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1BAbstract 
The exact discrete-time model of a two wheel differentially driven mobile robot is obtained by direct integration 
of its continuous-time kinematic model. The discrete-time model obtained is used to design two discrete-time 
linearizing control laws with different singular manifolds. These control laws are used to propose a commutation 
control scheme that solves the path-tracking problem and guarantees internal stability of the closed loop system. 
The performance of the control scheme is evaluated by the real time implementation of the proposed control 
strategy over a laboratory prototype. 
2BKeywords: Discrete-time systems, mobile robots, feedback linearization, real time systems.  
 
3BResumen 
El modelo exacto en tiempo discreto de un robot móvil propulsado por diferencias de velocidades es obtenido por 
integración directa de su modelo cinemático en tiempo continuo. El modelo en tiempo discreto es utilizado para 
diseñar dos leyes de control por linealización por retroalimentación con diferentes variedades singulares. Estas 
leyes de control son usadas para proponer un esquema de control por conmutación que resuelve el problema de 
seguimiento de trayectoria y garantiza la estabilidad interna del sistema en lazo cerrado. El desempeño del 
esquema de control es evaluado mediante la implementación en tiempo real de la estrategia de control propuesta 
sobre un prototipo de laboratorio. 
Palabras clave: Sistemas en tiempo discreto, robots móviles, linealización por retroalimentación, sistemas en 
tiempo real. 

 
1 Introduction 
 
Discretization of continuous-time systems is especially important for control purposes because in actual practice 
most controllers are digitally implemented and therefore operate in discrete time. As a matter of fact, if an exact 
discrete-time model is available and a discrete-time control law can be synthesized from this model, then the 
performance of the controller is independent of the sampling rate. Unfortunately, the exact discretization of a 
continuous time nonlinear system is not always possible. A nonlinear system can be exactly discretized only in the 
case when the continuous-time model subject to piecewise constant input (sampled input) can be analytically solved. 
It is shown below that the kinematic model of a wheeled mobile robot satisfies this remarkable property. 

Feedback linearization is one of the control alternatives for nonlinear systems. There is a complete theory about 
this nonlinear control strategy [Isidori, 95; Nijmeijer and Van der Schaft, 90] dealing mainly with the continuous-
time case. Several problems studied for the continuous-time case can also be stated on a discrete-time context [Kotta, 
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95]. However, the solutions obtained for continuous-time systems are not always parallel to the solutions obtained 
for discrete-time systems. For the study of nonlinear discrete-time systems, see Nijmeijer and Van der Schaft, 90, 
Chapter 14, or Kotta, 95 where the subject is treated more deeply. Also, for the discrete-time case, different notions 
of feedback linearization are studied in [Aranda et al., 96]. 

The control of mobile robots in continuous time has been widely studied in the literature, see for instance 
[Campion et al., 96] and [Canudas et al., 96] where several control problems and structural properties have been 
treated respectively. Also, for the continuous time case, in [Aranda et al. 02; D’Andrea-Novel et al 92; Oriolo et al. 
,02] the feedback linearization problem is considered for several types of mobile robots and, in particular, the case of 
a two wheel differentially driven mobile robot is boarded. The feedback linearization approach and its application to 
the path tracking problem for a trailer-like system was considered in [Orosco et al., 92; Orosco et al., 92a]. 

Most of the time, real time implementation of continuous-time control strategies is achieved on a DSP, PC or 
microcontroller, assuming that the sampling frequency is fast enough. The main drawback of this approach is that the 
performance of the control law depends on the sampling frequency. One possible way to overcome this issue is to 
consider the design of discrete-time control strategies. In the field of mobile robots, some attempts have been made 
in this direction. For instance, in [Corradini et al., 99; Corradini et al., 02] the robust stabilization and the trajectory 
tracking problems are considered using an approximate discrete-time model of a two wheel differentially driven 
mobile robot. Also, in [Wargui et al., 96; Wargui et al., 97] the approximate discrete time model of a mobile robot of 
the same type is used to solve the stabilization problem by means of a switching strategy. Considering a hybrid 
approach, the stabilization problem of a mobile robot is boarded in [Oelen et al., 95]. 

In a certain sense, the methods that rely on an approximate discrete-time model (e.g. Euler approximations) 
suffer from the same problem as the digital implementation of a continuous-time control law, namely, they strongly 
depend on the sampling frequency. 

The goals of this paper are three: First, in order to avoid the lack of robustness and poor performance of control 
schemes based on approximate models, an exact discrete-time model for a class of two wheels differentially driven 
mobile robot is obtained. Second, the path tracking problem for the discrete-time model is considered. The specific 
feature of our approach is the design of two linearizing control laws and a commutation policy which solves the path-
tracking problem globally. Finally, the performance of the above mentioned control strategy is tested over a 
laboratory prototype. 

The paper is organized as follows: In Section 2, the discretization of the continuous-time kinematic model of a 
two-wheel differentially driven mobile robot is obtained. In Section 3, the explicit design of a path-tracking control 
via feedback linearization and a switching strategy is developed. In Section 4, the stability analysis of the proposed 
control scheme is presented. Section 5 is devoted to the real time implementation of the developed strategy and its 
performance is shown by tracking a particular desired trajectory over the plane. Finally, some conclusions are 
presented in Section 6. 
 
2 Discrete-time model 
 
The type of wheeled mobile robot considered in this work is shown in Figure 1. This class of robots, called two-
wheel differentially driven mobile robot consists of two parallel fixed wheels driven independently. A change of 
direction is obtained by the difference of velocity between the traction wheels. The continuous-time kinematic model 
of this mobile robot is well known in the literature [Campion et al., 96; Canudas et al., 96], and is given by 
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where ( )21, xx  represents the coordinates of the center of the axle of the actuated wheels on the plane ( )21 , XX  and 

0θ  is the angle that the longitudinal axis of the robot forms with the axis 1X . The input signal 1u  represents the 
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longitudinal velocity of the robot and 2u  its angular velocity. 
In what follows, it is shown that an exact discrete-time model for system (1) can be obtained by direct 

integration. Consider a constant sampling period T  and define the time interval between two consecutive sampling 
instants as, 
 

( ){ } K,2,1,0,1| =+<≤∈= kTktkTttk R  
 

In the rest of the paper we assume that the control variables ( )tu1  and ( )tu2  remain constant between sampling 
instants (i.e. the inputs are sampled and connected to a zero order hold). Define ( )kTu1  and ( )kTu2  as the constant 
values that the input signals ( )tu1  and ( )tu2  take over the time intervals kt  for K,3,2,1,0=k . 
 

 
 

Fig. 1. Two-wheel differentially driven mobile robot 
 

The equivalent discrete-time model for system (1) can be obtained by its direct integration over the interval kt . 
Considering first the evolution of ( )t0θ  on equation (1), one readily obtains, 
 

( ) ( ) ),()( 200 kTukTtkTt −+=θθ  (2) 
 
for ktt∈ . Integrating now the first equation in (1) with )(0 tθ  given as in (2) produces, 
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that leads to, 
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for ktt∈ . Finally, from the second equation of (1) with )(0 tθ  as in (2) we obtain 

( )( ) ,)()(sin)()()( 20122 ττθ dkTukTkTkTukTxtx
t

kT
−++= ∫  

 
that, evaluating the integral produces, 
 

( )( )],)()(cos)([cos
)(
)()()( 200

2

1
22 kTukTtkTkT

kTu
kTukTxtx −+−+= θθ  (4) 

 
for ktt∈ . In order to obtain the discrete-time model of the wheeled mobile robot (1), the equations (2), (3) and (4) 
are evaluated at the end of the interval kt , this is, 
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(5) 

 
For the sake of simplicity, in the rest of the paper, the following notation is adopted ( )kTζζ = , 

( )TkT ±=± ζζ  and ( )iTkTi ±=± ζζ ][ . Using this notation and by means of simple algebraic manipulations, system 
(5) can be rewritten as, 
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Remark 2.1 Note that the function ψ  satisfies, 220 )(lim

2
T

u u =→ ψ . In particular, when 02 =u  the state 0θ  remains 
constant accordingly to the property of the continuous-time model (1). It is easy to verify that the discrete-time model 
obtained from (1) when 02 =u  corresponds to the discrete-time model (6) with 2)0( T=ψ   

 
3 Discrete-time control scheme 
 
In this section, the design of a commutation strategy for system (6) is developed. The control strategy achieves the 
path-tracking of a desired trajectory for the mobile robot based on the commutation between two discrete-time 
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nonlinear control laws. Both control laws linearize the input/output response of the system with respect to different 
output functions. The first output function possesses trivial zero dynamics. Therefore, the corresponding control law 
fully linearizes the system. The second output function exhibits zero dynamics of dimension one. The two output 
functions possess different singular manifolds. Therefore, a control switching strategy allows to construct a globally 
defined control law. 

In the continuous-time case, a nonlinear control via feedback linearization for the mobile robot (1) is commonly 
based on the output function ( ) [ ]Txxxh 21,= . However, the consideration of this output function in the discrete-time 
case (6) does not produce the same result, it is a straightforward task to prove that, in this case, it is obtained an 
input-output linearization with unstable zero dynamics. 
 
3.1 Dynamic extension 
In order to obtain an equivalent control scheme that the one produced by considering ( ) [ ]Txxxh 21,=  in the 
continuous-time case, consider now, for the discrete-time counterpart, the output function, 
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Notice that this output function depends on the current and past values of 0θ . In order to construct an output 

function defined only in terms of a classical realization it is necessary to define −
0θ  as a new state, this is done by 

means of the following dynamic extension, 
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Therefore, for the augmented system (6)-(8) the output (7) is rewritten as 
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System (6)-(8) with output function (7) possess a singular decoupling matrix [Kotta, 95; Nijmeijer and Van der 

Schaft, 90]. Therefore, in order to linearize the input/output response, it is proposed the dynamic extension, 
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where 1w , 2w  are new control inputs. This allows to rewrite (6)-(8)-(10) as the extended system, 
 

( ),,wxfx =+  (11) 
 
where, [ ]Txxx 20121 ,,,, ξθξ= , [ ]Twww 21,=  and, 
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Remark 3.1 The dynamic extension (8)-(10) depicted in Figure 2 amounts to add one pure time delay in front of the 
input 2u , and to store the value at the previous time instant of the variable 0θ , in order to synthesize the linearizing 
control law. 
 

 
 

Fig.2. Extended System (11) 
 
3.2 Design of full linearizing control law 
In order to solve the path tracking problem, consider now the augmented system (11) and the output function (9). It 
is possible to compute for the component 1h , 
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where 2220 wT T++=+ ξθγ . For the output component 2h , the first three forward shifts are given by 
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Considering the functions ( )wxy ,]2[

1 , ( )wxy ,]3[
2  it is possible to write, 
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From the last equations, it is clear that the decoupling matrix  
( ) ,
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becomes singular on the manifold 
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Finally a feedback control law that solves the path tracking problem is given by 
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where 2

202 ξθφ Tv ++=  and the new input variables 1v  and 2v  are, 
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with the output error idii yye −= . 

For the sake of conciseness, in the rest of the paper the control law (13)-(14) designed for system (11), will be 
referred to as w . For the closed loop system (11)-(13)-(14), the tracking error dynamics is governed by the 
difference equations 
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Remark 3.2 The relative degrees of system (11)-(9) are 21 =r , 32 =r  and their sum is equal to the dimension of the 
extended system (11), then feedback law (13) fully linearizes the system. 
 
Remark 3.3 The control law w  is undefined on the singular manifold S  given in (12). 
 
3.3 Complementary feedback law 
Since w  is not defined on S , in order to obtain a global control scheme, an alternative control law with a different 
singular manifold is proposed. This alternative control law can be enabled when the state is in a neighborhood of S . 
To obtain this second feedback consider now the output function, 
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Applying the same procedure as in the previous section it is obtained, 
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In this case, the decoupling matrix 
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When the state does not belong to the manifold S~ , it is possible to synthesize the feedback law, 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

)~(1

)sincos~(
2
1

202

211

2

1

ξθ

γγ
ψ

Tv
T

xxv

w
w

 (18) 

 
where 1

~v  and 2
~v  are given as, 
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with the output error idii yye ~~~ −= . 
Again, for sake of conciseness the control law (18)-(19) designed for system (11) will be referred to as w~ . In 

this case, the closed loop system (11)-(18)-(19) produces the tracking error dynamics 
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Remark 3.4 The relative degrees of system (11)-(16) are 1~

1 =r , 3~
2 =r  and their sum is equal to four, therefore the 

extended system (11) under the control law (18) possesses a zero dynamics of dimension one. 
 
Remark 3.5 The control law w~  is not defined when the state belongs to the singular manifold S~  given in (17). 
 
3.4 Commutation strategy 
The control scheme proposed in this subsection is based on the commutation between control laws w  and w~  
defined by (13)-(14) and (18)-(19), respectively. The singularities on the feedback (18) appear when the angular 
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velocity of the robot 2ξ  is equal to a multiple of the sampling frequency (17), i.e., T
mπξ 2

2 ±= . For most sampling 
periods considered for practical discrete-time applications ( s1<<T ), these singularities can only appear for very 
high angular velocities of the mobile robot. Therefore, it can be reasonably assumed that this singularity does not 
appear in practical robots. For these reasons it is proposed a commutation strategy that mainly takes into account the 
singularities produced by S  instead of S~ . The commutation strategy takes the form, 
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where ε  is a small positive number that represents the commutation threshold. From the properties of the singular 
manifolds S  and S~  explained above, the proposed strategy enables the control law w  most of the time, and the 
feedback control law w~  is intended to act only when the state is on the neighborhood of the singularity 

T
mw πξ 2

22 ±=+ . 
 
Remark 3.6 One remarkable feature of the discrete-time setting is that the commutation scheme (21) preserves 
existence and uniqueness of the solutions of system (11). It is well known that this is not necessarily the case for 
continuous time systems when they are subject to discontinuous control laws. 
 
4 Stability analysis 
 
This section is devoted to the analysis of the stability the closed-loop system composed by the extended system (11) 
and the control scheme (21) developed in the previous section. The control scheme (21) is based on the commutation 
between the full linearizing control law w  and the input-output linearizing control law w~ . 

The commutation scheme is designed in such a way that the control w~  is enabled when the trajectories of the 
closed-loop system are in the neighborhood of the singular manifold S . When this happens, it is possible to prove 
that the unobservable dynamics remains bounded. On the other hand, when w  is enabled, the internal dynamics 
vanishes and then the closed-loop system (11)-(21) asymptotically follows the reference trajectory )(tyd . 
Combining the results announced above, it is possible to establish sufficient conditions for the stability of the closed-
loop system (11)-(21). 
In order to state the main result of this section, consider the following set of assumptions: 
 
Assumption 4.1 Coefficients ik , ik~ , im  and im~  are such that the roots of the polynomials (15) and (20) are 
different and lie on the interval ( )1,0 . 

Assumption 4.2 The function 2
1

2
1

~
ddk yyr +=  belongs to the space of functions { }n

kk
n bkappP +≤→= |: RZ , 

where a  and b  are positive real. 
 
Assumption 4.3 The trajectories of the closed-loop system (11)-(21) produce a finite number of commutations of the 
control scheme (21). 
 

Remark 4.4 The function kr  represents the distance of the desired trajectory to the origin, i.e., 2
2

2
1 ddk xxr += . 

Also note that Assumption 4.2 is far from been restrictive since kr  is bounded by a polynomial that can grow 
arbitrarily fast. 
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Remark 4.5 Note that Assumption 4.3 implies that there exists a positive number 0k  such that for all 0kk ≥  one of 
the control laws w  or w~  remains enabled. 
 

In the rest of the Section, ⋅  denotes the usual Euclidean norm, and by abuse of notation it also denotes the 
corresponding induced matrix norm. Also, }{Aiλ  denotes the set of eigenvalues of matrix A . 
Before presenting the main result of the paper, some technical results are to be proven. 
 
Lemma 4.6 The mapping 55: RR →Ψ  defined by 
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where [ ][ ]Tyyyyyx 11
2

222 ,~,~,~,~ˆ +=  and 220 ξθγ T+= , is globally invertible and hence qualifies as global change of 
coordinates. 
 
Proof. Note that ( )xx ˆ1−Ψ=  is given by, 
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where 
[ ]

2
~~ 2

22ˆ yy ++=γ . Taking into account that 0≠T , then the transformation ( )xΨ  is globally invertible. 
 
Lemma 4.7 Consider the discrete time system, 

.Axx =+  (22) 
Assume that }{Aiλ  are real and different. Then, the solution of system (22) is bounded by 
 

( )0)( xkx k
mλγ≤  

 
where }}{max{ Aim λλ = , 1−= PPγ  and P  is a matrix formed by the eigenvectors of matrix A . 

 
Proof. The proof is elementary and is left to the reader. 
 
Lemma 4.8 Consider the closed-loop system composed by the extended system (11) and the commutation scheme 
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(21) and that Assumptions 4.1 and 4.2 are satisfied. Suppose that the control law w~  is enabled for all 0≥k . Then, 
the tracking error e~  converges asymptotically to zero, and the error 1e  is bounded by a suitable constant. 
 
Proof. Defining error variables ( ) ( )dd xxxxz Ψ−Ψ=−= ˆˆ , the closed loop system (11)-(18) can be rewritten in z -
coordinates as, 
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where 
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1
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ddk yyr += . 
 

Consider now the linear subsystem of (23), 
 

,~~~ zAz =+  (24) 

with, [ ]Tzzzzz 4321 ,,,~ =  and, 
 

.

~000
0~~~
0100
0010

~

0

210 ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
=

k
mmm

A  

 
Under Assumption 4.1 and using Lemma 4.7, the solution of (24) is bounded by, 

 
( )0~)(~ zkz k

mλγ≤  
 
where 1~~ −= PPγ  and the columns of P~  are given by the characteristic vectors of A~  and }~{max Am λλ = . Under 

this condition )(~ kz  converges asymptotically to zero and therefore )(~ ke  converges to zero. 
From the nonlinear subsystem of (23), the state equation of 5z  can be rewritten as 

,55 kk fzgz +=+  (25) 
 
where ( )dk zg φφ += cos  and ( ) ( ) 2
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It is easy to see that the solution of (25) is given by, 
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Noting that 1≤kg , and using again simple norm properties one obtains  
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Now, from the fact that ( ) 1sin ≤α , 
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Since 22sin φφ zz ≤ , and noting that under Assumption 4.2, n
i biar +≤ ; it is obtained, 
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Equation (28) can be simplified further by noting that 
 

( ) ( ) i
m

i
m Kkz

kzkz
izKkziz λγλγ φ 0

13
04 )(~

2
)()(

   ,)(~ ≤≤
+

≤≤≤  

 
where ( )0~

0 zK = . This is, 

( ) .1 0
i

m
n

i Kbiaf λγ++≤  
 

From the above developments, equation (27) is rewritten as, 
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From elementary calculus, it is clear that, 
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where C  is a positive constant. Therefore, 
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from where it is concluded that 1e  is bounded. 
 
Lemma 4.9 Consider the closed-loop system composed by the extended system (11) and the commutation scheme 
(21). Suppose that the control law w  is enabled for all 0≥t . Then the tracking error e  converges asymptotically to 
zero. 
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Proof. Since the control law w  is enabled for all 0≥t , then the dynamics of e  is governed by equations (15). Since 
the corresponding characteristic polynomials are Schur (discrete-time Hurwitz), the results follows. 
 
Now it is possible to present the main result of the paper: 
 
Theorem 4.10 Consider the closed-loop system composed by the extended system (11) and the commutation scheme 
(21). Suppose that Assumptions 4.1, 4.2 and 4.3 are satisfied. Then, one of the following assertions does hold: 
1) The error e~  converges asymptotically to zero and the error 1e  is bounded by a suitable constant. 
2) The error e  converges asymptotically to zero. 
 
Proof. Since the closed-loop system is time-invariant, Lemmas 4.8 and 4.9 can be applied after each commutation by 
shifting the time-axis. Since only a finite number of commutations occur, one and only one of the assertions of 
Theorem 4.10 can arise. This concludes the Proof. 
 
Remark 4.11 The vector x̂  is composed by the states controlled by the closed-loop system (11)-(18) and the state 

1y . Therefore, 1y  can be considered as internal dynamics of the closed loop system. 
 

5 Real-time implementation 
 
In this Section the performance of the commutation control scheme presented in the preceding Section is evaluated 
by its implementation over a low cost laboratory prototype of the type given in (1). The prototype is shown in Figure 
3. 

This Section is organized in two subsections, in the first one a general description of the laboratory prototype is 
given while the real-time obtained results are presented later. 
 

 
Fig. 3. Laboratory prototype 

 
5.1 Prototype description 
The experimental validation of the proposed control scheme has been carried out using a laboratory prototype of the 
type (1). The robot's wheels have a radius of cm5.6=r  and are mounted on an axle of length cm8.282 =l  between 
wheels. Two passive omnidirectional wheels are placed on the front part of the vehicle. The aluminium chassis 
measures cm263242 ××  (L/W/H) and supports two DC motors, reduction gears, power electronics, and a 12-V 
battery. Each motor has an incremental encoder counting npulses/tur1000=en . 

The prototype is controlled by a dSPACE Floating-Point Controller Board DS1102 that is based on the Texas 
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Instruments TMS320C31 DSP. This board is placed on a 1-GHz Pentium III PC, with control algorithms written in 
Matlab's SIMULINK. The dSPACE Control Desk software provides a GUI with real-time visualization. The 
Controller Board communicates through multi-wire cable with the electronics on the robot. The two wheels of the 
WMR are driven by PWM signals sent by the DS1102 Board and their encoders measure the angular displacements 

rφ  and lφ  on the motors for odometric computations. 
The velocity control of the two motors is done by means of PID controllers implemented on the DS1102 Board. 

This controller features a Coulomb plus viscous friction compensation block. Filtering algorithms, potentiometer 
data adaptation and posture reconstruction from odometric data are implemented in the DS1102 Board. A general 
control scheme is shown in Figure 4. 

The relationship between the longitudinal and angular velocity of the robot and the angular velocities of each 
wheel are given by, 
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where rω  and lω  represent the angular velocity of right and left traction wheels. 
 

 
Fig. 4. General control scheme 

 
5.2 Real-time experimental results 
This Subsection is devoted to present the results obtained by the real-time implementation of the discrete-time 
control scheme (21) applied to the laboratory prototype described in the previous subsection. The experiments were 
carried out by considering the following coefficients for v  and v~  given in equations (14) and (19): 

0893.0~
00 == mm , 082.1~

11 == mm , 99.1~
22 == mm , 989.0~

00 == kk , 989.11 =k . 
In all the experiments it was considered a sampling period sT 5.0= ; the commutation threshold given in 

equation (21) was taken as 05.0=ε  and the initial values for the state errors dxxe 111 −= , dxxe 222 −= , 

de 003 θθ −=  were set to zero. 
The prescribed trajectory is composed by two straight lines and a circumference arc (see Figure 5). This 

trajectory contains singular points for which the control law w  is not well defined, allowing to evaluate the 
performance of the control scheme (21) by commutations between w  and w~ . The mobile robot completes the 
desired trajectory in seventy seconds, the first twenty through the horizontal line, the next thirty through the 
circumference arc and the last twenty through the vertical line. It is assumed that for each segment of the trajectory 
the starting and ending points have velocity equal to zero. 
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Fig. 5. Mobile robot following a prescribed trajectory 
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Fig. 6. Commutation between controls 
 

The position on the workspace of the mobile robot at different sampling instants (each 7s) is shown in Figure 5. 
The initial position of the robot at the beginning of the desired trajectory is accordingly with the considered initial 
errors. 

The commutation between the feedback laws w  and w~  is shown in Figure 6 where the alternation of the two 
control laws during the experiment is presented. 

The evolution of the input signals 1w  and 2w  is shown in Figure 7 where it is possible to see that the 
commutation between the feedback laws w  and w~  does not influence the control signals 1w  and 2w . Some peaks 
can be observed at the points of the trajectory where the straight lines and the circumference arc are joined. These 
peaks are produced by the coulomb friction of the motors because the robot velocity is zero at these points. 
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Fig. 7. Evolution of input signals 1w  and 2w  

 

 

Fig. 8. Voltage applied to the right )( RV  and )( LV  
 

 

Fig. 9. Evolution of the state errors 321  , , eee  
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The voltage applied to each motor of the wheels is shown in Figure 8. Some peaks can be observed at the same 
times that the ones on the controllers (see Figure 7) as expected. These voltage signals are provided by the PID 
blocks that control the velocity of the wheel motors. 

The evolution of the trajectory errors dxxe 111 −= , dxxe 222 −= , de 003 θθ −=  is shown in Figure 9. The 
trajectory errors 1e  and 2e  have three different behaviors corresponding to each part of the trajectory. The state error 

3e  (corresponding to the output error 22
~ee = ) is around zero as expected with small peaks at the trajectory joints. 

 
6 Conclusions 
 
The discrete-time model of a two-wheel differentially driven mobile robot is obtained by direct integration of its 
continuous-time model producing an exact discrete-time representation. This discrete-time model is used to design a 
control scheme that solves the path tracking problem. The output function commonly used to obtain a full linearizing 
control law for the same type of robot in continuous-time can not be longer applied for the discrete-time system. A 
new output function is proposed to obtain a full linearizing discrete-time controller. This new discrete-time controller 
has a singular manifold that does not allow to solve the path tracking problem for any desired trajectory. In order to 
obtain a globally defined control scheme, an alternative linearizing control law is designed with a different singular 
manifold. The second control law is enabled when the states are in a neighborhood of the singular manifold of the 
first one. The proposed commutation scheme that solves the path tracking problem is based on the commutation of 
these two discrete-time control laws. The performance of the proposed control strategy is evaluated by means of real 
time experiments carried out over a low cost laboratory prototype. The obtained results show good performance of 
the proposed control strategy and that the commutation between the considered feedbacks does not affect the 
evolution of the signals. The proposed control scheme guarantees that all internal signals remain bounded as is 
proved in this work. 
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