
Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

Analysis of Genetic Expression with Microarrays
using GPU Implemented Algorithms

Eduardo Romero-Vivas
1
, Fernando D. Von Borstel

1
, and Isaac Villa-Medina

1,2

1 Centro de Investigaciones Biológicas del Noroeste S.C.,
Instituto Politécnico Nacional, La Paz, B.C.S.,

Mexico

2 Instituto Tecnológico de La Paz, B.C.S.,
Mexico

fborstel04@cibnor.mx
http://cibnor.mx/es/investigacion/grupos-de-investigacion/grupo-de-bioinformatica/inicio

Abstract. DNA microarrays are used to
simultaneously analyze the expression level of
thousands of genes under multiple conditions;
however, massive amount of data is generated
making its analysis a challenge and an ideal
candidate for massive parallel processing. Among
the available technologies, the use of General
Purpose computation on Graphics Processing
Units (GPGPU) is an efficient cost-effective
alternative, compared to a Central Processing
Unit (CPU). This paper presents an
implementation of algorithms using Compute
Unified Device Architecture (CUDA) to determine
statistical significance in the evaluation of gene
expression levels for a microarray hybridization
experiment designed and carried out at the
Centro de Investigaciones Biológicas del
Noroeste S.C. (CIBNOR). The obtained results
are compared to traditional implementations.

Keywords. GPU, microarray, CUDA.

Análisis de expresión genética en
microarreglos utilizando algoritmos

implementados en GPU

Resumen. Los microarreglos de ADN permiten
analizar simultáneamente el nivel de expresión de
miles de genes ante condiciones múltiples; sin
embargo, la gran cantidad de datos generados
representa un reto para su análisis y los hace un
candidato ideal para el procesamiento masivo
paralelo. Dentro de las tecnologías disponibles, el
uso de cómputo en tarjetas gráficas de propósito

general (GPGPU), es una alternativa eficiente, en
términos de costo-efectividad, comparada con
respecto a las unidades de procesamiento central
(CPU). Este artículo presenta la implementación
de algoritmos utilizando la arquitectura de
cómputo unificada (CUDA), para determinar la
significancia estadística en la evaluación de
niveles de expresión génica para un experimento
de hibridación de microarreglos, diseñado y
llevado a cabo en el Centro de Investigaciones
Biológicas del Noroeste, S.C. (CIBNOR). Los
resultados obtenidos se comparan con respecto a
las implementaciones tradicionales.

Palabras clave. GPU, microarreglos, CUDA.

1 Introduction

Recent technological advances in molecular
biology and genomics have triggered an
explosion in the amount of information generated;
prominent examples of this growth can be easily
observed in public databases of DNA sequences
such as GenBank or UniProt where information
doubles approximately every 6 months.
Technologies such as next-generation
sequencing or the use of a microarray to analyze
gene expression allow large scale analyses to
cover a large proportion of the genome of an
organism, in contrast to only a few years ago,
when techniques allowed genes to be analyzed
only separately. For example, DNA microarrays,
for the task of analyzing simultaneously the
expression level of thousands of genes with

http://cibnor.mx/es/investigacion/grupos-de-investigacion/grupo-de-bioinformatica/inicio

358 Eduardo Romero-Vivas, Fernando D. Von Borstel, and Isaac Villa-Medina

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

multiple conditions, has revolutionized molecular
biology impacting academia and fields in
medicine and pharmaceuticals, biotech,
agrochemical and food industries.

Today the costs of analyses of this
information, in terms of economics, time, and
resources, tend to be higher than its generation
[1]. This growth in the amount of information
generated in each experiment requires the use of
new analysis technologies that go hand in hand
with the data dimension. Bioinformatics,
understood as an application of mathematics,
statistics and information technologies for the
analysis of genomic and proteomic signaling, has
become the accepted solution to this challenge so
far.

One of the main features of a microarray is a
large volume of data generated; therefore, one of
the greatest challenges in this area involves
handling and interpretation of these data. The
size of generated information and its analysis with
microarrays make them ideal candidates for
parallel processing architectures taking
advantage of many cores and multi-cores that are
revolutionizing the high-performance computing.
However, the use of clusters and supercomputers
has remained prerogative of laboratories and
universities with large resources. Meanwhile, the
development of many-core architectures such as
Graphics Processing Units (GPU), and
specifically the Architecture of Unified Computing
Devices (CUDA), proposed by NVIDIA in 2006 [2,
4], allows researchers to design bioinformatics
analysis algorithms with high-performance low-
cost devices but with high computing power.

There are only a few studies using GPU's for
microarray analyses. For example, an algorithm
based on GPU's for the classification of genes
expressed in a microarray has been developed
recently [5]. The present paper reports the
implementation of algorithms in CUDA to
determine statistical significance in the evaluation
of gene expression levels for a microarray
hybridization experiment designed at CIBNOR
and compares the obtained results with traditional
implementations.

2 Materials and Methods

2.1 Microarrays

DNA microarrays are devices that can measure
the expression levels of thousands of genes in
parallel. A microarray is a crystalline solid surface,
usually a microscopic slide, which adheres
specific DNA molecules for the purpose of
detecting the presence and abundance of
complementary molecules (nucleic acids) marked
in a biological sample (via Watson-Crick
hybridization duplex formation). In most
experiments, microarray labeled nucleic acids
derived from messenger RNA (mRNA) of a tissue
sample of an organism are involved in the
generation (coding) process of a protein
microarray and therefore the degree of
expression of a gene can be measured by
quantifying the relative abundance of molecules
attached [6].

Fig. 1 shows the most commonly used
experimental design for microarrays. The first
step in the process is to extract genetic material
from tissues from two different biological
conditions, such as an abnormal condition and a
normal control. Then the samples are labeled with
different fluorophores; red for the sample tissue
(with Cy5) and green for the control tissue (with
Cy3), and hybridized on the microarray slide.
These markers are used to identify the DNAs
complementary to nucleic acids of interest in the
sample by emitting light when illuminated by a
laser in red and green, respectively. Both images
are combined to obtain a color image, where the
overexpressed genes acquire shades of red,
inhibited genes are in green shades, and genes
that have remained in the same condition in both
samples are shown in yellow. Afterwards, an
estimate of signal intensity in each case was
carried out whereby corrections were made to
normalize and adjust the signal to the dark
background.

The over-expression or under- expression of a
given gene was represented as a fraction as
defined in Equation 1. In this formula, genes that
are over-expressed by a factor of 2 give a ratio of
2, whereas under-expressed genes give values of
0.5. Hence, it is preferable to use a logarithmic
transformation with base 2, so that a doubly

Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms 359

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

overexpressed gene will generate a value of 1,
whereas the value of an under-expressed gene
will be -1, making interpretation of results more
intuitive due to the natural symmetry of biological
phenomena [6].

 (1)

2.2 Statistical Analysis of Differential
Expression

Each gene spot gives a measure of expression
that compares two samples for a given
experiment. However, in order to represent the
variability among a population of organisms, it is
required to have repetitions of the experiment for
different individuals to identify genes that are
expressed differentially in a consistent way.
Setting a threshold of expression and averaging
the readings for the total number of organisms is
not appropriate as it does not reflect the extent to
which the expression levels vary for each
individual, or takes into account the size of the
sample, i.e., the number of agencies involved in
the study. Therefore, a hypothesis test shall be
used to determine whether a gene is differentially
expressed. The null hypothesis for this
experiment is that there is no difference in
expression for both tissues. If this hypothesis
were true, variability in the data would only

represent the variability between individuals or a
measurement error. The selection of differentially
expressed genes should not be based on their
proportion defined in Equation 1 but on a
predefined value p (p = 0.001), i.e., the probability
of observing a degree of change randomly.

For the purpose of this study, the t-paired test
was selected and calculated as shown in
Equation 2.

 ̅

√

(2)

where ̅ is the average of the ratio defined in
Equation 1, S is the standard deviation calculated
with Equation 3, and n is the number of biological
replicates of the experiment.

 √
∑ ̅

 (3)

The p value is calculated from the statistical
comparison with a t-distribution with an
appropriate number of degrees of freedom, in this
case the number of replicates minus one.

2.3 Design of the Microarray

As part of SAGARPA-CONACYT 2009-II project
entitled "FUNCTIONAL GENOMICS
APPLICATION AS A STRATEGY FOR
IMPROVEMENT OF THE SHRIMP INDUSTRY" a
microarray was designed specifically for shrimp
from unique sequences from public databases
(GenBank) and subtractive libraries generated in
the Biological Research Center of the Northwest,
S. C. (CIBNOR). The selection of sequences, pre-
processing, assembly and design of probes was
carried out in CIBNOR, while the physical
impression of the microarray was done by the
company Biodiscovery, LLC (dba MYcroarray).
Experimental challenges to various biological
conditions were carried out at the CIBNOR, while
the process of microarray hybridization and
scanning was performed on DNA Microarray Unit
at the Institute of Cellular Physiology, UNAM.
Fig.2 shows an example of the microarray image
generated for a given experiment and a zoom
view. The Microarray image displayed is the result

Fig. 1. Experimental design and use of microarrays

mRNAmRNA

cDNA
(Red Fluorescence)

cDNA
(Green Fluorescence)

A Condition B Condition

Getting RNA

Inverse
Transcriptase
Labeling

Hybridization

Microarray

A B AB

360 Eduardo Romero-Vivas, Fernando D. Von Borstel, and Isaac Villa-Medina

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

of combining the images of the slide of the
challenge condition and the control slide,
containing 61.440 genes arranged in 160 rows
and 384 columns divided into two blocks. Each
point represents a unique sequence of 70 bases,

representative for the gene of interest. In the
zoom view of the section, it is shown that not all
gene spots in the microarray have the same
intensity.

The SPOTFINDER program was used for
image analysis of microarrays to determine the
level of expression of each gene from the set of
points that form the image, which generates a
table of maximum, minimum, and average
intensity and background.

2.4 Experimental Design

In order to evaluate the use of parallel processing
algorithms for the analysis of microarray gene
expression, we developed the t-paired parametric
analysis on the GPU cards with graphics
processing routines developed in CUDA. From
hybridization data of a microarray of 61.440
genes, several subsets of data were generated by
varying the number of genes selected for analysis
and the number of replicates of the experiment.
The computer equipment, in which the project
was developed, has the following features:
Processor Intel Core2Duo E8400 at 3.00 GHz
with 2.0 GB RAM, 100 GB hard drive, operating
system Fedora 12, with a GeForce 9800 GT (112
CUDA cores, CUDA computing capability 1.1 with
1024 MB dedicated memory and 256-bit memory
interface).

2.5 Implementing CUDA

Fig. 3 shows a flowchart of operations and
functions in CUDA to perform the t-paired test, as
defined in Equation 2.

Fig. 2. Microarray image and zoom view

Fig. 3. Flow diagram of the t-paired test calculation in

CUDA
Fig. 4. Mapping of the data matrix to global memory

Average Calculation

M(i,j,k)

Standard Deviation Calculation

sumatoria(M);

divisionesc(n);

restapow2(M);

divisionesc(n-1);

raiz();

t-Student Calculation

divisionesc(n1/2);

divisionmat();

t-student(i,j,k)

61,440 Genes

61,440 Genes

61,440 Genes 1
0

 R
ep

licas

384 Rows

160 Col.

61,440 Genes

...

FUNCTIONS:

Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms 361

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

Fig. 5. Code of the described functions

362 Eduardo Romero-Vivas, Fernando D. Von Borstel, and Isaac Villa-Medina

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

The three-dimensional matrix consisting of the
microarray data from global memory was mapped
into a two dimensional array, as illustrated in
Fig. 4.

The functions required for the computation are
described below (see also Fig. 5).

Step 1. Get the average of the data.

To perform this operation, it is required to
apply an algorithm that allows adding the
elements of a row and subsequently dividing by
the number of columns, thus obtaining the
average. The required functions are:

sumatoria(). Sum by Row. This algorithm
receives an array of data to be processed and a
vector as input parameters. The algorithm
calculates the sum of all columns in each row of
the array of data and stores the result in the
vector. Each thread of each block is responsible
for loading an element of the array in the shared
buffer of each block, and the operations are
performed using this buffer.

divisionesc(). Division by a Scalar. This
algorithm divides a vector by a scalar value, both
are received as input parameters. Each thread
loads a block of each vector element in the buffer
and subsequently performs the operation.

promedio(). Average. This algorithm is aided
by the previous algorithms to obtain the average
of each row.

Step 2. Obtain the standard deviation.

It is required to obtain the sum of the squares
of the differences of the samples and the
average. To do this we used the following
algorithms:

restapow2(). Square Difference. This algorithm
receives an array and two vectors as input
parameters. The algorithm subtracts from the
elements of each row the corresponding value in
the vector. The results are squared and stored.

raiz(). Square Root. This algorithm computes
the square root of each vector element.

Step 3. Calculate the value of t.

To complete the calculation, the following
algorithm divides two vectors element by element.

divisionmat(). Vector Division. This algorithm
performs element-by-element division of two
vectors and stores the result in a third vector.

3 Results

We compared the results in computation time for
GPU implementation against the time obtained in
a serial implementation using CPU, varying the
number of genes involved in the analysis and the
number of replicates in each experiment.

Fig. 6 and 7 show the processing time for the
algorithm using a CPU and GPU, with different
numbers of genes analyzed and different
numbers of replicas.

4 Discussion

Fig. 6 shows how the runtime of the t-test varies
with respect to the number of genes involved in
each replica and to the number of replicas n. For
a given number of replicas, there is a linear
increase with increasing the number of genes

Fig. 6. Computation time using the CPU

Fig. 7. Computation time using the GPU

Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms 363

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

involved. For a greater number of replicates, the
slope becomes larger as the number of values
used for each calculation grows. This behavior
corresponds to what one would expect from a
serial implementation developed using a CPU.
Fig. 7 shows the corresponding times for the
same calculation but now implemented on GPU.
One can observe that the processing times
remain approximately equal, in the order of one
hundred thousandths of a second, regardless of
the increase in the number of genes or the
number of replicas. Fig. 8 shows the advantage of
using calculation in parallel on the serial
implementation. The process can be performed
from 5 up to 30 times faster depending on the
number of genes involved in comparison with the
implementation using CPU.

5 Conclusions

Despite the GPU computing time being from 5 up
to 30 times faster, the order of time spent on CPU
and GPU, at first glance, does not justify the use
of a parallel implementation, since both are made
in fractions of a second. However, we must take
into account that only the most basic statistical
parametric test was implemented: a t-test in a
single study with paired data. Microarray
technology, however, is used in more complex
experiments, where there may be multiple groups
in which more than one condition is analyzed.
Such experiments require more sophisticated
analysis known as ANOVA and generalized linear

models. Both techniques are similar to the t-test in
that they require that the variability in the data
follows a normal distribution. Bootstrap analysis
can be applied to both techniques to generate the
data distributions under no Gaussian
assumptions. For that, new sets of data of the
same dimensions are generated from the original
data, as it is common to produce millions of these
sets to generate the distributions [6]. In these
cases, the advantage in speed of analysis
presented in GPU implementations is fully
justified.

Acknowledgements

The authors acknowledge the support of the
project SAGARPA-CONACYT 2009-II entitled
"Functional Genomics application as a strategy
for improvement of the shrimp industry”. This
research was made in the facilities of CIBNOR
Bioinformatics Laboratory.

References

1. Sboner, A., Mu, X.J., Greenbaum, D., Auerbach,
R.K., & Gerstein, M.B. (2011). The real cost of
sequencing: higher than you think!. Genome
Biology, 12, 125–135. http://genomebiology.com/
2011/12/8/125.

2. NVIDIA (2013). Retrieved from
http://developer.nvidia.com/object/cuda.html.

3. Sanders, J. & Kandrot, E. (2010). CUDA by
example: An introduction to General-Purpose GPU
Programming. Upper Saddle River, NJ: Addison-
Wesley.

4. Kirk D.B. & Hwu, W.W. (2010). Programming
massively parallel processors. A hands-on
approach. Burlington, MA: Morgan Kaufmann
Publishers.

5. Benso, A., Di Carlo, S., Politano G., & Savino,
A. (2010). GPU acceleration for statistical gene

classification, 2010 IEEE International Conference
on Automation Quality and Testing Robotics
(AQTR 2010), 2, 1–6, Cluj-Napoca Romania.

6. Stekel, D. (2003). Microarray bioinformatics.

Cambridge; New York: Cambridge University
Press.

Fig. 8. Computation time ratio CPU / GPU

http://genomebiology.com/2011/12/8/125
http://genomebiology.com/2011/12/8/125
http://developer.nvidia.com/object/cuda.html

364 Eduardo Romero-Vivas, Fernando D. Von Borstel, and Isaac Villa-Medina

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364
ISSN 1405-5546

Eduardo Romero Vivas received
his Ph.D. from the University of
Southampton, UK. Researcher at
Centro de Investigaciones
Biologicas del Noroeste (CIBNOR),
Mexico, in the Bioinformatics

Group, he is also a member of the Signal
Processing, and Engineering in Medicine and
Biology IEEE Societies.

Fernando D. Von Borstel received
his Ph.D. in Artificial Intelligence from
Instituto Tecnológico y de Estudios
Superiores de Monterrey, México.
He works as a researcher at Centro

de Investigaciones Biológicas del Noroeste,

México (CIBNOR), and he is member of the
Bioinformatics Group.

Isaac Villa Medina received his
M.Sc. from Instituto Tecnológico de
La Paz, Mexico (ITLP). Currently
he holds an academic position at
ITLP.

Article received on 14/02/2013; accepted on 22/07/2013.

