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Abstract. We present a new algorithm to determine, quickly and accu-
rately, the best-in-focus image of biological particles. The algorithm is
based on a one-dimensional Fourier transform and on the Pearson cor-
relation for automated microscopes along the Z axis. We captured a set
of several images at different Z distances from a biological sample. The
algorithm uses the Fourier transform to obtain and extract the image
frequency content of a vector pattern previously specified to be sought in
each captured image; comparing these frequency vectors with the fre-
quency vector of a reference image (usually the first image that we cap-
ture or the most out-of-focus image), we find the best-in-focus image via
the Pearson correlation. Numerical experimental results show the algo-
rithm has a fast response for finding the best-in-focus image among the
captured images, compared with related autofocus techniques pre-
sented in the past. The algorithm can be implemented in real-time sys-
tems with fast response, accuracy, and robustness; it can be used to get
focused images in bright and dark fields; and it offers the prospect of
being extended to include fusion techniques to construct multifocus final
images. © 2005 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction In the next sections we describe every algorithm in-

Every day researchers in biological areas analyze a IargevpIVGd In our computer experimentation. Sec'qon 2 pro-
number of microbiological samples. The need for fast vides a mathematical review of autofocus algorithm devel-

. . pment based on global and local variance analysis or on
gg\gle;fgé’ gggl ﬁ:{ﬁbr:? ﬁgfrrgséﬁfﬁzﬁtrizségCrseoarizssiighde:jgmage contrast. Section 3 describes autofocus algorithms
y 9 ges. based on first- and second-derivative operators to imple-

velopme_nts have bfeen_ddes_cn_bed 'R the|I|tekratu_re, ?.g., aMment the image sharpness approach. Section 4 describes
automatic system for identifying phytoplankionic aldae. algorithms based on gradient variance analysis using the

One step in an automatic system to capture microbiological yeriyative operators described in Sec. 3. Section 5 intro-

images is to obtain the best-in-focus image from a biologi- gyces our new autofocus algorithm based on the analysis of

cal sample. This is a challenging task. spatial frequency spectra and exploiting the Fourier trans-
Many autofocusing methods have been develdp&d. form and Pearson correlation. Section 6 describes the com-

These methods use different approaches to obtain the bestputational experiments and provides the graphical results of

in-focus image from a set of captured microscopic images. those experiments, where we illustrate the performance of

Among the algorithms developed for this purpose are the proposed algorithm compared with algorithms described in

analysis of the global and local variance of the images’ gray Secs. 2 to 4. And finally, Sec. 7 summarizes our conclu-

levels to get a measure of their contrithe use of first-  sions and planned future work.

and second-derivative operators to obtain a measure of the

relative sharpness of image4°~'#1%he analysis of gradi-

ent variancé® and the analysis of spatial frequency

spectra*~® All these algorithms have proven to be effec- 2 Autofocus Algorithm Based on Global

tive in obtaining the best-in-focus image; however, they ~ Variance (GBL VAR)

require considerable time when the images have high reso-Let us introduce some useful notation, definitions, and

lution. functions:f,, f,, fs,...,f is a stack oK captured images

of sizeNX M pixels from biological samples taken by step-

ping of the microscope in the direction in incrementa z;
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f(X,y)k is the captured image matrix with pixelg,§) in and wherewx, wX,, wy;, wy, are values to delimit the
the K'th image in the stack, where=1,...N, y=1,...M, pixels of the moving window to be processed by K).
andk=1,...K. and Eq.(7). Let us defineg;=|w,/2|, B,=|w,/2|. Then

Let H e " be a vector of real numbers withelements ~ @X1, ®Xz, @Y1, wy, can be expressed as
sorted in ascending order. The maximum function MAX
and minimum function MINH) can be defined respectively @X1=N—p1, ©@Yy;=m=f,,
as (8)
wXo=N+ LB, wYy,=m+ S5,
MAX(H)={hs[hi<hi.1, hieH, i=12,..A-1}, (1) and the moving window is processed for each pixeh)
inside f(n,m),. Thereforen and m can be listed across

MIN(H)={h,lhi<h;.,, hjeH, i=12,.A-1}. (@  f(n,m),as

The normalized transformation functidw(H) can be ex- Ne{fitl Bit2, . N=(B1+1), N=pa}, ©
pressed as me{Bo+1, ot 2, M— (Bt 1), M=o}, (10
- hi—MIN(I:|) The global variance focus measure vector G\(jFddn

N(H): MAX(H)_MlN(H)‘hiEH,izl,z,...A y (3) be expressed as

~ 1 N mg L
whereN(H)—[0,1] results in a vector of normalized val- GVFMkI—_1 2 E [LV(p,q)x— LV ] (11
ues. The greatest-integer functipm| of a number can be @127 Lp=n g=m

expressed as : . .
P where a; @, is the number of moving windows processed

lo]={8]6cZ, weR, s<w<s+1}, @ inside f(n,m),, anda,, a, are defined by
a1=N—2B1, aZZM_Zﬁz. (12)

whereZ represent the set of whole numbers.

In this approach, the best-in-focus image can be ex- From Eq.(9) and Eq.(10) we can obtain

pected to have a strong variation in pixel intensity leVel;

the image with highest contrast will be the best-in-focus Nj=B1+1, Ng=N—-pq,

image in the stack. In this context, if we calculate the glo- (13)

bal variance GY of eachf,, then G\, can be used to m=G,+1, M=M-—p,,

construct a focus measure, such that the best-in-focus im-

agefge will have the maximum calculated value 6fV,: andLV, the mean value of all local variances of the mov-
ing windows processed inside the imafye,m),, can be
for={f, where MAX(N(GVFM,)), (5)  expressed by
o 1 N Mg
where GVFM is a vector of GY values, calculated for v, = > > V(P (14)

eachf,. Here GVFM can be obtained by calculating the Q1&2p=n; q=m
local variance LVA,m), of a moving window of sizaw,

X w, for each pixelf(n,m),. Therefore,w,={2¢;+ 1&,
€Z",26+1=<N} and w,={2{+1]6,eZ7,26,+1
<M}, whereZ"={7|reZ,7>0} and &;, & are the di-
mensions of the moving window. The variance Vi),

can be computed for each displacement of the moving win-
dow across imagé(n,m),:

3 Autofocus Algorithms Based on
Differentiation

These methods are based on the use of first and second
derivatives. The objective of this approach is to find the
image with the sharpest edges; hence image gradients are
applied for calculating the focus meas@re.

1 wXy  wYo
LV(nm)y=—-—— > > [f(i,j)—LV(n,m) ] 3.1 Tenenbaum’s Algorithm (SOB-TEN)

wxwy_1i=wx1 j=wy, . . . L
6) This algorithm belongs to the first-derivative methods. In
1970, Tenenbaum developed a focus measure method based
— o _ . on obtaining the gradient magnitude from the Sobel
whereLV(n,m)y is the mean value of the pixel intensity in  gperator’ The resulting algorithm was called the Tenengrad

the moving window centered om(m), given by method, and it was considered the benchmark in this
field.”!° The best-focused imagisr in the stack can be
Xy Wy obtained for the expression
LV(nmy=—— > > (i, (7)
WxWyi=owx; j=wy; fge=1{fx where MAX(N(STFM,)), (15

Optical Engineering 063601-2 June 2005/Vol. 44(6)



Bueno-lbarra et al.: Fast autofocus algorithm . . .

where STFM is a vector of normalized maximum magni- 3.3 Second-Derivative Algorithm (LAP)

tudes calculated by the Tenengrad methodffar Another methodology for analyzing high spatial frequen-
cies associated with image border sharpness is the applica-
tion of the second-derivative methods. The simplest
STFM= >, >, [VS(h,m),J? for VS(n,m),>T, second-derivative operator, as shown by Rosenfeld and
n=2 m=2 Kak in 1982, is the Laplacian operafGrBy applying this
(16) operator to each imagg, in the stack, one can find the
best-in-focus imagégg:

N-1 M-1

whereT is a discrimination threshold value, aR&(n,m),
is the Sobel gradient magnitude value expressed by fee=1{f, where MAX(N(LFM,)) 23)

VS(n,m)=[VS(n,m)i+VS,(n,m)g]*? 17 where LFM, is a vector with normalized values found by
applying the Laplacian operatarwith convolution mask,

whereVS,(n,m),, VS,(n,m), are the outcome values ob-  defined by

tained from the Sobel convolution maskg, S, respec-

tively, defined by 1 0O -1 0
ng -1 4 -1). (24
-1 0 1 1 2 1 0 -1 0
S=|-2 0 2|, =l 0 0 0. (19
-1 0 1 -1 -2 -1 Thus, LFM, can be expressed as
N-1M-1
Thus, VS, (n,m),, VS,(n,m), can be expressed by LFM, = nZz mE:z IVL(n,m),, (25)

VS(n,m)={—[f(n—1m—1)+2f(n—1m) . .
where |VL(n,m),| is an absolute value of the Laplacian
+f(n=1m+1)]+[f(n+1m—-1) gradient defined by

+2f(n+1m)+f(n+1m+1)]},

(19 VL(n,m)k=%{4f(n,m)—[f(n—1,m)+f(n,m—l)
VS, (n,m)={+[f(n—1m—1)+2f(n,m—1)

+f(n+1m—-1)]—-[f(h—1m+1)
+2f(n,m+1)+f(n+1m+1)]}.

+f(n+1m)+f(n,m+1)]}. (26)

4 Autofocus Algorithms Based on the Gradient
Variance

3.2 Boddeke’s Algorithm (BOD) A complementary strategy is to calculate a gradient magni-

This algorithm also belongs to the first-derivative methods. {Ude variance, such as the Sobel-Tenengrad or the Laplac-
In 1994, Boddeke proposed a new focus-measure algorithmian magnitude gradient variance. This methodology defines
based on calculating a gradient magnitude value using a@ highly discriminating focus measure, increasing the ro-
one-dimensional convolution mask along thienage direc-  PUSINeSSs o NoIse.

tion only. The convolution mask was defined B,

=[—101]." This method is considered extremely simple 4.1  Sobel-Tenengrad Gradient Magnitude Variance

and provides a sharp, well-formed pe&kTherefore, the (SOB VAR)

best-in-focus imagége in the stack can be obtained as This new strategy was proposed by Pech-Pacheco and

Cristabal 1* The best-in-focus imaghsr in the stack based
on the Sobel-Tenengrad gradient magnitude variance will

_ ) ) be the image with highest variance in the sense
where BFM is a vector with normalized values. After us-

ing Boddeke’s convolution mask, on f,, BFM, can be fge={fx where MAX(N(STVFM,)), (27
expressed as

far={f, where MAX(N(BFM,)), (20)

where STVFM is a vector containing normalized values.

N-1 M After applying the Sobel-Tenengrad gradient algorithm and
BEM,= >, > [VB,(n,m),]?, (21) calculating its variance, defined in Sec. 3.1, STFd4n
n=2 m=1 be expressed as
whereV B, (n,m), is a value obtained by applyirigj to the N-1M-1 .
pixel location f1,m) in the image: STVFM= 22 22 [VS(n,m),—VS(n,m),]?
n=2 m=
VB, (n,m),=f(n+1m)—f(n—1m). (22 for VS(n,m),>T, (28

Optical Engineering 063601-3 June 2005/Vol. 44(6)
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4.2 Laplacian Gradient Magnitude Variance
Q1 Q (LAP VAR)

Continuing with these approaches, the best-in-focus image
fge in the stack, according to the Laplacian gradient mag-
nitude variance, will be the image with highest variafite,

in this context

fee={fx where MAX(N(LPVFM,)), (30

where LPVFM is a vector containing normalized values.
After applying the Laplacian gradient algorithm and calcu-
lating its variance, defined in Section 3.3, LPVEkan be
expressed as

N-1M-1
LPVFM, = 22 22 [VL(n,m),—VL(n,m)]? (3D)

whereVL(n,m), is the Laplacian gradient magnitude value
expressed by Eq26), andVL(n,m), is Laplacian magni-
| tude mean value, defined by

N-1M-1
[ 1
Fig. 1 Scan process pattern defined by vectors V, across one VL(nm)= ——%——%~ 2 2 VL(n,m)y. (32
sample captured image. (N=2)(M=2) i=2 m=2

5 New Autofocus Algorithm Based on
One-Dimensional Fourier Transform

whereT is a discrimination threshold valu&,S(n,m), is and Pearson Correlation (P'CQRR) .
the Sobel-Tenengrad gradient magnitude value expressed/Ve Propose here a new, fast algorithm to get the best-in-
by Eq.(17), andVS(n,m), is the Sobel-Tenengrad gradient focug |magefBF_, based on use of the Fourier transform to
magnitude mean value, defined by obtain the spatial frequency content of each captured image
in the stack, and the Pearson correlation to construct a nor-

1 N-1M-1 malized focus measure. When we work with digital images
VS(n,m)y= ————— > > VS(n,m),. (29 captured by CCD, these images are functions on the spatial
(N=2)(M=2) i=2 m=2 domain, so that we will work in the spatial domain instead
Construction of Getting the next image Determining the
stack from captured > from the stack p  captured image with
images fxy), the 1 value
k-
Y v 2
L3
H Next field to be
Definition of scan Processing the image oy captured
process pattern f(x,y), to obtain the FS\{, §
Vq vectors vector ©
3
[-3
§
] \ ©
Proccesing the image 12k ca'wm'i a‘:"‘g P“mc’f::tr i=k
reference to obtaln the -t from FSV. and FSV. >
FSV, vector Stors 1

Fig. 2 General proposed algorithm diagram.
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0 20 40 60 80 100 120

Image Stack Index

Fig. 3 Bright-field curves of 1—r with A=40 to 60 pixels, showing
the best-in-focus image and its index from the captured image stack.

of the time domain. Let us review some useful definitions:
The spatial-frequency one-dimensional Fourier transform
integral pair can be defined by the expressions

H(f):f:h(x)exp(—jZfo)dx (33
and
h(x)=J':H(f)exp(j27rfx)df. (39

Thus, in Eq.(33), H(f) is the spatial one-dimensional Fou-
rier transform ofh(x), and in Eq.(34), h(x) is the spatial
one-dimensional inverse Fourier transformtdff). Typi-
cally, h(x) is termed a function of the space variable and
H(f) is termed a function of the spatial frequency variable.
The linear correlation coefficient issometimes referred

Threshold

(1-r)

Best Focused
Images Region

80

60 100

Image Stack Index

40 120

Fig. 5 Dark-field curves of 1 —r with A=40 to 60 pixels, showing the
best-in-focus image and its index from the captured image stack.

moment correlation coefficient, or just the Pearson correla-
tion. It is a measure of intensity of association between two
variablesX and Y,}” and can be obtained from the expres-
sion

i

where 7 represents the number of pairs of data present.
The Pearson coefficiemtcan never be greater than 1.0
nor less than—1.0; therefore we usé| to measure the
intensity of associatioficorrelation between the two vari-
ablesX and Y. Obtaining a value of close to 0.0 means
that no correlation exists between the variables; obtaining a
value close to 1.0 means that a strong correlation exists

2X2Y

= XY
n
2
(2 X) HEYZ
n

(39
> X2—

(E Y)2“l/21

to as the simple correlation coefficient, the Pearson productbetween them.

38 40

Fig. 4 Bright-field images with similar Pearson coefficient values

1—-r.

Optical Engineering

063601-5

41

40

42

44 45 46 47

Fig. 6 Dark-field images with similar Pearson coefficient values
1-r.
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™ 4 .
e {

35

Fig. 7 Images inside the best-focus region obtained from the tested algorithms.

5.1 Fourier Transform and Pearson Correlation tured image and compare them by Pearson correlation with
Algorithm FSV, for the first captured imagg;(x,y), which is called
Once we have built a stack of captured images, the pro- the image reference and chosen to be the most out-of-focus

posed algorithm processes a group @fvectorsV,, q image. Thus we obtaifigg that minimizes the Pearson cor-

=1,...Q, which are spatially equidistant. They constitute a rélation coefficientr. The most out-of-focus image will
scan process pattern corresponding to each captured imagB82ve a lower correlation value thage . In this contextf g
f(x,y). In Fig. 1,A denotes the distance between adjacent ¢an be obtained as

vectors. Thus the algorithm does not process the entire im-
age, only the pattern defined. The number of vect@s,

can be calculated &=|N/A |+ 1, where{N/A| is, accord- fer={fi where MINN(r), (37

ing to Eq. (4), a whole number. The vectol¢, can be

computed by wherer, is a vector containing normalized values of the
correlationr.

Vi=f(1yo. - Ymk, In Eq. (35) we takeX=FSV; and Y=FSV, for each
computation of the Pearson coefficient and » as the

Vo=f(1+A,Y0, - Ym)ks--o (36) length of the vectorsX and Y. Figure 1 shows the scan
process pattern defined by vectdtsaccording to Eq(36).

Vg=f((q=1)A+1yo,...ym)k- We can control the spacing of thg, by changing the value

_ ) of variableA. Letting A—1, we will have more vectors to
Comput|r219 the Fouzrler power ;spectrum (?f tg, we compute; lettingA —N, we will have fewer, and the algo-
get [Hy(f)|% [Ho(f)|%... [Hq(f)|%, respectively. With  yithm will be less sensitive to details of the sample. In the
these Fourier spectrum vectors, containing the high and |0Wexperiments we use differeAtvalues and obtain graphs of
frequencies of the vector¢,, we build a unique concat-  the corresponding algorithm sensitivities for use in decid-
enated Fourier power spectrum vector RStdr the cap- ing on the final focused image. Finally, Fig. 2 shows a

tured imagef(x,y),. We compute FSYfrom each cap-  general diagram of the algorithm proposed.

Table 1 Execution-time performance results and fze image indices obtained.

Res. 522x387 1044 X775 1566%x1162 2088x1550
Best-in- Execution Best-in- Execution Best-in- Execution Best-in- Execution

focus time focus time focus time focus time
Algorithm image (s) image (s) image (s) image (s)
GBL VAR 30 1603 31 6762 31 15513 32 27703
SOB TEN 32 365 34 1474 34 3354 34 5997
BOD 33 72 34 282 34 659 34 1181
LAP 41 130 41 509 41 1174 44 2103
SOB VAR 33 374 41 1461 34 3303 34 5843
LAP VAR 34 150 34 560 35 1281 34 2311
P.CORR 29 5 30 13 30 52 30 111

(this study)

Optical Engineering 063601-6 June 2005/Vol. 44(6)
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Algorithms time execution performance plot

30,000 +
2088 x 1550

=

25,000

——LAP VAR

105000 / —e—P. CORR
1044 x 775
5,000 —X
522 M
%

@

Q

8 20,000

» —o— GBL VAR
§ 1566 x 1162 = SOB-TEN
O 15,000 —a— BOD

o —o—LAP

= —X— SOB VAR
°

o

o

E

'_

01— °
0.2 08 1.8 3.2
Image Resolution (Mpixels)
Fig. 8 Graphs of execution time for the tested algorithms.
6 Computational Experiments inside the region where we seek the best-in-focus image.

Figures 5 and 6 show similar results to those we ob-
tained before. The main difference is that we work with
f dark-field images. We observe that the algorithm can find
: : the best-in-focus image with the same values of the vari-
biological samples were used for measurement of compu ables. In this situation, we can declare that this algorithm

tational process times; namely dark- and bright-field im- . o romatically in both types of fields without an
ages were captured from the same biological organism. The y yp . y
second kind of experiments were to measure the computa-.Change' To_determme_ the best—focus region, we propose to
tional process times of every algorithm described in the Nclude all images with normalized focus measurerk
preceding section. For these, an entirely new set of biologi- 9réater than a thresholtber. The imaged  selected from

Two kinds of computer experiments were developed. The
first kind were related to gettindge with the proposed
algorithm. To test the algorithm, independent images o

cal images were captured. the stack to be inside the focusing region can be determined
by the heuristic discrimination rule-1r, =Tggr, Namely,
6.1 Experiments Related to Getting fge from the 1-r,=0.95.
Proposed Algorithm

Generally, when we are manually focusing on a sample . )
under a microscope, several images close to the focus poin-2 Experiments Related to Measuring the
can be suitable candidates for the best focus. Our choice Computational Process Times of Algorithms
will depend on external factors, such as our vision, the To measure the proposed algorithm's performance and
microscope lenses, the illumination, and the sample itself; compare it with that of the algorithms cited in Sec. 5, we
but at last we select one as best. The method proposectaptured four stacks with 60 images per stack of a new
operates in the same way that we do: it decides what biological sample, where every image in the stack was
is the best image to display, by checking the Pearson coef-taken at different pixel resolution: 5887, 1044775,
ficientr. 1566x1162, and 20881550. Thus, we have images with
Figure 3 shows the curves of-Ir when we change the  sizes of 0.2, 0.8, 1.8, and 3.2 megapixels, respectively.
A value in the range 40 to 60 pixels with increments of 5 The moving-window size used in the global variance
pixels. It is important to mention thdt=60 means that just  algorithm was 2% 25 pixels to increase the algorithm sen-
nine vectorsV, were processed. We observe that all peaks sitivity. In this case, the control moving-window size vari-
of the graphs are inside the best-in-focus image region. ables¢,, &, were both initialized at 12. Finally, the spacing
WhenA — N the algorithm runs faster but we lose sensitiv- A of the vectorsV, in our proposed algorithm was initial-
ity, so that we cannot find the best-in-focus image. The ized at 35 pixels to be compatible with the moving-window
graphics from the experiments show that 36th image index size in the global variance algorithm. No more initialized
has the best decorrelation value. variables were needed to get the final results. The equip-
The difference between the images shown in the best-ment used for the tests was a 2.5-GHz PC Pentium 4 with
focus region(Fig. 4) is not noticeable. These images are all 1-Gbyte RAM and 80-Gbyte hard disk.

Optical Engineering 063601-7 June 2005/Vol. 44(6)
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Figure 7 shows the images inside the best-focus region  cusing in microscopy based on the OTF and sampliéoimaging2,

; ; : 193-203(1994.
obtained from the tested algorithms. Table 1 summarizes 12.'S. L. Ellenberger and I. T. Young, “Microscope image acquisition.” in

.the eXGCUtipn'time performaﬂce_ results and tgeimage Image Processing and AnalysiR. Baldock and J. Graham, Eds.,
index obtained from the algorithms tested. We can see  Oxford Univ. Press, Oxford1998. o
clearly that the proposed algorithm has the best execution!3: J. L. Pech-Pacheco and G. Crisb “Diatom autofocusing in bright
time and that the resultingg. is inside the best-focus re- field microscopy: a comparative study,” Proc. Int. Conf. on Pattern

' ) BF ] ’ Recognition Vol. 3, pp. 318-321, IEEE Computer Soc., Los Alami-
gion. One exception was the Laplacian algorithm, where tos, CA(2000.
fBF was out of the best-focus region. However, when the 14. E. O. BrighamThe Fast Fourier Transfo'\r{m aréd Its Applicatignsp.

. . . - . 9-11, Prentice-Hall, Englewood Cliffs, N1988.
Laplacian gradient magnitude variance algorithm was used, ;5 g ‘Gontez and R. Woodspigital Image Processing2nd ed., pp.
the fg¢ found was inside the best-focus region. Finally, Fig. 125, 128-130, 151-152, Prentice-H&D02).
8 shows graphs of the execution time, where we can seel6. J. RussThe Image Processing HandbqdaBRC Press, Boca Raton,
! . FL (1995.

Clearly that the propose_d aIgonth(ﬁ.CORR is the fastest 17. J. H. ZarBiostatistical Analysis3rd ed., pp. 371-373, Prentice-Hall
among the tested algorithms. (1998.

7 Conclusions and Future Work

The proposed focusing method offers significant improve-
ments in accuracy, robustness, and speed, and is suitable fo
implementation in real-time processing; besides, it can pro-
cess different types of environments with respect to illumi-
nation, bright or dark field, and image resolution. Further
work will include incorporating fusion techniques in the
proposed algorithm to improve the final image quality; this
can be done by finding the optimum threshold value
whereby we can combine the images inside the focusing
region to construct a new, final high-quality image. For this
purpose, studies are needed to design and test new sca
process patterns and kernels, based on the Fourier trans
form, for incorporation in the proposed algorithm.
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