the reception of message m1 establishes the first 
relative time point rtp1; the reception of m2 
establishes the rtp2, and so on. 
 
 

… 

deadline(m3) deadline(mn) 

m2 m3 mn 

∆ 

… m3 

m2 

m1=start 

∆ 

m1=start 

rtp1 rtp2 deadline(m2) 

t 

Video 

Fig. 2. Streaming scenario 
 
Based on the ReTPs, the deadline point of a 

message m, denoted by deadline_cont(m), is 
determined from the ReTP previously established. If 
no message is lost and the messages arrive in 
order, we have:  

           
    deadline_cont(mi)=rtpi-1 + ∆ : i ≥ 1                        (1) 
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where ∆ is the message lifetime that establishes the 
maximum transmission delay supported2

If we consider lost or discarded messages, the 
equation above is redefined as follows: 

.  

 
          deadline_cont(mi)=rtpx + (i-x)∆ :  x < i and i ≥ 1            (2) 

 
where rtpx is the last relative time point established. 
This general equation is used in the rest of the paper 
to calculate the deadline for continuous media. 

For broadcast asynchronous communication, 
each process p∈P locally establishes its own 
ReTPs, and therefore, its own deadline points. For 
this case, we denote a deadline as deadline_cont(m, 
p), which determines the deadline point for a 
message m at a process p. It is the same case for 
discrete media as we will present in the next 
paragraph.    
 
Deadline Points for Discrete Media 
 
As we previously said, the period of time between 
the emission of messages of discrete media is 
variable, and therefore we cannot take it as 
reference. For this reason, we take the deadline 
points of the messages of continuous media 
included in the causal information H(m). For each 
message we take its causal information H(m), and 
we find its maximum deadline point. We take this the 
maximum deadline point as reference to determine 
the deadline point for the discrete message. 
Formally, a deadline point for a discrete message is 
calculated as follows: 
 

deadline_disc(m) = max({deadline_cont(m’): m’∈ 
H(m) and typem’=continuous)} + δ (3) 

        
where δ is the lifetime established for discrete media 
units. We recall that every message in its causal 
information H(m) satisfies the PC1 and PC2 
presented in Section 4.1. 

More specifically, we take the maximum deadline 
point since in order to causally deliver a message m, 
it must wait until and delivery after that every 
message that belongs to its H(m) has been causally 
delivered or has been discarded as a consequence 
of its lifetime expiration, which is determined by its 
deadline point.  In the case that m’∈ H(m), such 
that typem’=continuous we have: 

                                                  
2 For simplicity, in our work, we consider only one ∆  for all 

messages in the system. 

deadline_disc(m) = receive_timep(m) + δ                (4) 
 
where receive_timep(m) gives the time when message 
m has been received at participant p 

4.3 The Algorithm Code 

Data Structures 
 
The main data structures used in the algorithm are: 
 
 VT(p) is the vector time. For each process p 

there is an element VT(p)[j] where j is a process 
identifier. When we need to refer to a specific 
process with its respective identifier, we write pj. 
The size of VT is equal to the number of 
processes in the group. VT(p) contains the local 
view that process p has of the elements of the 
system. In particular, element VT(p)[k] 
represents the greatest element number of the 
identifier k and ‘seen’ in causal order by p. It is 
through the VT(p) structure that we are able to 
guarantee the causal delivery of elements. 
 

 CI(p) is the control information structure. It is a 
set of entries (k, t, d, type). Each entry in CI(p) 
denotes a message that satisfies the PC1 and 
PC2 propagation constraints and that can 
potentially be attached in the next message m 
sent by p. The entry (k, t, d, type) represents a 
message diffused by participant k at a logical 
local timeclock  t = VT(p)[k], d contains the 
redundancy of m=(k, t) seen by p and type 
determines the type of media transmitted, which 
can be continuous or discrete. 
 

 The structure of a message m  is a quadruplet  
m = (j, t, type, content, H(m)), where: 
• j is the participant identifier. 
•  t=VT(p)[j] is the logical local clock at node 

j. 
• type determines the type of media 

transmitted. 
• content is the structure that carries the 

media data. 
• H(m) contains the set of all entries (k, t, type) 
about messages that satisfy the propagation 
constraints (PC1 and PC2) with m. 

 The causal_distance variable is the 
predetermined causal distance considered.  
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 VTIME(p) is a vector that contains the most 
recent relative time points. The size of VTIME(p) 
is equal to VT(p) (one element for each process 
in the system). 

 current_time(p) represents the physical local 
time of a process p. 

 deadline(k,t,type) is a function that calculates the 
deadline point for message m identified by (k,t) 
where k is the sender process and t is the logical 
clock. This function considers the two types of 
discrete and continuous messages. 

 
Algorithm Description 
 
The causal−∆  algorithm is presented in Table 1. 
When a message m is broadcasted (continuous or 
discrete) by a process p, the H(m) is constructed by 
adding entries from the CI(p) (lines 12-14) to it. Each 
entry in H(m) satisfies, with  respect to m, the PC1 
and PC2 propagation constraints. In order to comply 
with PC1 and PC2, we use a logical counter d by 
each entry in CI(p) ((k, t, d, type) ∈ CI(p)). The 
variable d is increased by one each time that its 
associated entry is added to a H(m) by a process p 
(line 13) or when that entry is received in a H(m) 
(lines 39-40). The variable d contains the 
redundancy of the message m=(k, t) seen by p. We 
note that only when no concurrent messages exist 
the value of d specifies the causal distance between 
events.  
 
The ∆-Causal  Delivery Condition. At the reception 
of a message, m=(k, t, type, content, H(m)) will be 
immediately discarded if it has already been marked 
as lost (t < VT(p)[k]) or if it misses its deadline (line 
20). If m is not discarded, it is delivered as soon as 
the causal−∆  delivery condition becomes true (lines 
26-30). This delivery condition ensures that a 
message m is delivered in its lifetime (lines 27 and 
30) and that it will be delivered if and only if all 
messages causally related to it have either been 
delivered or have been established as missing, i.e. 
that its lifetime has been expired.  A posteriori, these 
messages are marked as lost in lines 34-35, and 
therefore, they will never be delivered. We note that 
in order to ensure causal−∆  delivery if at a 

participant p, a message m’ in the causal future of a 
message m (m→m’) has a smaller lifetime than m 
(deadline(m,p) > deadline(m’,p)) and both messages 
have arrived but are not yet delivered, we make 
deadline(m) = deadline(m’). This is done in order to 
ensure Rule one of definition 3, which says that all 
events that arrive in ∆ are delivered within ∆. This 
behavior is better illustrated in the proof of Section 5. 
 
Overhead analysis. In order to be efficient, each 
entry in CI(p), and eventually in H(m) corresponds to 
the most recent message sent by a process pj ∈ P 
and causally received by p. This is possible since 
each message m is sequentially timestamped with 
its respective local logical clock of pj = Src(m). By 
knowing the sequential order, a participant pj can 
determine at any message reception if a message or 
set of messages diffused by pj has been lost, 
independently of the causal distance. Since H(m) 
only has the most recent messages that precede a 
message m, the overhead per message in this 
algorithm to ensure ∆-causal ordering is given by the 
cardinality of H(m), which can fluctuate in our case 
between 0 and n-1 (0 ≤ |H(m)| ≤ n-1). For the serial 
case, |H(m)| is at most the causal_distance 
established (|H(m)| ≤ causal_distance), and for the 
case of concurrent messages, the worst case is at 
most n-1 (|H(m)| ≤ n-1), which is the same boundary  
for messages that are IDR related (causal_distance = 
1).  We note that in our algorithm, as for the minimal 
causal algorithm in (Pomares et al. 2004), the 
likelihood that the worst case will occur approaches 
zero as the number of participants in the group 
grows. Compared with algorithms that are 
exclusively based on vector clocks (Matern et al. 
1989), our worst case denotes for them the constant 
overhead that must always be attached per 
message.  
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Table 1. Multimedia Broadcast ∆-Causal algorithm 

1.   Initially 

2.   VT(p)[j] = 0 ∀ j:1…n                                           /* Vector clock */ 

3.   VTIME(p)[j] = 0 ∀ j:1…n                                    /* Vector with the ReTPs */ 

4.   CI(p), H(m), deadline_arr(m) ← ∅ 

5.   causal_distance = z 

6.  let deadline_cont(k,t) ≡ VTIME(p)[k]+(t- VT(p)[k]) *∆  

7.  let deadline_disc(k,t) ≡ if ∃m’=(k’,t’) ∈ H(m) such that typem’=continuous then 

                                        max({deadline_cont(m’=(k’,t’)) : (k’,t’) ∈ H(m=(k,t))                         

                                                 and typem’ = continuous}) + δ 

                                  else 

                                         receive_timep(m) + δ 

8.   let deadline(k,t,type) ≡ if type=continuous then 

                                      deadline_cont(k,t) 

                                 else  

                                       deadline_disc(k,t) 

9.   let deadline_arr(k,t,type)≡ {deadline(m=(k,t,type)) ∪ deadline(m’=(k’,t’,type’)) :  

                                           m’ arrived in its lifetime and not yet delivered  and m→m’}  

10.   For each diffusion of message send(m), at pj 

11.    VT(p)[j] = VT(p)[ j] +1 

12.    for all (k,t,d,type)  ∈ CI(p) 

13.            (k,t,d,type)← (k,t,d+1,type)                                         /* Accounts for redundancy */ 

14.            H(m) ← H(m) ∪ {k,t,type} endfor 

15.     m= (j, t=VT(p)[j], type, content, H(m)) 

16.     Diffusion: send(m) 

17.     for all  (k,t,d,type)  ∈ CI(p)  if  d = causal_distance  then  

18.          CI(p)←CI(p) / (k,t,d,type)   endfor   

19.     For each reception receive(m) at p, m=(k, t, type, content, H(m))  

20.         if (t < VT(p)[k] or deadline(k, t, type) < current_time(p)) then   

21.              if not (t < VT(p)[k]) then 

22.                     VTIME(p)[k] = current_time(p)  endif 

23.              VT(p)[k] = max(VT(p)[k], t)      

24.              Discard(m) 

25.           else             
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26.          wait ( (t = VT(p)[k] + 1 or                              /*∆-causal delivery condition*/ 

27.                     min(deadline(k,VT(p)[k],type), {deadline_arr(k,t,type)}) < current_time(p)) and 

28.                    (∀ (l,x,type’) ∈ H(m):            

29.                            x ≤ VT(p)[l] or  

30.                            min(deadline(l,x,type’), {deadline_arr(k,t,type)}) ≤ current_time(p)) 

31.              Delivery: delivery(m) 

32.              VTIME(p)[k] = current_time(p) 

33.              VT(p)[k] = max(VT(p)[k], t) 

34.         for all  (l,x,type’) ∈ H(m) if  x >VT(p)[l]                /* For missing messages */ 

35.                     VT(p)[l]=x endfor 

36.         if (∃(l,x,d,type) ∈ CI(p) | l = k ) then                     /* Keeps the most  

37.             CI(p)←CI(p) / (l,x,d,type) endif                        recent message  

38.         CI(p) ← CI(p) ∪ {(k,t,d=0,type)}                              sent by pk       */ 

39.         for all  (l,x,type) ∈ H(m)  if ∃d :  (l,x,d,type) ∈ CI(p) then   

40.               (l,x,d,type) ← (l,x,d+1,type) endfor                        /* Accounts for redundancy*/ 

41.         for all (l,x,d,type) ∈ CI(p)   if  d=causal_distance then 

42.                 CI(p)←CI(p) / (l,x,d,type) endfor 

43.      endif 

5   Correctness Proof  

To show that our algorithm ensures the ∆ -causal 
delivery (correctness), we give a sketch of proof. In 
order to do the proof as simple as possible, we focus 
on showing that the time constraints are satisfied 
and that the causal order is guaranteed 
independently of the data type. For this reason, we 
avoid using the type of data when referring to the 
messages. We refer to them only by the participant 
identifier and the logical clock, such as m=(k,t). 
 
Theorem  1. (Liveness) i) All messages arriving 
within their deadlines and whose deliveries do not 
violate causal ordering will be delivered within their 
deadlines, and ii) All messages arriving after the 
expiration of their deadlines or whose delivery would 
cause a causal violation will be discarded. 
 
Proof Point ii) is ensured from the test of line 20. 
Point i) is proved by contradiction. Suppose that a 
message m=(k,t) exists that arrived within its 

deadline, but is not delivered within its deadline. To 
proof this, we first introduce Lemma 1. 
 
Lemma 1 Each variable in VTIME(p)[j], for all j:1…n 
does not decrease. 
The proof follows directly from the algorithm (lines 
20 and 31) 
To proof Point i) we have two cases: 

 
a) Messages from the same source. For this case, 
by using Lemma 1, we have the following property: 

 
P1) For all m=(k,t) ∈ M : Src(m) = pk ⇒ ∀ p∈P, deadlinep(k, t’) 

< deadlinep(k,t) ∀  t’:1,2,…,t-1 
 
Denying the first part of the delivery condition (line 
27) that corresponds to messages from the same 
source, we have that 
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∃ (k, t’), t’< t : (deadline(k, t’=VT(p)[k])) ≥ 
current_time(p)) 

 
On the deadline of message m=(k,t), we have 

that current_time(p) = deadline(k, t). So by direct 
replacement, we have: 

 
∃ (k, t’), t’< t : (deadline(k, t’) ≥ deadline(k, t)) 

 
This sentence contradicts property P1. It follows 

that at the deadline of an arrived message m, the 
first part of the denied delivery condition is false, 
thus contradicting our initial assumption.   

 
b) Messages from a different source. To proof this 
case, we first introduce two functions: 
delivery_timep(m), which is the time when a message 
m is delivered at a process p and discarded_timep(m), 
which is the time when a message m is marked as 
missing at a process p. By using lines 27, 30 and 
Lemma 1, we have the second and third properties: 
 
P2) For all m’, m ∈ M , m’ → m received at p ∈ P ⇒  
delivery_time p(m’) ≤ deadline p(m)  
 
P3) For all m’, m ∈ M, m’ → m: m’ has not been received 
at p ∈ P ⇒ discarded_timep(m’) ≤ deadlinep(m) 
 

Next, we only present the proof that involves P2. 
The proof involving P3 is similar and not presented 
here. 
 

For m’→m received at p ∈ P. By denying the 
second part of the delivery condition (line 30), we 
have: 

 
∃m’=(l,x)∈ H(m):  
         (min(deadline(l,x), {deadline_arr(m)}) >    
          current_time(p)) 
 
If we do delivery_timep(l,x) = min(deadline(l,x), 
{deadline_arr(m)}), we have 
 
∃ m’=(l,x)∈ H(m):  

(delivery_time p(l,x)) > current_time(p)) 
 

On the deadline of message m=(k,t), we have 
that current_time(p) = deadline(m). So by direct 
replacement, we have: 
 
∃ m’=(l,x) ∈ H(m):  

(delivery_time p(m’)) > deadline(m)) 
 

This sentence contradicts property P2. It follows 
that at the deadline of an arrived message m, the 
second part of the denied delivery condition is false, 
thus contradicting our initial assumption.   

 
Lemma 2. For all m’,m ∈ M, m’ → m such that 
Src(m’)≠Src(m) and redundancyp(m’) ≤ causal_distance 
implies that  m’=(l,x) ∈ H(m)  
 

This is accomplished by the procedures at the 
diffusion message by lines 12 and 17, and at the 
reception message by lines 38, 39 and 41. 
 
Theorem 2. (Correctness) for all m’,m ∈ M, m’→ m 
such that d(m’,m) ≤ causal_distance implies that 
delivery(m’) →  delivery(m). 
 

Proof. Let us consider two messages m0 and mn 
such that send(m0) →send(mn) and both are received 
by p. We show that they are delivered to p according 
to causal ordering.  

For this proof, we have two general cases. The 
proof is by induction on the distance d(m0,mn). 

 
Base case: d(m0,mn) = 1 and d(m0,mn) ≤ 
causal_distance 
 

In this case, m0 is IDR related to mn, and from 
lemma 2 and since always d(m’,m) ≤ 
redundancy(m’), we have m0 ∈ H(mn). It follows that 
line 29 will delay the delivery of mn until after the 
delivery of m0. 

 
Induction case: d(m0,mn) ≥ 2  and d(m0,mn) ≤ 
causal_distance 
 

By induction, we have that all messages of the 
set {mi ∈ M : mi-1 ↓ mi for all i =1…n-1} that are 
delivered to p are delivered in causal order. For the 
induction phase, we have two cases depending on 
whether mn-1 has been delivered or discarded at p.   
 
a) For mn-1 delivered at p. We have mn-1 that 
immediately precedes mn so the base case applies 
to these messages: mn-1 is delivered before mn and 
by transitivity m0 is delivered before mn. 
 
b) For mn-1 discarded at p. In this case mn-1 ∈ H(mn) 
and by Lemma 1 and Lemma 2 and P3, it follows 
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that mn is delivered after that discarded_timep(mn-1). 
By lines 27, 30 and Lemma 1, we have that for a 
message mi that belongs to the path m0 to mn-1 
implies that the delivery or discarded time of mi is 
less than or equal to the discarded time of mn-1. 
Consequently, mn is delivered at p after m0.  

 
We notice that when a message mn-y such that n-

y > causal_distance, we have mn-x ∉ H(mn) and 
therefore, we cannot ensure the causal delivery of 
mn-y with respect to mn.  

6   Conclusions  

An efficient causal−∆  algorithm has been 
presented. The algorithm is efficient since the 
control information attached per message is 
dynamically adapted to the behavior of the system. 
We have shown that this control information allows 
us to perform a causal forward error recovery when 
messages are lost. Our algorithm ensures causal−∆  
order delivery without using a global clock. To avoid 
the use of a global clock, we have proposed an 
original FEC mechanism and a distributed lifetime 
method. Our causal−∆  algorithm is suitable for 
synchronous cooperative systems since it performs 
a forward error recovery, and it neither uses global 
references nor requires previous knowledge of the 
behavior of the system. 
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Appendix I 

Analysis of Probabilities 

Lets us consider that we have Ei independent events 
(send events) with i = 1,…..m, and let us suppose 
that the rate of their delivery or loss is λ > 0, obeying 
a Poisson distribution. 

,,.....,1,0,
!

}{)( mj
j

ejXpjp
j

==== − λλ                          

 
where X is a random variable that takes one of the 
values 0,1…… 

 
We consider the events to be successful if they 

arrive to their destination, and unsuccessful to those 
who do not arrive. Suppose that there are n < m 
events of the m possible ones, then 
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1. The probability that an event is unsuccessful is 
λ−= ep )0(  

2. The probability that at least one event is  
unsuccessful is given by  

λ−−=−=≥ epXp 1)0(1}1{  
3. The probability that there is no more than n 

successful events is given by 

∑
=

−=≤
n

i

i

i
enXp

0 !
}{ λλ

 
4. The probability that there are at least n or more 

unsuccessful events that do not arrive, is given 
by 

∑
=

−=≥
n

i

i

i
enXp

0 !
1}{ λλ  

If we consider a loss rate of λ = 0.1 (Olsen et al. 
2003), the diagram corresponding to case (4), which 
is the case that we are interested in, is presented 
below.   
 

 
Lost events 

Fig. 3 Probability that at least n events or more are 
unsuccessful. 

 
As we can see, the diagram approaches zero 

extremely fast. From values n ≥ 3, the likelihood 
becomes negligible. 
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