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In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by
a particular class of Petri nets. Workflow nets are formal model of business processes. Well-formed business processes
correspond to sound workflow nets. Even if it seems considered necessary to require soundness of workflow nets, there
exist business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense,
we propose an analytical method for showing that a workflow net satisfies the classical soundness property using a Petri
net. To show our statement we use the Lyapunov stability theory to tackle the classical soundness verification problem
for a class of dynamical systems described by Petri nets. This class of Petri nets allows a dynamical model representation
that can be expressed in terms of difference equations. As a result, applying Lyapunov theory the classical soundness
property for workflow nets is solved showing that the Petri net representation is stable. We show that a finite and non-
blocking workflow net satisfies the sound property if and only if its corresponding PN is stable, i.e., given the incidence
matrix A of the corresponding PN there exists a Φ strictly positive m vector such that AΦ ≤ 0. The key contribution
of the paper is the analytical method itself that satisfies part of the definition of the classical soundness requirements. The
method is for practical applications, guarantees that anomalies can be detected without domain knowledge and can be easily
implemented into existing commercial systems that do not support the verification of workflows. Validity of the proposed
method is successfully demonstrated by application examples.
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1. Introduction

1.1. Brief review. A workflow model is put to use
by feeding it to a workflow management system ((zur
Muehlen, 2004), (Weske, 2007)). Heart of a workflow
management system is the workflow engine, that does
the actual management (Mann, 2010). Workflow man-
agement systems are driven by business process models.
Therefore, it is important to define and streamline busi-
ness processes in order to improve efficiency and reduce
operating cycle times. Ultimately, the success of such
modeling efforts lies not only in careful technical design,
but also in ensuring the well-formed business processes
of such models. Effective business processes modeling
involves understanding existing process defects, identi-
fying sources of inefficiency (deadlocks, livelocks, and
other anomalies), and redefining processes to increase ef-
ficiency or decrease errors. But, workflow management
systems do not support verification methods for business
processes design (van der Aalst, 2011).

The success of workflow management systems and
methodologies has been widely publicized, while the
more serious failures have not. Mendling et al. (Mendling
and van der Aalst, 2007) based on more than 2000 process
models including well-known sets of models, such as the
SAP reference model, report that more than 10 percent of
these models are awed.

Workflow nets were introduced in ((van der Aalst,
1997), (van der Aalst, 1998)) and are currently the most
widely used model to formally describe workflow pro-
cesses. Workflow nets are a formal model of business
process responsible for the organization of the processing
tasks. The existing graphical languages implemented by
workflow management systems are typically token-based
and for this reason a transformation is reasonably simple
to Petri nets.

Petri nets are a natural technique to formally mod-
eling and analyzing workflow nets because the flow-
oriented nature of workflow processes ((Desel and Er-

julio@clempner.name


2 J. Clempner

win, 2000), (Ellis and Nutt, 1993), (van der Aalst, 1997),
(van der Aalst, 1998)). Petri nets are used for process rep-
resentation, taking advantage of the well-known proper-
ties of this approach namely, formal semantic and graph-
ical display, giving a specific and unambiguous descrip-
tion of the behavior of the process. We consider workflow
nets as dynamical systems governed by ordinary differ-
ence equations described by a particular class of Petri nets
((Clempner and Retchkiman, 2005), (Clempner, 2005)).

Loosely speaking, a workflow net is a Petri net with
an initial place and a distinguished final place called
sink. Well-formed business processes correspond to
sound workflow nets (van der Aalst, 2007). Petri nets have
been extensively studied since the mid nineties as an ab-
straction of the workflow to check the soundness property
((van der Aalst, 1998), (van der Aalst, 2007), (van der
Aalst, 2011), (Barkaoui and Ayed, 2011), (Barkaoui
and Petrucci, 1998), (Basu and Blanning, 2000), (Basu
and Blanning, 2002), (Bi and Zhao, 2004), (Clempner
and Retchkiman, 2005), (Clempner, 2014), (Dehnert and
Rittgen, 2001), (van Dongen and Verbeek, 2005), (Fu
and Su, 2002), (Fu and Su, 2004), (van Hee and Voorho-
eve, 2005), (van Hee and Voorhoeve, 2004), (Karamanolis
and Wheater, 2000), (Kindler and Reisig, 2000), (Lin and
Chen, 2002), (Lohmann and Weinberg, 2006), (Martens,
2005a), (Martens, 2005b), (Mendling and van der Aalst,
2007), (Sadiq and Orlowska, 1997), (Sadiq and Or-
lowska, 2000), (Salimifard and Wright, 2001), (Vanhatalo
and Leymann, 2007), (Verbeek and ter Hofstede, 2001),
(Verbeek and van der Aalst, 2001), (Wombacher, 2006),
(Wynn and ter Hofstede, 2005), (Wynn and Edmond,
2006)). In these researches authors have proposed alterna-
tive notions of soundness an more sophisticated languages
making these notions undecidable.

For the length of the distinguished history and excit-
ing life of Petri nets, researches look for analytical method
able to develop new fast and efficient techniques to solve
any kind of problem. Petri nets are used as an abstraction
of the workflow to check the soundness property. Even
if it seems considered necessary to require soundness of
workflow nets, there exist business processes with condi-
tional behavior that will not necessarily satisfy the sound-
ness property. The problem is often not caused by the
structure of the net, but by operations associated with tran-
sition labels that are being used. Then, given a Petri net
the computation can always be completed, that is, it is pos-
sible to show that a process initiated in the source place
and regardless of how the computation proceeds at the be-
ginning, the Petri net has always a trajectory able to reach
the sink place of the Petri net.

1.2. Main results. In this paper we propose an ana-
lytical method for showing that a workflow net satisfies
the soundness property using a Petri net. The proposed
analytical method guarantees that anomalies can be de-

tected without domain knowledge. To show our statement
we use the Lyapunov stability theory to tackle the sound-
ness problem for a class of dynamical systems named dis-
crete event systems, described by Petri nets. This class
of Petri nets allows a dynamical model representation that
can be expressed in terms of difference equations. As a
result, applying Lyapunov theory the soundness property
for workflow nets is solved showing that the Petri net rep-
resentation is stable.

1.3. Organization of the paper. The remainder of this
paper is organized as follows. We present some of the pre-
liminaries including the mathematical notations and the
Petri nets basics in Section 2. In Section 3, we motivate
the introduction of the soundness workflow verification
technique, presenting the basic notion of workflow net
and stability followed by the definition of soundness. We
also describe and exemplify the finite and non-blocking
conditions established for the Petri net. Section 4 out-
lines the core content of the paper presenting the basic
notions of stability and the main result of the paper about
the soundness property. We present a formal approach of
how the soundness property can be computed over a finite
and non-blocking workflow net. We also make emphasis
on the reasons which are why the finite and non-blocking
conditions can not be relaxed. In Section 5 we present
two examples which pragmatically illustrate the applica-
tion of the method. Finally, in Section 6 some concluding
remarks and future work are outlined.

2. Preliminaries
In this section, we present some well-established defi-
nitions and properties which will be used later (Brams,
1983).

Notation. Let N = {0, 1, 2, ...}, Nn0
+ =

{n0, n0 + 1, ..., n0 + k, ...}, n0 ≥ 0, R = (−∞,∞) and
R+ = [0,∞).

A (marked) Petri net is a 5-tuple PN =
(P,Q, F,W,M0) where: P = {p1, p2, ..., pm} is a fi-
nite set of places, Q = {q1, q2, ..., qn} is a finite set of
transitions with P ∩ Q = ∅ and, P and Q are nonempty
such that P ∪ Q 6= ∅, F ⊆ (P × Q) ∪ (Q × P ) is a
set of arcs and determines a flow relation, W : F → N1

+

is a weight function, M0: P → N is the initial mark-
ing. We adopt the standard rules about representing nets
as directed graphs, namely places are represented as cir-
cles, transitions as rectangles, the flow relation by arcs,
and markings are shown by placing tokens within circles.
At any time a place contains zero or more tokens, drawn
as black dots (Murata, 1989).

For each transition or place z we will denote •z :=
{y ∈ P ∪Q | (y, z) ∈ F} ,the preset of z. Analogously
we will denote z• = {y ∈ P ∪Q | (z, y) ∈ F} the post-
set of z. A source place is a place p0 ∈ P such that



AN ANALYTICAL METHOD FOR WELL-FORMED WORKFLOW/PETRI NETS VERIFICATION: CLASSICAL SOUNDNESS 3

•p0 = ∅ (there are no incoming arcs into place p0). A
sink place is a place p ∈ P such p• = ∅ (there are no
outgoing arcs from p).

A Petri net structure without any specific initial
marking is denoted by PN . A Petri net with the given
initial marking is denoted by (PN,M0). Notice that if
W (p, q) = a or W (q, p) = b for a, b ∈ N1

+ then, this is
often represented graphically by a, (b) arcs from p to q (q
to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number
of tokens) at place pi ∈ P at time k and let Mk =
[Mk(p1), ...,Mk(pm)]T denote the marking (state) of PN
at time k. A transition qj ∈ Q is said to be enabled at
time k if Mk(pi) ≥ W (pi, qj) for all pi ∈ P such that
(pi,qj) ∈ F (∀pi ∈ •qj ). It is assumed that at each time
k there exists at least one transition to fire. If a transition
is enabled then, it can fire. If an enabled transition qj ∈ Q
fires at time k then, the next marking Mk+1, written as
Mk

qj−→Mk+1, for pi ∈ P is given by

Mk+1(pi) = Mk(pi) +W (qj , pi)−W (pi, qj). (1)

Let A = [aij ] denote an n × m matrix of integers,
called the incidence matrix, where aij = a+ij − a

−
ij with

a+ij = W (qi, pj) and a−ij = W (pj , qi) . Let uk ∈ {0, 1}n
denote a firing vector where if qj ∈ Q is fired then, its
corresponding firing vector is uk = [0, ..., 0, 1, 0, ..., 0]T

with the one in the jth position in the vector and zeros ev-
erywhere else. The matrix equation (nonlinear difference
equation) describing the dynamical behavior represented
by a Petri net is:

Mk+1 = Mk +ATuk (2)

where if at step k, a−ij < Mk(pj) for all pj ∈ P then,
qi ∈ Q is enabled and if this qi ∈ Q fires then, its cor-
responding firing vector uk is utilized in the difference
equation (2) to generate the next step. Notice that if M

′

can be reached from some other markingM and, if we fire
some sequence of d transitions with corresponding firing
vectors u0, u1, ..., ud−1 we obtain that

M
′

= M +ATu, u =

d−1∑
k=0

uk. (3)

Given σ = q1, q2, ..., qn ∈ Q∗ (i.e. qi ∈ Q),
where Q∗ is the reflexive transitive closure of Q, we
write M0

σ−→ Mn if there exists markings M1, ...,Mn−1

such that M0
q1−→ M1

q2−→ M2...,Mn−1
qn−→ Mn.

Then, we say that Mn is reachable. The set of reach-
able markings of PN is denoted by R(PN,M0), called
the reachability set, and is defined by R(PN,M0) ={
M |∃σ ∈ Q∗ M0

σ−→Mk : 0 ≤ k ≤ n
}

A Petri net PN is s-bounded if M(p) ≤ s for ev-
ery reachable marking M and every place p of PN , and

Fig. 1. Cycle

bounded if it is s-bounded for some s ≥ 0. A 1-bounded
net is also called safe.

A Petri net is strongly connected if for every two
nodes n1 and n2, n1, n2 ∈ P ∪Q, there exists a directed
path leading from n1 to n2.

A Petri net PN is a free-choice Petri net ((van der
Aalst, 2011)) if for every two transitions qi, qj ∈ Q, •qi ∩
•qj 6= ∅ implies •qi = •qj .

Let (Nn0
+ , d) be a metric space where d : Nn0

+ ×
Nn0

+ → R+ is defined by

d(M1,M2) =
m∑
i=1

ζi |M1(pi)−M2(pi) |;

ζi > 0, i = 1, ...,m..
(4)

3. Motivation
The main point of the PN is its ability to represent mark
properties that involve theoretic notions of stability. In this
sense, the sink (last place) of the PN is a place whose
marking is bounded and it does not change. Therefore,
two main concepts must be considered carefully within
the notion of stability: cycle and block.

The PN represented in Fig. 1 represents a cycle. It
has the property of stability, because given the incidence
matrix

A =

[
−1 1
1 −1

]
and picking the positive vector Φ =

[
2 2

]
> 0 because

A is already transpose we obtain that AΦT =
[
0 0

]
≤ 0

(concluding stability). But, the PN has no final place.
The PN represented in Fig. 2 represents a block. It

has the property of stability, because the incidence matrix

A =

−1 1 0 0
−1 0 1 0
0 −1 −1 1


and picking the positive vector such that Φ =[
2 1 1 1

]
> 0 because A is already transpose we

obtain thatAΦT =
[
−1 −1 −1

]
≤ 0 (concluding sta-

bility). But, the sink of the PN never can be reached.
Loosely speaking, a workflow net is a Petri net with

two distinguished input and output places without input
and output transitions respectively, and such that the ad-
dition of a reset transition leading back from the output
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Fig. 2. Block

to the input place makes the net strongly connected. For-
mally,

Definition 1. A Petri net PN = (P,Q, F,W,M) is a
workflow net if:

• there exist places i, o ∈ P such that •i = ∅ = o•,
M(p) = 1 for p = i and M(p) = 0 otherwise

• every node is in a path from i to o, i.e. for any x ∈
P ∪Q : (i, x) ∈ F ∗ and (x, o) ∈ F ∗ where F ∗ is the
reflexive-transitive closure of relation F .

Then, the resulting Petri net is strongly connected.
A workflow net PN is sound if it is live and bounded

((van der Aalst, 1998),(van der Aalst, 2011)).

Definition 2. Let PN be a workflow net. PN is sound if
the following three requirements are satisfied:

1. For every state M reachable from state Mi, there ex-
ists a firing sequence leading from state M to state
Mo:

for all M : (Mi
σ→M)⇒ (M

σ→Mo)

2. State Mo is the only state reachable from state Mi

with at least one token in place Mo:

for all M : (Mi
σ→M ∧M ≥ 0)⇒ (M = Mo)

3. There are no dead transitions in PN :

for all q ∈ Q, there exist M,M ′ : (Mi
σ→M

q→M ′)

The first requirement states that starting from the ini-
tial state Mi, it is always possible to reach the state with
one token in place o. The second requirement states that
the moment a token is put in place o, all the other places

should be empty. The third requirement has been added
to avoid activities and conditions which do not contribute
to the processing of cases. Nevertheless it is looked-for
soundness of workflow nets, many of the real models with
conditional behavior will not satisfy third requirement:
“no dead transitions” in PN . The problem is usually pro-
duced by the operations needed to be modeled and not
necessarily by the structure of the net. In this sense, a
workflow satisfies the soundness property if given its cor-
responding Petri net (finite and non-blocking) which is
tracked forward, if one starts with a single token in the
source and regardless of how the computation proceeds at
start, it is always possible to reach a state with the token
in the sink place.

Definition 3. Let PN be a workflow net. PN is weak
sound if the following two requirements are satisfied:

1. For every state M reachable from state Mi, there ex-
ists a firing sequence leading from state M to state
Mo:

for all M : (Mi
σ→M)⇒ (M

σ→Mo)

2. State M(o) is the only state reachable from state Mi

with at least one token in place Mo:

for all M : (Mi
σ→M ∧M ≥ 0)⇒ (M = Mo)

Soundness requires that a workflow net can always
terminate in the sink of the PN . Therefore, if we want to
use stability as theoretic notion for finding soundness of a
workflow net, it will be required to impose two conditions
over the corresponding PN : finite (no cycles) and non-
blocking.

4. Workflow Soundness Property
Let us consider systems of first ordinary difference equa-
tions given by
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x(n+ 1) = ψ[n, x(n)]
x(n0) = x0.

(5)

for n ∈ Nn0
+ , where x(n) ∈ Rd and ψ : Nn0

+ × Rd → Rd
is continuous in x(n).

Definition 4. The n-vector valued function φ(n, n0, x0)
is a solution of (5) if φ(n0, n0, x0) = x0 and φ(n +
1, n0, x0) = ψ(n, φ(n, n0, x0)) for all n ∈ Nn0

+ .

Definition 5. The system (5) is said to be Practi-
cally Stable ((Lakshmikantham and Martynyuk, 1990),
(Lakshmikantham and Sivasundaram, 1991)) if given
(λ,Ψ) with 0 < λ < Ψ we have that

|x0| < λ⇒ |x(n, n0, x0)| < Ψ,∀n ∈ Nn0
+ , n0 ≥ 0. (6)

Definition 6. The system (5) is said to
be ((Lakshmikantham and Martynyuk, 1990),
(Lakshmikantham and Sivasundaram, 1991)) Uni-
formly Practically Stable, if it is practically stable for
every n0 ≥ 0.

Definition 7. A continuous function α : [0,∞)→ [0,∞)
belong to class K if it is strictly increasing and α(0) = 0.

Let us consider (Lakshmikantham and Sivasun-
daram, 1991) the vector function v(n, x(n)), v : Nn0

+ ×
Rd → Rp+ and let us define the variation of v relative to
(5) by

∆v = v(n+ 1, x(n+ 1))− v(n, x(n)) (7)

Then, we have the following results
((Lakshmikantham and Martynyuk, 1990),
(Lakshmikantham and Sivasundaram, 1991), (Passino
and Michel, 1995)).

Theorem 1. Let v : Nn0
+ × Rn → R+ be a con-

tinuous function in x, such that for β, α ∈ K we have
β(|x|) ≤ v(n, x(n)) ≤ α(|x|) and ∆v(n, x(n)) ≤
w(n, v(n, x(n))) holds for n ∈ Nn0

+ , x(n) ∈ Rn, where
w : Nn0

+ ×R+ → R is a continuous function in the second
argument. Let us suppose that γ(n, u) ≡ u + w(n, u) is
non-decreasing in u, 0 < λ < Ψ are given and finally that
α(λ) < β(Ψ) is satisfied. Then, the stability properties of

u(n+ 1) = γ(n, u(n)), u(n0) = u0 ≥ 0, (8)

imply the corresponding stability properties of the system
(5).

We will extend Theorem 1 to the case of several Lya-
punov functions. Let us consider a vector Lyapunov func-
tion v(n, x(n)), v : Nn0

+ ×Rd → Rp+ and let us define the
variation of v relative to (5). Then, we have the following
theorem ((Lakshmikantham and Sivasundaram, 1991)).

Theorem 2. Let v : Nn0
+ × Rd → Rp+ be a con-

tinuous function in x, define the function v0(n, x(n)) =∑p
i=1 vi(n, x(n)) such that it satisfies the estimates.

β(|x|) ≤ v0 (n, x (n)) ≤ α(|x|) for α, β ∈ K and (9)

∆v(n, x(n)) ≤ w(n, v(n, x(n))) (10)

for n ∈ Nn0
+ , x(n) ∈ Rd , where w : Nn0

+ × Rp+ → Rp
is a continuous function in the second argument. Assume
that γ(n, u)

.
= qu + w(n, u) is non-decreasing in u, 0 <

λ < Ψ are given and α(λ) < β(Ψ) is satisfied. Then, the
practical stability properties of

u(n+ 1) = γ(n, u(n)), u(n0) = u0 ≥ 0. (11)

imply the corresponding practical stability properties of
the system (5).

Then, we have the following result
(Lakshmikantham and Sivasundaram, 1991).

Corollary 1. From Theorem 2 we have

1. If w(n, e) ≡ 0 we obtain uniform practical
stability of (5) which implies structural stability
((Lakshmikantham and Sivasundaram, 1991)).

2. If w(n, e) = −c(e), for c ∈ K, we ob-
tain uniform practical asymptotic stability of (5)
(Lakshmikantham and Sivasundaram, 1991).

For Petri nets we have the following results of stabil-
ity (Passino and Michel, 1995).

Proposition 1. Let PN be a Petri net. Therefore, PN is
uniform practical stable if there exists a Φ strictly positive
m vector such that

∆v = uTAΦ ≤ 0. (12)

Moreover, PN is uniform practical asymptotic stability if
the following equation holds

∆v = uTAΦ ≤ −c(e), c ∈ K. (13)

Proof. Let us chose as our candidate Lyapunov func-
tion v(M) = MTΦ with Φ and m vector to be chosen.
It is simple to verify that v satisfies all the conditions of
Theorem 2. Therefore, the uniform practical asymptotic
stability is obtained if there exists a strictly positive vector
Φ such that equation (12) holds. �

Proposition 2. Let PN be a Petri net. Therefore, PN
is uniformly practically stable if there exists a Φ strictly
positive m vector such that

∆v = uTAΦ ≤ 0⇔ AΦ ≤ 0 (14)
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Proof. ⇒) Since uTAΦ ≤ 0 holds, therefore for every
u we have that AΦ ≤ 0.
⇐) This came from the fact that u is positive. �

Remark 1. The if an only if relationship of (14) exists
from the fact that u is positive.

We have the following theorem that characterizes the
soundness property.

Theorem 3. Let PN be a finite and non-blocking work-
flow net. Then, the PN satisfies the soundness property
iff there exists a Φ strictly positive m vector such that
∆v = uTAΦ ≤ 0.

Proof. =⇒) It follows directly from Proposition 1 and
Proposition 2.
⇐=) Let us suppose by contradiction that uTAΦ >

0 with Φ fixed. From M ′ = M + uTA we have that
M ′Φ = MΦ + uTAΦ > MΦ. Then, it is possible to
construct an increasing sequence MΦ < M ′Φ < ... <
MnΦ < ... which grows up without bound. Therefore,
the PN is not uniformly practically stable. �

Remark 2. The finite and non-blocking conditions over
the workflow net cannot be relaxed (see Section 3) and
reinforce the definition of workflow (Definition 2):

1. If the workflow is into a cycle it will satisfy the the-
oretic notion of stability, but it will never reach the
sink place of the net. If we required termination with-
out this assumption, all nets allowing loops in their
execution sequences would be called unsound, which
is clearly not desirable.

2. If we suppose that the workflow net blocks at some
place p it will also satisfies the theoretic notion of
stability, but it will never reach the sink place of the
net.

5. Application examples
The aim of this section is to present application examples
represented by a workflow concluding soundness.

Example 1. In the Petri net shown in Fig. 3 only one
place is initially marked. t1 is enabled and the firing of
t1 will result in the state that marks places p2 and p4. In
this state t2, t3, and t4 are enabled. If t2 fires, t4 becomes
disabled, but t3 remains enabled. Similarly, if t3 fires,
t4 becomes disabled, but t2 remains enabled, etc. The
incidence matrix of the workflow net shown in Fig. 3 is
given by

A =


−1 1 0 1 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 −1 1 −1 1 0
0 0 −1 0 −1 1



Fig. 3. A workflow net that is sound

and picking the positive vector Φ =[
4 2 1 1 1 1

]
> 0 becauseA is already transpose

we obtain that AΦT =
[
−1 −1 0 −1 −1

]
≤ 0

concluding soundness (stability).
If we remove transition t4, the resulting net is free-

choice Petri net. These types of Petri nets are interesting
from the viewpoint of analysis ((van der Aalst, 2011)): 1)
liveness and boundedness can be decided in polynomial
time for free-choice nets (this is not the case for non-free-
choice Petri nets) and, 2) always satisfy the soundness
properties.

Example 2. Let us consider an insurance broker agency.
As a broker, the agency sells policies for different compa-
nies. The main products are life and automobile policies.
For selling and advertising the insurance company obtains
detailed information from potential customers, and from
private and governmental agencies. This information is
distributed between the company’s agents which contact
potential clients via phone and try to set up a conference
call; however, they also have their own sources of infor-
mation. At the interview, the agent examines the client’s
current insurance coverage and tries to find an opportunity
for a policy that will best fit the customer’s needs. Be-
fore obtaining an insurance policy, the new client suffers
an identity investigation. In the case of a life insurance,
the client has, in addition, to approve a physical exami-
nation test in an accredited hospital. In the case that the
investigation is positive both parts sign a policy and keep a
copy of the contract. If during the investigation irregular-
ities are found, the agent is informed, who meets with the
client in order to find new options. The insurance policy
is in effect when the client makes the first insurance pre-
mium payment. Every policy carries with a schedule of
premiums, which varies with the type and coverage. Each
policy provides a commission for the agency. The com-
mission varies with the insurance company, policy type
and coverage. The insurance company management de-
fines the commissions politic, which varies from agency
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Fig. 4. Insurance broker agency workflow net

to agency. The agency splits the commission received for
each policy with the agent who sold it; the rate depends on
the seniority of the agent. Once a policy has been sold, the
agency submits premium bills to the client, collects pay-
ment and sends the payment, minus it commission, to the
insurance company. If a client fails to pay premiums, the
agent who sold the policy is informed, so that he can con-
tact the client. Claims can be made on insurance policies
as specified in the policy itself. Clients or beneficiaries
contact the agent to file such claims. Life insurance claims
may be made by the beneficiaries on the death of the in-
sured. In both cases, the insurance company sends an ad-
juster to legitimate the claim and arrange the final insur-
ance details. For an automobile insurance policy, claims
are made when the car is involved in an accident, dam-
aged or stolen. For simplification, we will consider just
the organizational strategy of the insurance company.

The insurance broker agency business process is rep-
resented in Fig. 4 by a free-choice PN (it is important to
note that the PN represented in Fig. 4 is a simplification of
the workflow explained in the text description of the bro-
ker agency routines). Now, the incidence matrix A of the
workflow net shown in Fig. 4 is given by

−1 1 0 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 −1 0 −1 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1


.

and picking the positive vector Φ =
[3 2 1 1 2 2 2 2 2 1] > 0 because A is already transpose
we obtain that AΦT = [0 − 1 − 1 − 1 0 0 0 0 − 1] ≤ 0
concluding soundness (stability).

6. Conclusion and Future Work

Reasoning about the correctness of a workflow model
without any domain knowledge corresponds with the
soundness (soundness) property. A workflow net satis-
fies the soundness property if its Petri net representation is
tracked forward from its source place and a natural form of
termination is ensured by a sink. This paper provided an
analytical method for solving the soundness property ver-
ification problem. The method is useful for practical ap-
plications and guarantees that anomalies can be detected
without domain knowledge. To show our statement we
used the Lyapunov stability theory concluding that if a
workflow net is stable then it satisfies the soundness prop-
erty. This method can be easily implemented into existing
commercial systems that do not support the verification of
workflows.

It is important to note, that the key contribution of
the paper is the analytical method itself, the definition
of soundness is introduced because the proposed method
only satisfies part of the soundness property (van der
Aalst, 2011). In this sense, the proposed analytical method
is a step forward for checking soundness of workflow nets.

Without doubt there are more than a few theoretical
challenges that need to be considered in future research
in Lyapunov-based theory for solving the soundness veri-
fication problem. This paper has interesting implications
for using more sophisticated definitions of Petri nets, be-
cause the Lyapunov method introduces new concepts in
the Petri nets area. In this work, we consider dynami-
cal systems governed by ordinary difference equations de-
scribed by Petri nets. Then, an important emerging open
research challenge is that the uses of the Lyapunov theory,
to produce a trajectory tracking function (Lyapunov-like
function) as a solution to the difference equation (con-
structed to respect the constraints imposed by the system).
Then, the Lyapunov-like function will calculate the trajec-
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tory of the token over the Petri net converging naturally
into the sink place (Clempner, 2005).
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