
Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

An Efficient ∆-Causal Distributed Algorithm for Synchronous
Cooperative Systems in Unreliable Networks

Algoritmo Eficiente Distribuido ∆-Causal para Sistemas Cooperativos
Síncronos sobre Redes no Fiables

Saúl E. Pomares Hernández, Eduardo López Domínguez and
Gustavo Rodríguez Gómez

Department of Computer Science, National Institute of Astrophysics, Optics and Electronics (INAOE)
Luis Enrique Erro No. 1, Tonantzintla, Puebla, México, C.P. 72840

spomares@ccc.inaoep.mx, edominguez@ccc.inaoep.mx, grodrig@ccc.inaoep.mx

Article received on July 03, 2008; accepted on March 23, 2009

Abstract. In cooperative systems causal ordering delivery
has been used to resolve problems of coherency of type
producer-consumer. Causal order delivery is important for
distributed systems since it allows an asynchronous
execution to participants. When time delivery constraints
are considered, ensuring causal delivery becomes more
complex, as is the case for synchronous cooperative
systems, such as Telemedicine and Teleimmersion. In these
systems, the messages (units of data of continuous and
discrete media) have an associated lifetime that determines
the period of useful time in which the messages must be
delivered. On the other hand, generally in these systems
there is no time for retransmit them when messages are
lost. Causal order with time constraints has previously
been addressed, and it is called causal−∆ order. In this
paper, we present an efficient causal−∆ distributed
algorithm for unreliable networks that is characterized by
the use of a forward error correction (FEC) scheme and a
distributed method to calculate the message lifetime based
on relative time points (i.e. no global time is used). We
show the efficiency of our causal−∆ algorithm in terms
of the control information attached per message.
Keywords: Cooperative systems, Group communication,
Causal order.

Resumen. En los sistemas cooperativos el ordenamiento
causal ha sido usado para resolver problemas de
coherencia de tipo productor-consumidor. La entrega de
orden causal es importante en general para los sistemas
distribuidos debido a que permite a los participantes una
ejecución asíncrona. Cuando las restricciones de entrega
en tiempo real son contempladas, asegurar la entrega
causal se vuelve más complejo, como es el caso para los
sistemas cooperativos síncronos, tales como Telemedicina y
Teleinmersión. En estos sistemas, los mensajes (datos
continuos y discretos) tienen asociado un tiempo de vida
que determina el periodo de tiempo útil en cual los
mensajes deben ser entregados, y por el otro lado, en
general en estos sistemas, cuando los mensajes son

perdidos no existe tiempo para retransmitirlos. El orden
causal con restricciones de tiempo ha sido previamente
estudiado, y es nombrado orden causal−∆ . En este
trabajo, presentamos un algoritmo distribuido causal−∆
eficiente sobre redes no fiables, nuestro algoritmo se
caracteriza por el uso de un esquema de corrección de
errores hacia delante (FEC) y un método distribuido para
calcular el tiempo de vida de un mensaje basado en
puntos de tiempo relativo (ningún tiempo global es
utilizado). Mostramos la eficiencia de nuestro algoritmo

causal−∆ en términos de la información de control unida
a cada mensaje.
Palabras clave: Sistemas cooperativos, Comunicación en
grupo, Orden causal.

1 Introduction

Although synchronous cooperative systems have
been a major research focus in computer supported
cooperative work (CSCW) for over two decades,
there is still a lack of protocols oriented to support
their communication requirements, which guarantee,
at runtime, ordering dependencies and time
constraints. In this sense, causal protocols have
been used in cooperative systems mainly to resolve
problems of coherency of type producer-consumer
(Plesca et al. 2005, Pomares et al. 2002). In
general, the causal order delivery (Birman et al.
1993) ensures that for each participant in the system
the events (send and delivery of messages) will be
seen in the cause-effect order as they occur in the
system.

Many works concerning protocols of causal
ordering delivery exist (Pomares et al. 2004; Birman
et al. 1993; Kshem-kalyani et al. 1998). The

32 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

previous algorithms assume a reliable transmission
without an associated lifetime per message. These
works are not suitable for synchronous cooperative
systems since these systems intrinsically have time
constraints that are not considered by them.

 Synchronous cooperative systems are
characterized by two main time constraints. First, the
information units (continuous and discrete) have an
associated lifetime that establishes the period of
time in which the information (messages) must be
received; a message that arrives after its lifetime is
useless and, consequently, discarded. The second
constraint establishes that there is no time for
retransmission when messages are lost. In order not
to greatly affect the quality of service, a forward
recovery scheme is preferable over a backward
recovery scheme (Perkins et al. 2003).

Causal order with time constraints has previously
been addressed by Baldoni (1998), and it is called

causal−∆ order. In his work, Baldoni ensures
causal−∆ order by using a global clock. In our work,

we propose an algorithm that ensures causal−∆
order in unreliable networks while avoiding the use
of global references. To achieve this, we propose an
original FEC mechanism and a method to calculate,
in a distributed manner, the lifetime per message for
continuous and discrete media units. The FEC
mechanism ensures that causal order delivery is
accomplished even in the presence of lost
messages. The lifetime in our work is calculated
based on relative time points1

We apply our FEC mechanism and our
distributed lifetime method to extend the minimal
causal broadcast algorithm presented in Pomares et
al. 2004. This minimal algorithm only sends control
information about messages with an immediate
dependency relation (IDR). Messages related by an
IDR have a causal distance (see Definition 4) of one
(i.e. no intermediate causal message exists between
them). In order to support delays and loss of
messages, we introduce redundancy on the control
information by sending information about messages
with a causal distance greater than one. One
interesting aspect of our FEC mechanism, as we will
show in Section 4, is that the redundancy is

. Our work is intended
for the transmission of continuous data, such as
audio and video, and discrete data such as text and
still images.

1 A relative time point establishes a reference point from which

it is possible to calculate a period of time.

dynamically adapted according to the behavior of
the system.

The rest of the article is structured in the
following way: Section 2 presents the most relevant
related works concerning the causal−∆ ordering. In
Section 3, the system model is described and the
background information is presented. Next, we
present in Section 4 our causal−∆ order algorithm
with our proposed FEC mechanism and the
distributed life-time method. A sketch of the
algorithm correctness proof is presented in Section
5. Finally, some conclusions are pre-sented in
Section 6.

2 Related Work

The most important work that tackles the problem of
causality and time constraints was presented by
(Baldoni et al. 1998). Baldoni addresses the problem
of causality and time constraints by introducing the
∆-causal order. Informally, the causal−∆ order says
that a message m is ∆ -causally-related to another
message m´ if m causally precedes m’ and arrives
before its deadline. Baldoni ensures message

causal−∆ order by using a reference global clock.
More specifically, by using a global clock, Baldoni
determines if a message accomplishes the causal
order and the time delivery constraints. The

causal−∆ order defined by Baldoni is correct;
however, the use of a global clock is not suitable for
distributed communication systems where the
message transmission delay is not negligible
(Lamport et al. 1978).

Several causal−∆ algorithms exist (Baldoni et al
1996; Prakash et al. 1997; Tachikawa et al. 1997)
that ensure causal ordering in the presence of lost
messages and time delivery constraints; however, to
achieve this, all of them use some type of global
reference (shared memory, wall clock, master-slave
scheme, etc).

3 Preliminaries

3.1 The System Model

Processes: The application under consideration is
composed of a set of processes P = {j, k,…}
organized into a group that communicates by
passing non reliable broadcast asynchronous
messages.

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 33

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

Messages: We consider a finite set of messages M,
where each message m∈M is identified by a tuple
m=(p,t), where p∈P is the sender of m, denoted by
Src(m), and t is the sequential ordered logical clock
for messages of p when m is broadcasted. The set of
destinations of a message m is always P.
Events: Let m be a message. We denote by
send(m) the emission event of m by Src(m), and by
delivery(p,m) the delivery event of m to participant
p∈P. The set of events associated to M is then the
set E= {send(m) : m∈M} ∪ {delivery(p,m) : m ∈ M ∧
p ∈P}. The process p(e) of an event e∈E is defined by
p (send(m))= p and p (delivery(p,m))=p. The set of
events of a process p is Ep={ e∈E :p(e)=p}.

3.2 Background and Definitions

The Happened-Before Relation. The happened-
before relation was defined by Lamport (1978). The
happened-before relation establishes possible
precedence dependencies in a set of events without
using physical clocks. It is a strict partial order (i.e.
irreflexive, asymmetric and transitive) defined as
follows:

Definition 1. The causal relation “→” is the least
partial order relation on E satisfying the following
properties:
1. If a and b are events belonging to the same

process, and a was originated before b, then
a→b.

2. If a is the send message of a process, and b is
the reception of the same message in another
process, then a→b.

3. If a→b and b→c, then a→c.

By using Definition 1, we define that a pair of events
are concurrent related “a || b” only if

¬ (a→b ∨ b→a)

The precedence relation on messages denoted

by m→m’ is induced by the precedence relation on
events, and is defined by:

m→m’ ⇔ send(m)→ send(m’)

The Immediate Dependency Relation. The
Immediate Dependency Relation (IDR) introduced in
Pomares et al. 2004 is the propagation threshold of
the control information regarding the messages sent

in the causal past that must be transmitted to ensure
a causal delivery. We denote it by ↓, and its formal
definition is the following:

Definition 2. Immediate Dependency Relation
“↓” (IDR):

a↓b⇔[(a → b) ∧ ∀ c ∈ E, ¬(a → c→ b)]

Thus, an event a directly precedes an event b, if
no other event c belonging to E exists, such that a
precedes c and c precedes b. We note that the IDR
relation is the transitive reduction of the Lamport’s
relation. This is important because if the delivery of
messages respects the order of the diffusion for all
pairs of IDR related messages, then the delivery
respects the causal order for all messages
(Pomares et al. 2004). This property is formally
defined for the broadcast case as follows:

Property 1:

∀ m,m’ ∈ M, if send(m) ↓ send(m’) ⇒ ∀p ∈ P :
delivery(p,m) → deliver(p,m’) then send(m) →

send(m’) ⇒ ∀p ∈ P : delivery(p,,m) → delivery(p,m’)

The ∆ -Causal Ordering. The causal−∆ ordering
has been introduced in Baldoni et al. 1998; it is
formally defined for the broadcast case as follows:

Definition 3. A set of events E satisfies the

causal−∆ ordering if:
1. All events that arrive in ∆ are delivered within ∆.

All other events are considered to be lost or
discarded, and therefore, are never delivered.

2. All delivery events respect causal ordering,
i.e.

∀ m,m’∈ M, if send(m)→ send(m’), then ∀p ∈ P :

delivery(p,m) → delivery(p,m’)

The Causal Distance. The causal distance
identifies the number of causal messages that exist
in a linearization between a pair of messages in the
system (Lopez et al. 2005). Formally, the causal
distance is defined as follows:

Definition 4. Let m and m’ be messages, the
distance d(m,m’) is defined for any pair m and m’
(send(m)→ send(m’)), such that d(m,m’) is the
integer n for some sequence of messages (mi, i=

34 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

0...n), with m= m0 and m’=mn, such that
send(mi)↓send(mi+1) for all i =0…n-1.

4 The ∆-Causal Order Algorithm

In order to avoid the use of a global clock, we
propose an original FEC mechanism and a
distributed lifetime method that verifies if a message
satisfies or not its deadline. In this section we give a
general description of each mechanism separately,
and then integrate them to the minimal broadcast
causal algorithm.

4.1 The FEC Mechanism

Causal order
ensured

p 5 p 1 p 2 p 3 p 4
m 1

m 2

m 3

5 1 2 3 4

1
2

3

1 2 3 4

1
2

3
x

Causal order
violation

m 1
2

m 4

1
m 2

1
2

x

m 3 3 3

m 4
IDR graph

IDR graph

a) b)

x
m1 determined
as lost

p 5 p 1 p 2 p 3 p 4 5 1 2 3 4 1 2 3 4

m 1 1 1 m 2 2 2 m
3 3 3 m 1 1 1

m 2 2 2

m
3 3 3

m1 discarded

x

t

Fig. 1. Example scenarios and their associated IDR graph

All FEC mechanisms introduce some kind of
redundancy to support the loss of information. The
redundancy in causal algorithms represents the
number of times that information about a causal
message is sent in the system. The causal algorithm
presented in Pomares et al. 2004, which uses the
IDR relation, is minimal because the IDR relation
identifies the necessary and sufficient causal
information that needs to be sent attached per
message (denoted in this paper by H(m)). Even
when this is a minimal algorithm, redundant control
information is still transmitted in some
communication scenarios. Our FEC mechanism
identifies and uses this inherent redundancy in order
to be efficient and will only add extra redundancy
when it is needed. The purpose of adding extra
redundancy is to increase the probability that causal
order delivery will be obtained, even in the presence
of lost messages and significant network delays.

Redundancy and the IDR relation

To ensure causal ordering, the minimal algorithm
only sends control information attached to each
message about messages with an immediate
dependency relation. For two messages that are
IDR-related (m↓m’), the causal distance is equal to
one (d(m,m’)=1). Note that for the serial case, a
message m has only one immediate predecessor
(best case), and that a message m can have at most
n immediate predecessors, one for each process.

For the serial case, for messages that are IDR-
related, there is no redundancy in the control
information sent. For example, in the serial scenario
depicted in Figure 1a, message m3 only sends causal
information about message m2 (H(m3) ={m2=(p3,
t2)}) and message m2 only sends information about
message m1 (H(m2) ={m1=(p1, t1)}). In this case, if a
message is lost, the causal order delivery can be
violated. As shown in Figure 1a, the causal order
delivery is violated because at the reception of
message m3, process p5 cannot determine if a
message preceding m2 exists or not. With the IDR
information on m3, process p5 can only detect that it
missed message m2. In order not to stop the system
execution, process p5 considers message m2 as lost
and then delivers m3. In this scenario, m1 can be
delivered after m3, which violates the causal
ordering.

For the concurrent relation, inherent redundancy
exists on the causal information sent. For example,
in the scenario depicted in Figure 1b, messages m2
and m3 have the same immediate predecessor m1,
and therefore m2 and m3 send information about
message m1 (H(m2)= H(m3)={m1=(p1, t1)}). If either
message m2 or m3 is lost, message m1 can still be
detected as shown in Figure 1b. In this scenario, m2
is lost and m3 successfully arrives at p5. With the
IDR information on m3, process p5 determines that m1
exists, which precedes message m3. To deliver m3,
process p5 establishes message m1 as lost. In this
scenario, m1 arrives at p5 after the delivery of
message m4, but since message m1 has been
established as lost, it is immediately discarded.
Therefore, causal order is ensured.

Our Proposal

In order to support the loss of messages, we
propose to increase the redundancy in the control
information sent per message by sending

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 35

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

information about causally-related messages with a
causal distance greater than one. For example, in
Figure 1a, if we establish a causal distance of two
(causal_distance = 2), this means that message m3
must send information about m2 and m1.

To be efficient, the redundancy is increased
considering the inherent redundancy introduced by
the IDR relation. We formally define that redundancy
about a message m, denoted by redundancyp(m),
determines the number of times that the information
about a causal message m has been seen
(received) by a participant p. As previously
described, the redundancy increases as the number
of concurrent messages increases. Taking into
account redundancyp(m) with a causal distance
greater than one (causal_distance > 1), we establish
that a message m’ must include information about a
causal message m (m→m’) only if the following
propagation constraints are satisfied:

PC1: d(m,m’) ≤ causal_distance and
PC2: causal_distance > redundancyp(m)

With both of these PCs, the control information

sent per message is dynamically adapted to the
behavior of the system by only introducing
redundancy when it is needed. For example, with
causal_distance = 2, message m3, shown in Figure
1a, must send causal information about m2 and m1
(H(m3)={m2, m1}) because p4 has redundancy(m1)
equal to one and a causal distance of d(m1,m3) = 2
and d(m2,m3) = 1, respectively. Nevertheless, for the
scenario presented in Figure 1b, message m4 must
send information only about messages m2 and m3
(H(m4)={m2, m3}), and not about m1, even when
d(m1,m4) = 2. This is done because the
redundancy(m1) seen by p4 is equal to 2, and
therefore, it does not satisfy the second PC.

We note that the value of redundancyp(m) can
differ between participants since it is calculated from
the messages received by each one.

In a general case, according to the analysis
presented in Appendix I, it is sufficient to take a
causal_distance equal to 5 since the probability that
three or more consecutive and/or concurrent
messages can be lost is very low.

4.2 The Distributed Lifetime Method

The distributed lifetime method identifies two cases.
one case for continuous media data, and another
case for discrete media data. In the transmission of

continuous media data, such as audio and video it is
possible to establish relative time points (ReTPs) ,
since the messages are periodically sent, and this
ReTPs can be used to determine if the units of data
satisfies or not its lifetime. Nevertheless, the ReTPs
must be dynamically established in order to support
random transmission delays. For the case of
discrete media units is totally different since they are
no periodical, which means that the period of time
between emissions is variable. For this reason, we
propose for a discrete media unit to calculate its
lifetime based on the lifetime of the causally-related
messages of continuous media that are included in
its causal control information. Next, we will present
the lifetime method for continuous media followed by
the method for discrete media.

Establishing Relative Time Points and Deadline
Points for Continuous Media

In order to establish the relative time points and
deadline points, we assume that the transmission of
data, such as audio and video, is executed by
transferring messages at a relatively constant rate,
and that these messages are sequentially
timestamped. By taking into account these
hypotheses, we establish a ReTP at the reception of
the most recent message. For example, in Figure 2,
the reception of message m1 establishes the first
relative time point rtp1; the reception of m2
establishes the rtp2, and so on.

…

deadline(m3) deadline(mn)

m2 m3 mn

∆

… m3

m2

m1=start

∆

m1=start

rtp1 rtp2 deadline(m2)

t

Video

Fig. 2. Streaming scenario

Based on the ReTPs, the deadline point of a

message m, denoted by deadline_cont(m), is
determined from the ReTP previously established. If
no message is lost and the messages arrive in
order, we have:

 deadline_cont(mi)=rtpi-1 + ∆ : i ≥ 1 (1)

36 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

where ∆ is the message lifetime that establishes the
maximum transmission delay supported2

If we consider lost or discarded messages, the
equation above is redefined as follows:

.

 deadline_cont(mi)=rtpx + (i-x)∆ : x < i and i ≥ 1 (2)

where rtpx is the last relative time point established.
This general equation is used in the rest of the paper
to calculate the deadline for continuous media.

For broadcast asynchronous communication,
each process p∈P locally establishes its own
ReTPs, and therefore, its own deadline points. For
this case, we denote a deadline as deadline_cont(m,
p), which determines the deadline point for a
message m at a process p. It is the same case for
discrete media as we will present in the next
paragraph.

Deadline Points for Discrete Media

As we previously said, the period of time between
the emission of messages of discrete media is
variable, and therefore we cannot take it as
reference. For this reason, we take the deadline
points of the messages of continuous media
included in the causal information H(m). For each
message we take its causal information H(m), and
we find its maximum deadline point. We take this the
maximum deadline point as reference to determine
the deadline point for the discrete message.
Formally, a deadline point for a discrete message is
calculated as follows:

deadline_disc(m) = max({deadline_cont(m’): m’∈
H(m) and typem’=continuous)} + δ (3)

where δ is the lifetime established for discrete media
units. We recall that every message in its causal
information H(m) satisfies the PC1 and PC2
presented in Section 4.1.

More specifically, we take the maximum deadline
point since in order to causally deliver a message m,
it must wait until and delivery after that every
message that belongs to its H(m) has been causally
delivered or has been discarded as a consequence
of its lifetime expiration, which is determined by its
deadline point. In the case that m’∈ H(m), such
that typem’=continuous we have:

2 For simplicity, in our work, we consider only one ∆ for all

messages in the system.

deadline_disc(m) = receive_timep(m) + δ (4)

where receive_timep(m) gives the time when message
m has been received at participant p

4.3 The Algorithm Code

Data Structures

The main data structures used in the algorithm are:

 VT(p) is the vector time. For each process p

there is an element VT(p)[j] where j is a process
identifier. When we need to refer to a specific
process with its respective identifier, we write pj.
The size of VT is equal to the number of
processes in the group. VT(p) contains the local
view that process p has of the elements of the
system. In particular, element VT(p)[k]
represents the greatest element number of the
identifier k and ‘seen’ in causal order by p. It is
through the VT(p) structure that we are able to
guarantee the causal delivery of elements.

 CI(p) is the control information structure. It is a
set of entries (k, t, d, type). Each entry in CI(p)
denotes a message that satisfies the PC1 and
PC2 propagation constraints and that can
potentially be attached in the next message m
sent by p. The entry (k, t, d, type) represents a
message diffused by participant k at a logical
local timeclock t = VT(p)[k], d contains the
redundancy of m=(k, t) seen by p and type
determines the type of media transmitted, which
can be continuous or discrete.

 The structure of a message m is a quadruplet
m = (j, t, type, content, H(m)), where:
• j is the participant identifier.
• t=VT(p)[j] is the logical local clock at node

j.
• type determines the type of media

transmitted.
• content is the structure that carries the

media data.
• H(m) contains the set of all entries (k, t, type)
about messages that satisfy the propagation
constraints (PC1 and PC2) with m.

 The causal_distance variable is the
predetermined causal distance considered.

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 37

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

 VTIME(p) is a vector that contains the most
recent relative time points. The size of VTIME(p)
is equal to VT(p) (one element for each process
in the system).

 current_time(p) represents the physical local
time of a process p.

 deadline(k,t,type) is a function that calculates the
deadline point for message m identified by (k,t)
where k is the sender process and t is the logical
clock. This function considers the two types of
discrete and continuous messages.

Algorithm Description

The causal−∆ algorithm is presented in Table 1.
When a message m is broadcasted (continuous or
discrete) by a process p, the H(m) is constructed by
adding entries from the CI(p) (lines 12-14) to it. Each
entry in H(m) satisfies, with respect to m, the PC1
and PC2 propagation constraints. In order to comply
with PC1 and PC2, we use a logical counter d by
each entry in CI(p) ((k, t, d, type) ∈ CI(p)). The
variable d is increased by one each time that its
associated entry is added to a H(m) by a process p
(line 13) or when that entry is received in a H(m)
(lines 39-40). The variable d contains the
redundancy of the message m=(k, t) seen by p. We
note that only when no concurrent messages exist
the value of d specifies the causal distance between
events.

The ∆-Causal Delivery Condition. At the reception
of a message, m=(k, t, type, content, H(m)) will be
immediately discarded if it has already been marked
as lost (t < VT(p)[k]) or if it misses its deadline (line
20). If m is not discarded, it is delivered as soon as
the causal−∆ delivery condition becomes true (lines
26-30). This delivery condition ensures that a
message m is delivered in its lifetime (lines 27 and
30) and that it will be delivered if and only if all
messages causally related to it have either been
delivered or have been established as missing, i.e.
that its lifetime has been expired. A posteriori, these
messages are marked as lost in lines 34-35, and
therefore, they will never be delivered. We note that
in order to ensure causal−∆ delivery if at a

participant p, a message m’ in the causal future of a
message m (m→m’) has a smaller lifetime than m
(deadline(m,p) > deadline(m’,p)) and both messages
have arrived but are not yet delivered, we make
deadline(m) = deadline(m’). This is done in order to
ensure Rule one of definition 3, which says that all
events that arrive in ∆ are delivered within ∆. This
behavior is better illustrated in the proof of Section 5.

Overhead analysis. In order to be efficient, each
entry in CI(p), and eventually in H(m) corresponds to
the most recent message sent by a process pj ∈ P
and causally received by p. This is possible since
each message m is sequentially timestamped with
its respective local logical clock of pj = Src(m). By
knowing the sequential order, a participant pj can
determine at any message reception if a message or
set of messages diffused by pj has been lost,
independently of the causal distance. Since H(m)
only has the most recent messages that precede a
message m, the overhead per message in this
algorithm to ensure ∆-causal ordering is given by the
cardinality of H(m), which can fluctuate in our case
between 0 and n-1 (0 ≤ |H(m)| ≤ n-1). For the serial
case, |H(m)| is at most the causal_distance
established (|H(m)| ≤ causal_distance), and for the
case of concurrent messages, the worst case is at
most n-1 (|H(m)| ≤ n-1), which is the same boundary
for messages that are IDR related (causal_distance =
1). We note that in our algorithm, as for the minimal
causal algorithm in (Pomares et al. 2004), the
likelihood that the worst case will occur approaches
zero as the number of participants in the group
grows. Compared with algorithms that are
exclusively based on vector clocks (Matern et al.
1989), our worst case denotes for them the constant
overhead that must always be attached per
message.

38 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

Table 1. Multimedia Broadcast ∆-Causal algorithm

1. Initially

2. VT(p)[j] = 0 ∀ j:1…n /* Vector clock */

3. VTIME(p)[j] = 0 ∀ j:1…n /* Vector with the ReTPs */

4. CI(p), H(m), deadline_arr(m) ← ∅

5. causal_distance = z

6. let deadline_cont(k,t) ≡ VTIME(p)[k]+(t- VT(p)[k]) *∆

7. let deadline_disc(k,t) ≡ if ∃m’=(k’,t’) ∈ H(m) such that typem’=continuous then

 max({deadline_cont(m’=(k’,t’)) : (k’,t’) ∈ H(m=(k,t))

 and typem’ = continuous}) + δ

 else

 receive_timep(m) + δ

8. let deadline(k,t,type) ≡ if type=continuous then

 deadline_cont(k,t)

 else

 deadline_disc(k,t)

9. let deadline_arr(k,t,type)≡ {deadline(m=(k,t,type)) ∪ deadline(m’=(k’,t’,type’)) :

 m’ arrived in its lifetime and not yet delivered and m→m’}

10. For each diffusion of message send(m), at pj

11. VT(p)[j] = VT(p)[j] +1

12. for all (k,t,d,type) ∈ CI(p)

13. (k,t,d,type)← (k,t,d+1,type) /* Accounts for redundancy */

14. H(m) ← H(m) ∪ {k,t,type} endfor

15. m= (j, t=VT(p)[j], type, content, H(m))

16. Diffusion: send(m)

17. for all (k,t,d,type) ∈ CI(p) if d = causal_distance then

18. CI(p)←CI(p) / (k,t,d,type) endfor

19. For each reception receive(m) at p, m=(k, t, type, content, H(m))

20. if (t < VT(p)[k] or deadline(k, t, type) < current_time(p)) then

21. if not (t < VT(p)[k]) then

22. VTIME(p)[k] = current_time(p) endif

23. VT(p)[k] = max(VT(p)[k], t)

24. Discard(m)

25. else

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 39

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

26. wait ((t = VT(p)[k] + 1 or /*∆-causal delivery condition*/

27. min(deadline(k,VT(p)[k],type), {deadline_arr(k,t,type)}) < current_time(p)) and

28. (∀ (l,x,type’) ∈ H(m):

29. x ≤ VT(p)[l] or

30. min(deadline(l,x,type’), {deadline_arr(k,t,type)}) ≤ current_time(p))

31. Delivery: delivery(m)

32. VTIME(p)[k] = current_time(p)

33. VT(p)[k] = max(VT(p)[k], t)

34. for all (l,x,type’) ∈ H(m) if x >VT(p)[l] /* For missing messages */

35. VT(p)[l]=x endfor

36. if (∃(l,x,d,type) ∈ CI(p) | l = k) then /* Keeps the most

37. CI(p)←CI(p) / (l,x,d,type) endif recent message

38. CI(p) ← CI(p) ∪ {(k,t,d=0,type)} sent by pk */

39. for all (l,x,type) ∈ H(m) if ∃d : (l,x,d,type) ∈ CI(p) then

40. (l,x,d,type) ← (l,x,d+1,type) endfor /* Accounts for redundancy*/

41. for all (l,x,d,type) ∈ CI(p) if d=causal_distance then

42. CI(p)←CI(p) / (l,x,d,type) endfor

43. endif

5 Correctness Proof

To show that our algorithm ensures the ∆ -causal
delivery (correctness), we give a sketch of proof. In
order to do the proof as simple as possible, we focus
on showing that the time constraints are satisfied
and that the causal order is guaranteed
independently of the data type. For this reason, we
avoid using the type of data when referring to the
messages. We refer to them only by the participant
identifier and the logical clock, such as m=(k,t).

Theorem 1. (Liveness) i) All messages arriving
within their deadlines and whose deliveries do not
violate causal ordering will be delivered within their
deadlines, and ii) All messages arriving after the
expiration of their deadlines or whose delivery would
cause a causal violation will be discarded.

Proof Point ii) is ensured from the test of line 20.
Point i) is proved by contradiction. Suppose that a
message m=(k,t) exists that arrived within its

deadline, but is not delivered within its deadline. To
proof this, we first introduce Lemma 1.

Lemma 1 Each variable in VTIME(p)[j], for all j:1…n
does not decrease.
The proof follows directly from the algorithm (lines
20 and 31)
To proof Point i) we have two cases:

a) Messages from the same source. For this case,
by using Lemma 1, we have the following property:

P1) For all m=(k,t) ∈ M : Src(m) = pk ⇒ ∀ p∈P, deadlinep(k, t’)

< deadlinep(k,t) ∀ t’:1,2,…,t-1

Denying the first part of the delivery condition (line
27) that corresponds to messages from the same
source, we have that

40 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

∃ (k, t’), t’< t : (deadline(k, t’=VT(p)[k])) ≥
current_time(p))

On the deadline of message m=(k,t), we have

that current_time(p) = deadline(k, t). So by direct
replacement, we have:

∃ (k, t’), t’< t : (deadline(k, t’) ≥ deadline(k, t))

This sentence contradicts property P1. It follows

that at the deadline of an arrived message m, the
first part of the denied delivery condition is false,
thus contradicting our initial assumption.

b) Messages from a different source. To proof this
case, we first introduce two functions:
delivery_timep(m), which is the time when a message
m is delivered at a process p and discarded_timep(m),
which is the time when a message m is marked as
missing at a process p. By using lines 27, 30 and
Lemma 1, we have the second and third properties:

P2) For all m’, m ∈ M , m’ → m received at p ∈ P ⇒
delivery_time p(m’) ≤ deadline p(m)

P3) For all m’, m ∈ M, m’ → m: m’ has not been received
at p ∈ P ⇒ discarded_timep(m’) ≤ deadlinep(m)

Next, we only present the proof that involves P2.
The proof involving P3 is similar and not presented
here.

For m’→m received at p ∈ P. By denying the
second part of the delivery condition (line 30), we
have:

∃m’=(l,x)∈ H(m):
 (min(deadline(l,x), {deadline_arr(m)}) >
 current_time(p))

If we do delivery_timep(l,x) = min(deadline(l,x),
{deadline_arr(m)}), we have

∃ m’=(l,x)∈ H(m):

(delivery_time p(l,x)) > current_time(p))

On the deadline of message m=(k,t), we have
that current_time(p) = deadline(m). So by direct
replacement, we have:

∃ m’=(l,x) ∈ H(m):

(delivery_time p(m’)) > deadline(m))

This sentence contradicts property P2. It follows
that at the deadline of an arrived message m, the
second part of the denied delivery condition is false,
thus contradicting our initial assumption.

Lemma 2. For all m’,m ∈ M, m’ → m such that
Src(m’)≠Src(m) and redundancyp(m’) ≤ causal_distance
implies that m’=(l,x) ∈ H(m)

This is accomplished by the procedures at the
diffusion message by lines 12 and 17, and at the
reception message by lines 38, 39 and 41.

Theorem 2. (Correctness) for all m’,m ∈ M, m’→ m
such that d(m’,m) ≤ causal_distance implies that
delivery(m’) → delivery(m).

Proof. Let us consider two messages m0 and mn
such that send(m0) →send(mn) and both are received
by p. We show that they are delivered to p according
to causal ordering.

For this proof, we have two general cases. The
proof is by induction on the distance d(m0,mn).

Base case: d(m0,mn) = 1 and d(m0,mn) ≤
causal_distance

In this case, m0 is IDR related to mn, and from
lemma 2 and since always d(m’,m) ≤
redundancy(m’), we have m0 ∈ H(mn). It follows that
line 29 will delay the delivery of mn until after the
delivery of m0.

Induction case: d(m0,mn) ≥ 2 and d(m0,mn) ≤
causal_distance

By induction, we have that all messages of the
set {mi ∈ M : mi-1 ↓ mi for all i =1…n-1} that are
delivered to p are delivered in causal order. For the
induction phase, we have two cases depending on
whether mn-1 has been delivered or discarded at p.

a) For mn-1 delivered at p. We have mn-1 that
immediately precedes mn so the base case applies
to these messages: mn-1 is delivered before mn and
by transitivity m0 is delivered before mn.

b) For mn-1 discarded at p. In this case mn-1 ∈ H(mn)
and by Lemma 1 and Lemma 2 and P3, it follows

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 41

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

that mn is delivered after that discarded_timep(mn-1).
By lines 27, 30 and Lemma 1, we have that for a
message mi that belongs to the path m0 to mn-1
implies that the delivery or discarded time of mi is
less than or equal to the discarded time of mn-1.
Consequently, mn is delivered at p after m0.

We notice that when a message mn-y such that n-

y > causal_distance, we have mn-x ∉ H(mn) and
therefore, we cannot ensure the causal delivery of
mn-y with respect to mn.

6 Conclusions

An efficient causal−∆ algorithm has been
presented. The algorithm is efficient since the
control information attached per message is
dynamically adapted to the behavior of the system.
We have shown that this control information allows
us to perform a causal forward error recovery when
messages are lost. Our algorithm ensures causal−∆
order delivery without using a global clock. To avoid
the use of a global clock, we have proposed an
original FEC mechanism and a distributed lifetime
method. Our causal−∆ algorithm is suitable for
synchronous cooperative systems since it performs
a forward error recovery, and it neither uses global
references nor requires previous knowledge of the
behavior of the system.

References

1. Baldoni, R., Raynal, M., Prakash, R., & Singhal M.
(1996). Broadcast with Time and Causality
Constraints for Multimedia Applications, 22nd
EUROMICRO Conference '96, Beyond 2000:
Hardware and Software Design Strategie, Prague,
Czech Republic, 617-624.

2. Baldoni, R., Prakash, R., Raynal, M., & Singhal,
M. (1998). Efficient ∆-causal broadcasting.
International Journal of Computer Systems Science
and Engineering, 13(5), 263-269.

3. Birman, K. (1993). The Process Group Approach to
Reliable Distributed Computing, Communications of
the ACM, 36(12), 36-53.

4. Kshemkalyani, A. D. & Singhal, M. (1998).
Necessary and Sufficient Conditions on Information
for Causal Message Ordering and their Optimal
Implementation, Distributed Computing Journal, 11(
2), 91-111.

5. Lamport, L. (1978). Time, Clocks and the Ordering
of Events in a Distributed System, Communications
of the ACM, 21(7), 558-565.

6. Lopez, E., Estudillo J., Fanchon J., & Pomares
Hernandez, S.E. (2005). A Fault-tolerant Causal
Broadcast Algorithm to be Applied to Unreliable
Networks, 17th International Conference on Parallel
and Distributed Computing and Systems, Phoenix,
Arizona, USA, 465-470.

7. Mattern, F. (1989). Virtual Time and Global States
of Distributed Systems, International Workshop on
Parallel and Distributed Algorithms, Chateau de
Bonas, France, 215-226.

8. Olsen, J. (2003). Stochastic Modeling and
Simulation of the TCP Protocol, PhD thesis,
Uppsala University, Uppsala, Sweden.

9. Perkins, C. (2003). RTP Audio and Video for
Internet, Boston : Addison Wesley.

10. Plesca, C., Grigoras, R., Queinnec, P., & Padiou
G. (2005). A Flexible Communication Toolkit for
Synchronous Groupware, 2005 Systems
Communications, Washington, DC, USA, 216-221.

11. Pomares Hernandez, S.E., Drira, K., Fanchon J.,
& Diaz, M. (2002). An Efficient Multi-Channel
Distributed Coordination Protocol for Collaborative
Engineering Activities, IEEE International
Conference on Systems, Man and Cybernetics,
Hammamet, Tunisia, 415 – 420.

12. Pomares Hernandez, S.E., Fanchon, J., & Drira,
K. (2004). The Inmediate Dependency Relation: An
Optimal Way to Ensure Causal Group
Communication, Annual Review of Scalable
Computing, 6(1), 61-79.

13. Prakash, R., Raynal, M., & Singhal, M. (1997). An
Adaptive Causal Ordering Algorithm Suited to
Mobile Computing Environment, Journal of Parallel
and Distributed Computing, 41(2), 190-204.

14. Tachikawa, T., & Takizawa, M. (1997). ∆-Causality
in Wide-Area Group Communications, International
Conference on Parallel and Distributed Systems,
Seoul, Korea, 260-267.

Appendix I

Analysis of Probabilities

Lets us consider that we have Ei independent events
(send events) with i = 1,…..m, and let us suppose
that the rate of their delivery or loss is λ > 0, obeying
a Poisson distribution.

,,.....,1,0,
!

}{)(mj
j

ejXpjp
j

==== − λλ

where X is a random variable that takes one of the
values 0,1……

We consider the events to be successful if they

arrive to their destination, and unsuccessful to those
who do not arrive. Suppose that there are n < m
events of the m possible ones, then

http://portal.acm.org/author_page.cfm?id=81100094765&coll=GUIDE&dl=GUIDE&trk=0&CFID=9464521&CFTOKEN=23122276�
http://portal.acm.org/author_page.cfm?id=81100504173&coll=GUIDE&dl=GUIDE&trk=0&CFID=9464521&CFTOKEN=23122276�
http://portal.acm.org/author_page.cfm?id=81100373061&coll=GUIDE&dl=GUIDE&trk=0&CFID=9464521&CFTOKEN=23122276�
http://portal.acm.org/author_page.cfm?id=81100146199&coll=GUIDE&dl=GUIDE&trk=0&CFID=9464521&CFTOKEN=23122276�

42 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-42
ISSN 1405-5546

1. The probability that an event is unsuccessful is
λ−= ep)0(

2. The probability that at least one event is
unsuccessful is given by

λ−−=−=≥ epXp 1)0(1}1{
3. The probability that there is no more than n

successful events is given by

∑
=

−=≤
n

i

i

i
enXp

0 !
}{ λλ

4. The probability that there are at least n or more

unsuccessful events that do not arrive, is given
by

∑
=

−=≥
n

i

i

i
enXp

0 !
1}{ λλ

If we consider a loss rate of λ = 0.1 (Olsen et al.
2003), the diagram corresponding to case (4), which
is the case that we are interested in, is presented
below.

Lost events

Fig. 3 Probability that at least n events or more are
unsuccessful.

As we can see, the diagram approaches zero

extremely fast. From values n ≥ 3, the likelihood
becomes negligible.

Saul Eduardo Pomares Hernández

He is a Researcher in the Computer Science Department at
the National Institute of Astrophysics, Optics and Electronics
(INAOE), in Puebla, Mexico. He completed his PhD Degree at
the Laboratory for Analysis and Architecture of Systems of
CNRS, France in 2002. Since 1998, he has been researching
in the field of distributed systems, partial order algorithms and
multimedia synchronization.

Eduardo López Domínguez

Is currently a PhD student in the Department of Computer
Science at the INAOE. He holds the M.S. degree in Computer
Science from the same institute in 2006. His research interests
include mobile distributed systems and multimedia
communications. His postgraduate studies are supported by
the National Council of Science and Technology of Mexico
(CONACYT).

Gustavo Rodríguez Gómez

Received the Bachelor degree and Master degree in
Mathematics from the National Autonomous University of
Mexico (UNAM). He has a PhD degree in Computational
Sciences from the lNAOE. His current research interests
include scientific computing and the numerical solution of
partial differential equations and ordinary differential equations
with radial basis functions, multirate methods also called
subcycling methods.

P{X}

