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a b s t r a c t

This paper presents a trajectory-tracking approach for verifying soundness of workflow/Petri nets repre-
sented by a decision-process Petri net. Well-formed business processes correspond to sound workflow
nets. The advantage of this approach is its ability to represent the dynamic behavior of the business pro-
cess. We show that the problem of finding an optimum trajectory for validation of well-formed business
processes is solvable. To prove our statement we use the Lyapunov stability theory to tackle the sound-
ness verification problem for decision-process Petri nets. As a result, applying Lyapunov theory, the well-
formed verification (soundness) property is solved showing that the workflow net representation using
decision process Petri nets is uniformly practically stable. It is important to note that in a complexity-
theoretic sense checking the soundness property is computationally tractable, we calculate the
computational complexity for solving the problem. We show the connection between workflow nets
and partially ordered decision-process Petri net used for business process representation and analysis.
Our computational experiment of supply chains demonstrate the viability of the modeling and solution
approaches for solving computer science problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Brief review

Companies’ success depends on the ability to evolve with the
market, not just respond to it. In response to the competitive pres-
sures applied by the customer demands and the constant changes
on the conditions of the environment, many companies are
re-thinking the way they do business (Hammer, 1990). The ambi-
ent turbulence has created a need for dynamic business processes
and companies are looking for models that can evolve and adapt
efficiently business processes to the changing conditions and the
changing business strategies. As a consequence, research interest
in business process modeling has increased dramatically over the
past decades.

Organizations needs very complicated configuration and
arrangements, it has been claimed that carefully developed models
are necessary for describing, analyzing and/or enacting the under-
lying business processes (van Hee, Sidorova, & van der Werf, 2013).
The most critical point in the development of a business process
depends largely on the ability to choose a conceptual model to

represent the problem domain in a coherent and natural fashion
and, ensure validation ability (van der Aalst, 2013). Validation of
well-formed business process models is very important in the con-
text of business process re-engineering (BPR), because the task of
BPR is to evaluate the current processes with the goal of radically
revising them, in order to accommodate their improvement to
new organizational needs or goals. Formal models that capture
and organize knowledge about a business environment can facili-
tate solutions to this problem (Fahland & van der Aalst, 2012). Petri
nets are used for business process representation, taking advantage
of the well-known properties of this approach, namely, formal
semantic, graphical display and wide acceptance by practitioners
of workflow nets (Clempner & Retchkiman, 2005; Chen, Ha, &
Zhang, 2013; Fahland & van der Aalst, 2012; van Hee et al., 2013;
Li & Iijima, 2007; van der Aalst, 2011, 2013).

Loosely speaking, a workflow net is a Petri net with an initial
place and a distinguished final place called sink. Well-formed busi-
ness processes correspond to sound workflow nets (van der Aalst,
2007). Petri nets have been extensively studied since the mid nine-
ties, as an abstraction of the workflow, to check the soundness
property (van der Aalst, 1998, 2007, 2011; Bashkin & Lomazova,
2013; Barkaoui & Petrucci, 1998; Barkaoui & Ayed, 2011; Basu &
Blanning, 2000; Basu & Kumar, 2002; Bi & Zhao, 2004; Clempner
& Retchkiman, 2005; Clempner, 2014; Dehnert & Rittgen, 2001;

http://dx.doi.org/10.1016/j.eswa.2014.03.005
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Tel.: +52 5548775074.
E-mail address: julio@clempner.name

Expert Systems with Applications 41 (2014) 5030–5040

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa



Author's personal copy

van Dongen, van der Aalst, & Verbeek, 2005; Fu, Bultan, & Su, 2002,
2004; van Hee, Serebrenik, Sidorova, & Voorhoeve, 2005, 2004;
Karamanolis, Giannakopoulou, Magee, & Wheater, 2000; Kindler,
Martens, & Reisig, 2000; Liu, Du, & Yan, 2012; Liu, 2013; Lohmann,
Massuthe, Stahl, & Weinberg, 2006; Martens, 2005a, 2005b;
Mendling, Neumann, & van der Aalst, 2007; Sadiq & Orlowska,
2000; Salimifard & Wright, 2001; Vanhatalo, Völzer, & Leymann,
2007; Verbeek, Basten, & van der Aalst, 2001; Wombacher, 2006;
Wynn, Edmond, van der Aalst, & ter Hofstede, 2005, 2006). In
theses studies authors have proposed alternative notions of sound-
ness and more sophisticated language, making these notions
undecidable.

From a practical point of view, workflow nets became a stan-
dard way to analyze workflows. They are used to guarantee the
soundness property. A workflow process determines a set of activ-
ities and the specific order they are to be performed to reach a
common goal. Such processes apply in different application
domains such as: manufacturing, finance, marketing, etc. Unfortu-
nately, current commercial systems do not incorporate verification
techniques of workflows (van der Aalst, 2011). Therefore, the need
for an analytical method to verify the correctness of workflow
specification is becoming a fundamental task. Designers have the
propensity to make many errors in process modeling. For example,
the report in Mendling et al. (2007) and van der Aalst (2011), based
on more than 2000 process models, demonstrated that more than
10 percent of these models have errors. Moreover, many errors
were discovered using workflow nets in the SAP reference model
(Mendling et al., 2006, Mendling, Verbeek, van Dongen, van der
Aalst, & Neumann, 2008; van der Aalst, 2011), and more than 20
percent have mistakes. Fixing such mistakes can be a process that
implies time and high labor costs.

Therefore, a challenging problem for Petri nets is to provide
analytical methods able to develop useful procedures for showing
the soundness of the workflow nets. To our knowledge, there are
only two analytical methods reported in the literature. Barkaoui
and Ayed (2011) show the ability of structure theory of Petri nets
to conduct a uniform verification for large subclasses of parameter-
ized workflow nets modeling control flow patterns associated with
complex synchronization mechanisms, routing constructs and re-
source allocation constraints. Clempner (2014) solves the classical
soundness property for workflow nets from a structural point of
view applying the Lyapunov theory of stability, showing that a fi-
nite and nonblocking workflow net satisfies the sound property if
and only if its corresponding PN is stable, i.e., given the incidence
matrix A of the corresponding Petri Net there exists a U strictly po-
sitive vector such that AU 6 0. In this work, we present a complete
different method from a trajectory-tracking approach, showing
that a finite and nonblocking Decision Process Petri net (DPPN) val-
idate a well-formed business process if and only if its correspond-
ing DPPN is uniformly practically stable, i.e. the Petri net is tracked
forward from its source place and a natural form of termination is
ensured by a sink.

DPPN allows a dynamical model representation to be expressed
in terms of difference equations. The advantage of this approach is
its ability to represent the dynamic behavior of the business pro-
cess. A decision-process Petri net model of a workflow net gives
a specific and unambiguous description of the behavior of the busi-
ness process. Its solid mathematical foundation has resulted in dif-
ferent analysis methods and tools. In spite of the formal
background, DPPN models are easy to understand. DPPN corre-
sponds to a series of strategies which guide the selection of actions
that lead to a final (decision) state. By taking into account different
possible courses of action, the overall utility of each strategy is con-
sidered. The utility function of each business process is represented
by a Lyapunov-like function. Conditions of equilibrium and stabil-
ity for the DPPN are analyzed.

In this contribution DPPN theory is used as an abstraction of the
workflow to check the soundness property. We present an analyt-
ical method and its theoretical limits for workflow verification:

� We use the Lyapunov stability theory to tackle the sound-
ness verification problem for decision-process Petri nets:
the well-formed verification (soundness) property is solved
showing that the workflow net representation using deci-
sion-process Petri nets is uniformly practically stable.

� We show that the problem of finding an optimum trajectory
for validation of well-formed business processes is solvable:
given a workflow net the computation can always be com-
pleted, that is, it is possible to show that a process initiated
in the source place and regardless of how the computation
proceeds at the beginning, the DPPN has always a trajectory
able to reach the sink place of the Petri net.

� We demonstrate that checking the soundness property is
computationally tractable, calculating the computational
complexity of finding an optimum trajectory for solving the
problem.

� We prove the connection between workflow nets and par-
tially ordered decision-process Petri nets used for business
process representation and analysis.

� We validate the proposed method successfully, by a numer-
ical example related with supply chains

1.2. Main results

This paper presents a trajectory-tracking approach for verifying
soundness of workflow/Petri nets represented by a DPPN
(Clempner, 2010). Well-formed business processes correspond to
sound workflow nets (van der Aalst, 2011, 2013). The advantage
of this approach is its ability to represent the dynamic behavior
of the business process. It is important to note that in a complex-
ity-theoretic sense checking the soundness property is
computationally tractable and the use of a Lyapunov-like function
U guarantee a convergence in a time step bounded by OðU0=�Þ
where � ¼minf�ig equals the length of the shortest-path. The
results are summarized as follows:

Theorem. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a finite and non-
blocking workflow net. Then, the DPPN satisfies the soundness
property iff Uðpiþ1Þ � UðpiÞ 6 0 , i.e. it is uniformly practically stable.

Theorem. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a finite an nonblock-
ing workflow net. The problem of finding an optimum trajectory for
validation of soundness of a workflow net is solvable.

Theorem. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a Decision Process
Petri net and let ðp0; p1 . . . ; pnÞ be a realized trajectory which con-
verges to p� such that 9�i: Uiþ1 � Uij j > �i ðwith �i > 0Þ. Let
� ¼minf�ig, then an optimum point p� is reached in a time step
bounded by OðU0=�Þ.

1.3. Organization of the paper

The rest of the paper is structured in the following manner. The
next section presents the necessary mathematical background and
terminology on Petri nets needed to understand the rest of the
paper. In Section 3, we motivate the need for the soundness work-
flow verification technique, the goal is not to formally present the
method but to provide a high-level overview of how it works. We
present the basic notion of a workflow net and soundness followed
by the definition of soundness. We also describe and exemplify the
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finite and nonblocking conditions established for the Petri net. Sec-
tion 4 describes the basic formalism of DPPN. Section 5 outlines the
core content of the paper presenting the basic notions of stability
and the main result of the paper about the soundness property
by trajectory. Here we present a formal approach of how the
soundness property can be calculated over a finite and nonblocking
Petri nets that represents a workflow net. We also make emphasis
on the reasons which are why the finite and nonblocking condi-
tions can not be relaxed. Section 6 describes the connection be-
tween workflow nets and partially ordered transition DPPN. In
Section 7 we present application examples which pragmatically
illustrates the application of the method. Finally, in Section 8 some
concluding remarks and future work are outlined.

2. Preliminaries

In this section, we present some well-established definitions
and properties which will be used later.

Notation. Let N ¼ 0;1;2; . . .f g;Nn0
þ ¼ fn0;n0 þ 1; . . . ; n0 þ k; . . .g;n0

P 0; R ¼ ð�1;1Þ and Rþ ¼ ½0;1Þ.

Consider systems of first ordinary difference equations given by

xðnþ 1Þ ¼ f ½n; xðnÞ�; xðnoÞ ¼ x0;n 2 Nn0þ ð1Þ

where n 2 Nn0
þ ; xðnÞ 2 Rd and f : Nn0

þ � Rd ! Rd is continuous in
xðnÞ.

Definition 1. The n-vector valued function Uðn;n0; x0Þ is said to be
a solution of (1) if Uðn0;n0; x0Þ ¼ x0 and Uðnþ 1;n0; x0Þ ¼ f ðn;
Uðn;n0; x0ÞÞ for all n 2 N

n0
þ .

Definition 2. The system (1) is said to be

(i) Practically stable, if given ðk;AÞ with 0 < k < A, then

x0j j < k) xðn;n0; x0Þj j < A;8n 2 Nn0þ; n0 P 0;

(ii) Uniformly practically stable, if it is practically stable for
every n0 P 0.

The following class of function is defined.

Definition 3. A continuous function a : ½0;1Þ ! ½0;1Þ is said to
belong to class K if að0Þ ¼ 0 and it is strictly increasing.

2.1. Methods for practical stability

Consider (Lakshmikantham, Leela, & Martynyuk, 1990, 1991)
the vector function vðn; xðnÞÞ;v : Nn0

þ � Rd ! Rp
þ and define the

variation of v relative to (1) by

Dv ¼ vðnþ 1; xðnþ 1ÞÞ � vðn; xðnÞÞ ð2Þ

Then, the following result concerns the practical stability of (1).

Theorem 4. Let v : N
n0
þ � Rd ! R

p
þ be a continuous function in x,

define the function v0ðn; xðnÞÞ ¼
Pp

i¼1v iðn; xðnÞÞ such that it satisfies
the estimates.

bð xj jÞ 6 v0 n; x nð Þð Þ 6 að xj jÞ for a; b 2 K and

Dvðn; xðnÞÞ 6 wðn;vðn; xðnÞÞÞ

for n 2 Nn0
þ ; xðnÞ 2 Rd, where w : Nn0

þ � Rp
þ ! Rp is a continuous

function in the second argument.

Assume that: gðn; eÞ , eþwðn; eÞ is nondecreasing in e;0 <
k < J are given and finally that aðkÞ < bðAÞ is satisfied. Then, the
practical stability properties of

eðnþ 1Þ ¼ gðn; eðnÞÞ; eðn0Þ ¼ e0 P 0: ð3Þ

imply the corresponding practical stability properties of the system
(1).

Corollary 5. In Theorem 4

1. If wðn; eÞ � 0 we obtain uniform practical stability of (1).
2. If wðn; eÞ ¼ �cðeÞ, for c 2 K, we obtain uniform practical

asymptotic stability of (1).

2.2. Petri nets

A (marked) Petri net is a 5-tuple PN ¼ ðP;Q ; F;W;M0Þ where:
P ¼ fp1; p2; . . . ; pmg is a finite set of places, Q ¼ fq1; q2; . . . ; qng is
a finite set of transitions with P \ Q ¼ ; and, P and Q are non-
empty such that P [ Q – ;; F # ðP � QÞ [ ðQ � PÞ is a set of arcs
and determines a flow relation, W : F ! N1

þ is a weight function,
M0 : P ! N is the initial marking. We adopt the standard rules
about representing nets as directed graphs, namely places are
represented as circles, transitions as rectangles, the flow rela-
tion by arcs, and markings are shown by placing tokens within
circles. At any time a place contains zero or more tokens,
drawn as black dots (Murata, 1989).

For each transition or place z we will denote �z :¼ y 2f
P [ Q jðy; zÞ 2 Fg, the preset of z. Analogously we will denote
z� ¼ y 2 P [ Q jðz; yÞ 2 Ff g the postset of z. A source place is a place
p0 2 P such that �p0 ¼ ; (there are no incoming arcs into place p0).
A sink place is a place p 2 P such p� ¼ ; (there are no outgoing arcs
from p).

A Petri net structure without any specific initial marking is
denoted by PN. A Petri net with the given initial marking is denoted
by ðPN;M0Þ. Notice that if Wðp; qÞ ¼ a or Wðq; pÞ ¼ b for a; b 2 N1

þ
then, this is often represented graphically by a, (b) arcs from p to
q (q to p) each with no numeric label.

Let MkðpiÞ denote the marking (i.e., the number of tokens) at

place pi 2 P at time k and let Mk ¼ ½Mkðp1Þ; . . . ;MkðpmÞ�
T denote

the marking (state) of PN at time k. A transition qj 2 Q is said to
be enabled at time k if MkðpiÞP Wðpi; qjÞ for all pi 2 P such that
ðpi;qjÞ 2 F (8pi 2 �qj). It is assumed that at each time k there exists
at least one transition to fire. If a transition is enabled then, it can
fire. If an enabled transition qj 2 Q fires at time k then, the next

marking Mkþ1, written as Mk�!
qj

Mkþ1, for pi 2 P is given by

Mkþ1ðpiÞ ¼ MkðpiÞ þWðqj; piÞ �Wðpi; qjÞ: ð4Þ

Let A ¼ ½aij� denote an n�m matrix of integers, called the
incidence matrix, where aij ¼ aþij � a�ij with aþij ¼Wðqi; pjÞ
and a�ij ¼Wðpj; qiÞ. Let uk 2 f0;1gn denote a firing vectorwhere if
qj 2 Q is fired then, its corresponding firing vector is
uk ¼ ½0; . . . ;0;1;0; . . . ;0�T with the one in the jth position in the
vector and zeros everywhere else. The matrix equation (nonlinear
difference equation) describing the dynamical behavior
represented by a Petri net is:

Mkþ1 ¼ Mk þ AT uk ð5Þ

where if at step k; a�ij < MkðpjÞ for all pj 2 P then, qi 2 Q is enabled
and if this qi 2 Q fires then, its corresponding firing vector uk is
utilized in the difference equation (5) to generate the next step.
Notice that if M0 can be reached from some other marking M and,
if we fire some sequence of d transitions with corresponding firing
vectors u0; u1; . . . ;ud�1 we obtain that
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M0 ¼ M þ AT u;u ¼
Xd�1

k¼0

uk: ð6Þ

Given r ¼ q1; q2; . . . ; qn 2 Q � (i.e. qi 2 Q), where Q � is the reflex-
ive transitive closure of Q, we write M0�!

r
Mn if there exists mark-

ings M1; . . . ;Mn�1 such that M0�!
q1 M1�!

q2 M2 . . . ;Mn�1�!
qn Mn. Then,

we say that Mn is reachable. The set of reachable markings of PN is
denoted by RðPN;M0Þ, called the reachability set, and is defined by

RðPN;M0Þ ¼ M 9r 2 Q �j M0�!
r

Mk : 0 6 k 6 n
n o

A Petri net PN is s-bounded if MðpÞ 6 s for every reachable marking
M and every place p of PN, and bounded if it is s-bounded for some
s P 0. A 1-bounded net is also called safe.

A Petri net is strongly connected if for every two nodes n1 and
n2;n1;n2 2 P [ Q , there exists a directed path leading from n1 to n2.

A Petri net PN is a free-choice Petri net if for every two transi-
tions qi; qj 2 Q ; �qi \ �qj – ; implies �qi ¼ �qj.

Let ðNn0
þ ; dÞ be a metric space where d : Nn0

þ �Nn0
þ ! Rþ is

defined by

dðM1;M2Þ ¼
Xm

i¼1

fijM1ðpiÞ �M2ðpiÞj;

fi > 0; i ¼ 1; . . . ;m:

ð7Þ

3. Motivation

A workflow net is a Petri net with two distinguished input and
output places without input and output transitions respectively,
and such that the addition of a reset transition leading back from
the output to the input place makes the net strongly connected.
Formally,

Definition 6. A Petri net PN ¼ ðP;Q ; F;W;MÞ is a workflow net if:

� there exist places i; o 2 P such that �i ¼ ; ¼ o�;MðpÞ ¼ 1 for
p ¼ i and MðpÞ ¼ 0 otherwise

� every node is in a path from i to o, i.e. for any
x 2 P [ Q : ði; xÞ 2 F� and ðx; oÞ 2 F� where F� is the reflex-
ive-transitive closure of relation F.

Then, the resulting Petri net is strongly connected.
A workflow net PN is sound if it is live and bounded (van der

Aalst, 1998, 2011).

Definition 7. Let PN be a workflow net. PN is sound if the following
three requirements are satisfied:

1. For every state M reachable from state Mi, there exists a ring
sequence leading from state M to state Mo:

for all M : ðMi!
r

MÞ ) ðM!r MoÞ

2. State Mo is the only state reachable from state Mi with at least
one token in place Mo:

for all M : ðMi!
r

M ^M P 0Þ ) ðM ¼ MoÞ

3. There are no dead transitions in PN:

for all q 2 Q ; there exist M;M0 : ðMi!
r

M!q M0Þ

The first requirement states that starting from the initial state
Mi, it is always possible to reach the state with one token in place
o. The second requirement states that the moment a token is put in
place o, all the other places should be empty. The third require-
ment has been added to avoid activities and conditions which do
not contribute to the processing of cases. Nevertheless it is
looked-for soundness of workflow nets, many of the real models
with conditional behavior will not satisfy third requirement: ‘‘no
dead transitions’’ in PN. The problem is usually produced by the
operations needed to be modeled and not necessarily by the struc-
ture of the net. In this sense, a workflow satisfies the soundness
property if given its corresponding Petri net (finite and nonblock-
ing) which is tracked forward, if one starts with a single token in
the source and regardless of how the computation proceeds at
start, it is always possible to reach a state with the token in the sink
place.

Definition 8. Let PN be a workflow net. PN is sound if the following
two requirements are satisfied:

1. For every state M reachable from state Mi, there exists a firing
sequence leading from state M to state Mo:

for all M : ðMi!
r

MÞ ) ðM!r MoÞ

2. State MðoÞ is the only state reachable from state Mi with at least
one token in place Mo:

for all M : ðMi!
r

M ^M P 0Þ ) ðM ¼ MoÞ

The soundness notions discussed so far consider all possible
execution paths and if for one path the desired. The PN represented
in Fig. 1 presents a cycle. It has the property of stability, but the end
state is not reachable, so the net is not sound.

The PN represented in Fig. 2 represents a block. It has the prop-
erty of stability. But, the sink of the PN never can be reached.

Fig. 1. Petri net cycle.

J. Clempner / Expert Systems with Applications 41 (2014) 5030–5040 5033
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Soundness requires that a workflow net can always terminate
in the sink of the PN. Therefore, if we want to use stability as
theoretic notion for finding soundness of a workflow net, it will
be required to impose two conditions over the corresponding PN:
finite (no cycles) and nonblocking.

4. Decision processes Petri nets

In this section, we present some definitions and properties in
DPPN (Clempner, 2010) which will be used later.

Definition 9. A Decision Process Petri net is a 7-tuple DPPN ¼
fP;Q ; F;W;M0;p;Ug where

� P ¼ fp0; p1; p2; . . . ; pmg is a finite set of places,
� Q ¼ fq1; q2; . . . ; qng is a finite set of transitions,
� F # I [ O is a set of arcs where I # ðP � QÞ and O # ðQ � PÞ

such that P \ Q ¼£ and P [ Q – £,
� W : F ! Nþ1 is a weight function,
� M0 : P ! N is the initial marking,
� p : I! Rþ is a routing policy representing the probability of

choosing a particular transition, such that for each
p 2 P;

P
qj :ðp;qjÞ2I

pððp; qjÞÞ ¼ 1,

� U : P !Rþ is a utility function.

In Figs. 3 and 4 we have represented partial routing policies p
that generates a transition from state p1 to state p2 where
p1; p2 2 P:

� case 1. In Fig. 3 the probability that q1 generates a transition
from state p1 to p2 is 1/3. But, because q1 transition to state
p2 has two arcs, the probability to generate a transition from
state p1 to p2 is increased to 2/3.

� case 2. In Fig. 4 we set by convention for the probability that
q1 generates a transition from state p1 to p2 is 1/3 (1/6 plus 1/
6). However, because q1 transition to state p2 has only one
arc, the probability to generate a transition from state p1 to
p2 is decreased to 1/6.

� case 3. Finally, we have the trivial case when there exists
only one arc from p1 to q1 and from q1 to p2.

Definition 10. The utility function U with respect a Decision Pro-
cess Petri net DPPN ¼ fP;Q ; F;W;M0;p;Ug is represented by the
equation

U
qj

k ðpiÞ ¼
Ukðp0Þ if i ¼ 0; k ¼ 0
LðaÞ if i > 0; k ¼ 0& i P 0; k > 0

�
ð8Þ

where

a ¼

X
h2gij0

Wðph; qj0
; piÞ � U

qj0
k ðphÞ;

X
h2gij1

Wðph; qj1
; piÞ � U

qj1
k ðphÞ; . . . ;

X
h2gijf

Wðph; qjf
;piÞ � U

qjf

k ðphÞ

2
6666666664

3
7777777775

ð9Þ

the function L : D # Rn
þ ! Rþ is a Lyapunov like function which opti-

mizes the utility through all possible transitions (i.e. trough all the
possible trajectories defined by the different qjs), D is the decision
set formed by the j�s; 0 6 j 6 f of all those possible transitions ðqj

piÞ 2 O, Wðph; qj; piÞ ¼ pðph; qjÞ �
FNðqj ;piÞ
FNðph ;qjÞ

;gij is the index sequence of

the list of previous places to pi through transition qj;ph ðh 2 gijÞ is
a specific previous place of pi through transition qj.

Definition 11. A final decision point pf 2 P with respect a Decision
Process Petri net DPPN ¼ fP;Q ; F;W;M0;p;Ug is a place p 2 P
where the infimum or the minimum is attained, i.e. UðpÞ ¼ 0 or
UðpÞ ¼ C.

Definition 12. An optimum point p4 2 P with respect a Decision
Process Petri net DPPN ¼ fP;Q ; F;W;M0;p;Ug is a final decision
point pf 2 P where the best choice is selected ‘according to some
criteria’.

Proposition 13. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a Decision
Process Petri net and let p4 2 P an optimum point. Then Uðp4Þ 6
UðpÞ;8p 2 P such that p 6Up4.

Fig. 2. Petri net block.

Fig. 4. Routing policy case 2.

Fig. 3. Routing policy case 1.
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Proof. We have that Uðp4Þ is equal to the minimum or the infi-
mum. Therefore, Uðp4Þ 6 UðpÞ 8p 2 P such that p 6Up4. h

Theorem 14. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a Decision Process
Petri net. If p4 2 P is an optimum point then iff it is a final decision
point.

Proof. ð)Þ Since p4 is an optimum point, by definition, the best
choice is selected ‘‘according to some criteria.’’ However, this
implies that the routing policy attached to the transition (s) that
follows p4 is 0, (in case there is such a transition (s) i.e., worst case).
Therefore, its utility can not be modified and since UðpiÞ is a
decreasing function an infimum or a minimum is attained. Then,
p4 is a final decision point.
ð(Þ If pf is a final decision point, since the DPPN is finite, there

exists a k such that Ukðpf Þ ¼ C. Let us suppose that pf is not an opti-
mum point. Then, it is not the last place in the net. So, it is possible
to modify the utility over pf . As a result, it is possible to find routing
policy attached to the transition (s) that follows pf different that 0
and obtain a lower utility than C. Its a contradiction. h

Definition 15. A strategy with respect a Decision Process Petri net
DPPN ¼ fP;Q ; F;W;M0;p;Ug is identified by r and consists of the
routing policy transition sequence represented in the DPPN graph
model such that some point p 2 P is reached.

Definition 16. An optimum strategy with respect a Decision Pro-
cess Petri net DPPN ¼ fP;Q ; F;W;M0;p;Ug is identified by r4 and
consists of the routing policy transition sequence represented in
the DPPN graph model such that an optimum point p4 2 P is
reached.

Equivalently we can represent (8) and (9) as follows:

U
rhj

k ðpiÞ ¼
Ukðp0Þ if i ¼ 0; k ¼ 0
LðaÞ if i > 0; k ¼ 0 & i P 0; k > 0

�
ð10Þ

a ¼

X
h2gij0

rhj0 ðpiÞ � U
rhj0
k ðphÞ;

X
h2gij1

rhj1 ðpiÞ � U
rhj1
k ðphÞ; . . . ;

X
h2gijf

rhjf ðpiÞ � U
rhjf

k ðphÞ

2
6666666664

3
7777777775

ð11Þ

where rhjðpiÞ ¼ Wðph; qj;piÞ. The rest is as previous defined.

Notation 17. With the intention to facilitate even more the
notation we will represent the utility function U as follows:

1. UkðpiÞ¼
4 U

qj

k ðpiÞ¼
4 U

rhj

k ðpiÞ for any transition and any strategy,

2. U4k ðpiÞ¼
4 U

q4
j

k ðpiÞ¼
4 U

r4
hj

k ðpiÞ for an optimum transition and opti-
mum strategy.

5. Validation well-formed workflow Petri nets

Theorem 18. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a finite an non-
blocking workflow net. Then, the DPPN satisfies the soundness
property iff Uðpiþ1Þ � UðpiÞ 6 0, i.e. it is uniformly practically stable.

Proof. ð)Þ Let us choose v ¼ IdðUðpiÞÞ then Dv ¼ Uðpiþ1Þ�
UðpiÞ 6 0, then by the autonomous version of Theorem 4 and
Corollary 5, the DPPN is stable.

ð(Þ We want to show that the workflow net is practically sta-
ble, i.e., given 0 < k < A we must show that UðpiÞj j < A. We know
that Uðp0Þ < k and since U is non-decreasing we have that
UðpiÞj j < Uðp0Þj j < k < A. h

Remark 19. The finite and nonblocking conditions over the work-
flow net cannot be relaxed and reinforce the definition of workflow
(Definition 7):

1. If the workflow is into a cycle it will satisfy the theoretic
notion of stability, but it will never reach the sink place of
the net. If we required termination without this assumption,
all nets allowing loops in their execution sequences would
be called unsound, which is clearly not desirable.

2. If we suppose that the workflow net blocks at some place p it
will also satisfies the theoretic notion of stability, but it will
never reach the sink place of the net.

Proposition 20. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be workflow net.
The finite and nonblocking (unless p 2 P is an optimum point) condi-
tion over the DPPN workflow net can not be relaxed:

Proof.

(1) Let us suppose that the workflow net is not finite, i.e. p is in a
cycle then, the Lyapunov-like function converges when
k!1, to zero i.e., LðpÞ ¼ 0 but the DPPN has no final place
therefore, it is not an optimum point.

(2) Let us suppose that the workflow net blocks at some place
(not an optimum point) p 2 P. Then, the Lyapunov-like func-
tion has a minimum at place p, lets say LðpÞ ¼ C but p is not
an optimum point, because it is not necessary to have a sink
in the net. h

Definition 21. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a Decision Pro-
cess Petri net. A trajectory x is an (finite or infinite) ordered sub-
sequence of places p1ð1Þ6Uk

p1ð2Þ6Uk
. . .6Uk

p1ðnÞ6Uk
. . . such that a

given strategy r holds.

Definition 22. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a Decision Pro-
cess Petri net. An optimum trajectory x is an (finite or infinite)
ordered subsequence of places p1ð1Þ6U4k

p1ð2Þ6U4k
. . .6U4k

p1ðnÞ6U4k
. . .

such that the optimum strategy r4 holds.

Theorem 23. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a nonblocking
workflow net (unless p 2 P is an optimum point) then we have that:

U4k ðp4Þ 6 UkðpÞ;8r;r4

Proof. We have that

U
rhj

k ðpiÞ ¼
Ukðp0Þ if i ¼ 0; k ¼ 0
LðaÞ if i > 0; k ¼ 0 & i P 0; k > 0

�

a ¼

X
h2gij0

rhj0 ðpiÞ � U
rhj0
k ðphÞ;

X
h2gij1

rhj1 ðpiÞ � U
rhj1
k ðphÞ; . . . ;

X
h2gijf

rhjf ðpiÞ � U
rhjf

k ðphÞ

2
6666666664

3
7777777775
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Then, starting from p0 and proceeding with the iteration, even-
tually the trajectory x given by p0 ¼ p1ð1Þ6Uk

p1ð2Þ6Uk
. . . 6Uk

p1ðnÞ6Uk

. . . which converges to p4, i.e., the optimum trajectory, is obtained.
Since at the optimum trajectory the optimum strategy r4 holds,
we have that U4k ðp4Þ 6 UkðpÞ, 8r;r4. h

Corollary 24. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a nonblocking
workflow net (unless p 2P is an optimum point) and let r4 an opti-
mum strategy. Set L ¼mini¼1;...; aj jfaig then, U4k ðpÞis equal to:

ð12Þ

where p is a vector whose elements are those places which belong to
the optimum trajectory x given by p0 6 p1ð1Þ6Uk

p1ð2Þ6Uk
. . .6Uk

p1ðnÞ
6Uk

. . . which converges to p4.

Definition 25. A Decision Process Petri net DPPN ¼ fP;Q ; F;
W;M0;p;Ug is said to be symmetric if it is possible to decompose
it into some finite number (greater that 1) of sub-Petri nets in such
a way that there exists a bijection w between all the sub-Petri nets
such that

ðp; qÞ 2 I() ðwðpÞ;wðqÞÞ 2 I and

ðq;pÞ 2 O() ðwðqÞ;wðpÞÞ 2 O

for all of the sub-Petri nets.

Corollary 26. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a nonblocking
(unless p is an optimum point) symmetric workflow net and let r4
be an optimum.strategy. Set L ¼mini¼1;...; aj jfaig then,

r4U 6 rU 8r;r4

where the r and r4 are represented by a matrix and U is represented
by a vector.

Given a nonblocking (unless p is an equilibrium point) Deci-
sion Process Petri net DPPN ¼ fP;Q ; F;W;M0;p;Ug, the optimum
trajectory planning consists on finding the firing transition
sequence u such that the optimum target state Mt , associated
to the optimum point, is achieved. The target state Mt belong
to the reachability set RðM0Þ, and satisfies that it is the last
and final task processed by the DPPN with some fixed starting
state M0 with utility U0.

Theorem 27. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a finite an non-
blocking workflow net. The problem of finding an optimum trajectory
for validation of soundness of a workflow net is solvable.

Proof. From what was shown in Theorem 23 for each step we find
U4k ðp1ð1ÞÞ; . . . ;U4k ðp1ðiÞÞ; . . . ;U4k ðp4Þ. Define a mapping (see Notation
17)

urðU
q4

j

k ðp1ðiÞÞÞ ¼ ½0; . . . ;0;1;0; . . . ;0� ð13Þ

with ‘‘1’’ in position jD and zero everywhere else, and set

u ¼
P

rurððU
q4

j

k ðp1ðiÞÞÞ, where the index r runs over all the transitions

associated to the subsequence 1ðiÞ such that p1ðiÞ converges to pD,
then, by construction the optimum point is attained. h

Remark 28. The order in which the transitions are fired, is given
by the order of the transitions, inherited from the order of the sub-
sequence p1ðiÞ.

Theorem 29. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a workflow net
and let ðp0; p1 . . . ; pnÞ be a realized trajectory which converges to p�

such that 9�i : Uiþ1 � Uij j > �i ð with �i > 0Þ. Let � ¼minf�ig, then
an optimum point p� is reached in a time step bounded by OðU0=�Þ.

Proof. Let us suppose that p� is never reached, then, p� is not the
last place in the DPPN. So, it is possible to find some output tran-
sition to p�. Therefore, it is possible to reduce the trajectory func-
tion value over p� by at least �. As a result, it is possible to obtain
a lower value than C (that is a contradiction). h

Remark 30. The complexity time OðU0=�Þ differs with that of the
Dijkstra’s algorithm.

Remark 31. Each path in DPPN corresponds to a trajectory of a
given system. The trajectory-tracking function value of U at the
source place (U0) divided by � ¼minf�ig equals the length of the
shortest-path. Then, the infimum is equivalent to the infimum
length over all paths in DPPN.

Theorem 32. Let DPPN ¼ fP;Q ; F;W;M0;p;Ug be a workflow net.
Then, U converges to a point p�.

Proof. We have to show that U converges to a point p�. By the pre-
vious theorem the optimum point p� is reached in a time step
bounded by OðU0=�Þ, therefore U converges to p�. h

6. Connection between workflow nets and partially ordered
transition DPPN

In business process modeling (Clempner & Retchkiman, 2005),
high-level business strategies are refined up to the point when
they reach a tactical business strategy level, described only in
terms of goals and strategies.1

Business strategy decomposition represents a hierarchy of
objective/decision-points, varying from the high-level business
strategy with the maximum long-term impact to the more refined
operational business strategy (goal, strategy) with relative short-
term impact.

The business strategy refinement process concludes when a
resulting business strategy can be transformed into an executable
action. In this sense, the nodes found in the lowest levels of the busi-
ness strategy decomposition tree are usually mapped into actions.

A business process is regarded as a set of activities. Activities
are considered as operationalizations of goals and are applied in
accordance with the strategies to achieve the goals. Strategies
determine the legal sequentially movements that can be made
from any activity to another. The structure of each node in the
business strategy decomposition is a complex object, defined by
the ordered pair goal-strategy.

For completeness let us recall some basic notations of ordering.
Given a poset ðX;�Þ a successor of an element x 2 X is an element y
such that x � y, but x – y and there is no third element u between x
and y. x is a predecessor of y if y is a successor of x. In symbols, for
any x 2 X.

1 For simplification, we decompose the business strategy in goals and strategies,
which we consider is adequate from an operational point of view.

5036 J. Clempner / Expert Systems with Applications 41 (2014) 5030–5040



Author's personal copy

Successors of x: y 2 sucðxÞ iff x – y; x � y and 8u : x � u � y)
ðu ¼ xÞ _ ðu ¼ yÞ.

Predecessors of x: y 2 preðxÞ iff y – x; y � x and 8u : y � u � x)
ðu ¼ yÞ _ ðu ¼ xÞ.

The graph of the ordering is the graph whose vertices are the
points in X and each pair ðx; yÞ where y is a successor of x
determines an edge. The graph corresponding to the ordering
‘‘�’’ defined is a directed acyclic graph ðDAGÞ.

The minimal elements are those with no predecessors, i.e.
nodes with null inner degree in the DAG. The maximal elements
are those with no successors, i.e. nodes with null outer degree in
the DAG. In this ordering the conditions with no input transitions
correspond to the minimal elements, and the conditions with no
output transitions correspond to the maximal elements.

Since the business strategy decomposition determines actions
sequence applications, a process can be ordered as follows.

Let X be a process and x; y 2 X two activities.

Definition 33. We say that the activity y ‘‘depends on’’ the activity
x, and we denoted it by x � y, if the corresponding decomposed

node of x is upper than that of y in the business strategy
decomposition tree.

Property 1. Clearly, ‘‘�’’ establishes a partial ordering.

The partial order concept guarantees that the nodes found in
the lowest levels of the business strategy decomposition tree, are
already partially ordered and ready to be mapped into what next,
is defined to be a partially ordered DPPN.

Definition 34. A partially ordered transition Decision Process Petri
net is a duple ðDPPN;�Þ where DPPN is a Decision Process Petri net
and �q is the partial order defined on the elements of the set of
transitions Q such that the following conditions hold:

� q1	qq2 iff q1�qq2 and qðq2�qq1Þ
� q1
qq2 iff q1�qq2 and q2�qq1

Note that the order of the DPPN is the order established by the
‘‘depends on’’ relationship (see the definition of �).

Fig. 5. Sequence diagram of the supply chains.
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Events are actions which take place in a process. The occurrence
of these events is controlled in part by the state of the process. The
state of a process can be described as a set of conditions. The
minimal elements of the net are those conditions associated to
the initial marking. Since events are actions, they may occur, for
an event to occur, it may be necessary that certain preconditions
hold. Each transition has associated a strategy that determines
the preconditions to hold or not and may cause post-conditions
to become true.

Proposition 35. Let us suppose that all the condition of Theorem 23
are satisfied and let us suppose that the DPPN is a partially ordered
Decision Process Petri net. Then, Eq. (12) reduces to

Proof. It follows from Corollary 24 and the fact that the Decision
Process Petri net is partially ordered. h

7. Application example

Let us consider a supply chains system involved in moving and
manufacturing a product from supplier to customer (see Fig. 5). In
this case, the supply chains activities involve the movement and
storage of raw materials, work-in-process inventory, and finished
goods from point of origin to point of consumption. In our case,
the main products are cosmetics. The main goal of this company
is to fulfill customer demands through the most efficient use of
resources, seeking to match demand with supply and do so with
the minimal inventory. The process begins with the costumer
submitting an order of cosmetics to the store. Receiving an order
by the store, results in the checking of the availability of the
products locally and results in the verifying of the existence in
the warehouse of the plant. If the store is able to fulfill the order,
it send the requested products to the customer without delay. If
the store can not fulfill the order, it asks the plant for a proposal
of the availability time of the products. Developing a proposal for
a production order by the plant involves realizing several logistics

management activities, as well as manufacturing operations
consideration, and the coordination of processes and activities
with and across the manufacturing process. Once the proposal
is ready, the store provides the customer with information on
product availability and scheduling, indicating the delivery time
of the requested products. If the customer accepts the proposal,
the store asks the plant for manufacturing the order. Next, the
plant draws up a strategic plan to support the manufacturing flow
management process and the development of the products. Final-
ly, if the manufacturer’s processing has been successful the plant
submits the order to the store and subsequently to the customer.
The workflow net of the supply chains is shown in Fig. 6.

1. Optimum strategy:Define the Lyapunov like function L in
terms of the Entropy HðpiÞ ¼ �pi ln pi as L ¼ max

i¼1;...; aj j
ð�ai

lnaiÞ then,
2. The optimum strategy r4 for the supply chains is repre-

sented by:

Uk¼0ðp1Þ ¼ 1

U
rhj

k¼0ðp2Þ ¼ L½r1;2ðp2Þ � Ur1;2
k¼0ðp1Þ� ¼ L½2=3 � 1;1=3 � 1�

¼ max H½2=3;1=3� ¼ 0:270

U
rhj

k¼0ðp3Þ ¼ L½r2;3ðp3Þ � Ur2;3
k¼0ðp2Þ� ¼ L½1 � 0:270� ¼max H½0:270�

¼ 0:353

U
rhj

k¼0ðp4Þ ¼ L½r3;4ðp4Þ � Ur3;4
k¼0ðp3Þ� ¼ L½1 � 0:353� ¼max H½0:353�

¼ 0:367

U
rhj

k¼0ðp5Þ ¼ L½r1;5ðp5Þ � Ur1;5
k¼0ðp1Þ� ¼ L½2=3 � 1;1=3 � 1�

¼ max H½2=3;1=3� ¼ 0:270

U
rhj

k¼0ðp6Þ ¼ L½r5;6ðp5Þ � Ur5;6
k¼0ðp5Þ� ¼ L½1 � 0:270� ¼max H½0:270�

¼ 0:353

U
rhj

k¼0ðp7Þ ¼ L½r6;7ðp7Þ � Ur6;7
k¼0ðp6Þ� ¼ L½1 � 0:353� ¼max H½0:353�

¼ 0:367

U
rhj

k¼0ðp8Þ ¼ L½r4;8ðp8Þ � Ur4;8
k¼0ðp4Þ þ r7;8ðp8Þ � Ur7;8

k¼0ðp7Þ�
¼ L½ 1 � 0:367þ 1 � 0:367ð Þ � 2� ¼max H½1:470� ¼ 0:566

Fig. 6. Workflow net of the supply chains.
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U
rhj

k¼0ðp9Þ ¼ L½r8;9ðp9Þ � Ur8;9
k¼0ðp8Þ� ¼ L½ð1=4 � 0:566;1=8 � 0:566Þ � 2�

¼max H½0:283;0:141� ¼ 0:357

U
rhj

k¼0ðp10Þ ¼ L½r9;10ðp10Þ � Ur9;10
k¼0 ðp9Þ� ¼ L½1 � 0:357� ¼ max H½0:357�

¼ 0:367

U
rhj

k¼0ðp11Þ ¼ L½r8;11ðp11Þ � Ur8;11
k¼0 ðp8Þ�

¼ L½ð1=4 � 0:566;1=8 � 0:566Þ � 2� ¼max H½0:283;0:141�
¼ 0:357

U
rhj

k¼0ðp12Þ ¼ L½r9;12ðp12Þ � Ur9;12
k¼0 ðp9Þ� ¼ L½1=4 � 0:357;3=8 � 0:357�

¼max H½0:089; 0:133� ¼ 0:269

U
rhj

k¼0ðp13Þ ¼ L½r10;13ðp13Þ � Ur10;13
k¼0 ðp10Þ þ r11;13ðp13Þ � Ur11;13

k¼0 ðp11Þ
þ r12;13ðp13Þ � Ur12;13

k¼0 ðp12Þ�
¼ L½1 � 0:367þ 1 � 0:357þ 1 � 0:269� ¼max H½0:993�
¼ 0:006

By Theorem 18 we find that the DPPN is uniformly practically
stable concluding soundness.

8. Conclusion

The main purpose of workflow nets is to support the definition,
execution and control of workflow processes. A workflow process
determines a set of activities and the specific order they are to
be performed to reach a common goal. Regrettably, current com-
mercial systems do not incorporate verification techniques of
workflows (van der Aalst, 2011). Therefore the need for analytical
method to verify the correctness of workflow specification is
becoming a fundamental task. In this paper we reason about a ba-
sic property that any workflow-process definition should satisfy:
the soundness property. This paper provided a framework for solv-
ing the soundness property verification problem of workflow nets
using a trajectory-tracking approach represented by a decision-
process Petri net. Using the Lyapunov stability theory on Petri nets,
we have identified an analytical method for which soundness can
be structurally characterized and solved effectively: a workflow
net satisfies the soundness property if its PN representation is
tracked forward from its source place and a natural form of termi-
nation is ensured by a sink. Validity of the proposed method was
successfully demonstrated both theoretically and by a numerical
example related with supply chains, where decision-process prop-
erties and validation were shown to hold was addressed.

It is important to note that the main contribution of the paper is
the trajectory-tracking analytical method itself: we showed that a
finite and nonblocking DPPN validate a well-formed business pro-
cesses if and only if its corresponding DPPN is uniformly practically
stable. We also showed that the problem of finding an optimum
trajectory for validation of soundness of a workflow net is solvable.
The convergence of the suggested method was analyzed. Finally,
we showed the connection between workflow nets and partially
ordered decision-process Petri nets used for business process rep-
resentation and analysis.

There are open research questions in this area. Based on this
contribution, we identified major topics for future steps. Several
authors have proposed alternative notions of soundness. As a fu-
ture work we will investigate these approaches in the presence
of different extensions of the analytical method. The use of the
Lyapunov theory can produce better results for verifying sound-
ness in Petri nets theory. In this sense, we will extend the present

idea to support colored Petri nets verification techniques. In partic-
ular, we leave open comparing the stability method efficiency set-
ting a structural vs. a trajectory-dynamic approach. We will as well
show the theoretical limits of the workflow soundness verification
technique. Moreover, this paper has motivating suggestions for
those working in process mining because an interesting open re-
search challenge is that the process mining method can be im-
proved using a Lyapunov theoretical approach in Petri nets.
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