Raman scattering from fully strained $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}(x \leqslant 0.22)$ alloys grown on $\mathrm{Ge}(001) 2 \times 1$ by low-temperature molecular beam epitaxy

M. Rojas-López and H. Navarro-Contreras
Instituto de Investigación en Communicación Optica, Universidad Autónoma de San Luis Potosí, S.L.P., Alvaro Obregón 64, San Luis Potosí, S.L.P. Mexico 78000
P. Desjardins, O. Gurdal, N. Taylor, J. R. A. Carisson, and J. E. Greene ${ }^{\text {a) }}$
Materials Science Department, the Coordinated Science Laboratory, and the Materials Research Laboratory, University of Illinois, 1101 W. Springfield Avenue, Urbana, Illinois 61801

(Received 6 April 1998; accepted for publication 20 May 1998)

Abstract

Fully strained single-crystal $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ alloys ($x \leqslant 0.22$) deposited on $\mathrm{Ge}(001) 2 \times 1$ by low-temperature molecular beam epitaxy have been studied by Raman scattering. The results are characterized by a Ge-Ge longitudinal optical (LO) phonon line, which shifts to lower frequencies with increasing x. Samples capped with a 200 - \AA-thick Ge layer exhibit a second $\mathrm{Ge}-\mathrm{Ge}$ LO phonon line whose position remains close to that expected from bulk Ge. For all samples, capped and uncapped, the frequency shift $\Delta \omega_{\mathrm{GeS}}$ of the $\mathrm{Ge}-\mathrm{Ge}$ LO phonon line from the $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ layer, with respect to the position for bulk Ge , is linear with the Sn fraction $x\left(\Delta \omega_{\mathrm{GeSn}}=-76.8 x \mathrm{~cm}^{-1}\right)$ over the entire composition range. Using the elastic constants, the Grüneisen parameter, and the shear phonon deformation parameter for Ge , we calculate the contribution of compressive strain to the total frequency shift to be $\Delta \omega_{\text {strain }}=63.8 x \mathrm{~cm}^{-1}$. Thus, the LO phonon shift in $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ due to substitutional-Sn-induced bond stretching in fully relaxed alloys is estimated to be $\Delta \omega_{\text {bond }}$ $=-140.6 x \mathrm{~cm}^{-1}$. © 1998 American Institute of Physics. [S0021-8979(98)09816-8]

I. INTRODUCTION

$\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ and related alloys are of interest due to the potential they offer for developing totally group-IV-based optoelectronic materials systems. $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ is predicted to exhibit a direct band gap in unstrained alloys, tunable from $=0.55$ to 0 eV with x ranging from 0.20 to 0.65 as the Γ point conduction-band minimum decreases more rapidly than the L-point valleys. ${ }^{1-4}$ Moreover, the presence of compressive strain is expected to decrease the Sn concentration at which the indirect $L_{6}^{+} \rightarrow \Gamma_{8}^{+}$to direct $L_{7}^{-} \rightarrow \Gamma_{8}^{+}$band-gap crossover is observed. ${ }^{5}$ The growth of these alloys, however, presents severe challenges. The equilibrium solid solubility of Sn in Ge is less than $1 \mathrm{at} . \%$ (Ref. 6) and Sn has a very strong tendency to surface segregate, ${ }^{7,8}$ both of these effects arguing for deposition at low temperatures. An additional obstacle to be overcome in the epitaxial growth of $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ on Ge is that the lattice constant mismatch between $\alpha-\mathrm{Sn}$ ($a_{\alpha-\mathrm{Sn}}=6.4892 \AA$) and $\mathrm{Ge}\left(a_{\mathrm{Ge}}=5.6579 \AA\right.$) is 14.7%.

We have recently demonstrated low-temperature molecular beam epitaxy (MBE) of $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ alloys ${ }^{9}$ and $\mathrm{Ge} / \mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ superlattices ${ }^{10}$ with x up to 0.26 . Film growth temperatures T_{s} were limited to a very narrow range around $100^{\circ} \mathrm{C}$ by the combination of increased kinetic roughening at lower growth temperatures and Sn surface segregation at higher temperatures. Growth at such low temperatures, however, introduces a limit to the thickness of epitaxial material that can be grown prior to epitaxial breakdown. Based upon reflection high-energy electron diffraction (RHEED) and cross-sectional transmission electron microscopy (XTEM)

[^0]analyses, critical epitaxial thicknesses $t_{\text {epi }}$, defined as the onset of amorphous growth, were found to decrease from 1080 \AA for pure Ge to $330 \AA$ for $\mathrm{Ge}_{0.91} \mathrm{Sn}_{0.09}$ to $35 \AA$ for $\mathrm{Ge}_{0.74} \mathrm{Sn}_{0.26}$.

Very little is known about the optical properties of Ge rich $\mathrm{Ge}_{\mathrm{I}-x} \mathrm{Sn}_{x}$ alloys. He and Atwater ${ }^{11}$ recently used optical absorption spectroscopy to probe the room-temperature band-gap E_{g} of relaxed $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ layers grown on Ge buffer layers on $\mathrm{Si}(001)$. They found that E_{g} remains indirect (although the difference between the direct and indirect gaps was within experimental uncertainty) for alloys with x $=0.06$ and 0.11 while the band gap of $\mathrm{Ge}_{0.85} \mathrm{Sn}_{0.15}$ was direct with $E_{g}=0.35 \mathrm{eV}$. Raman scattering experiments performed on Sn -rich alloys ($x \geqslant 0.92$) revealed $\mathrm{Sn}-\mathrm{Sn}$ and $\mathrm{Ge}-\mathrm{Sn}$ longitudinal optical (LO) phonon peaks near 190-200 and $215-225 \mathrm{~cm}^{-1}$, respectively. ${ }^{12}$ The frequency of the $\mathrm{Ge}-\mathrm{Sn}$ peak decreases with increasing Sn fraction in the alloy. A splitting in the Ge LO mode was reported for strained Gerich $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}(0.03<x<0.10)$ layers grown on $\mathrm{Ge}(001) .{ }^{13}$ The Raman spectra from $\mathrm{Sn} / \mathrm{Ge}$ short-period superlattices are primarily characterized by zone-folded longitudinal acoustic phonons whose frequencies depend upon the superlattice period. However, due to significant intermixing between the Sn and Ge layers, $\mathrm{Sn}-\mathrm{Sn}, \mathrm{Ge}-\mathrm{Sn}$, and $\mathrm{Ge}-\mathrm{Ge}$ LO phonon peaks were also detected near $180,230-260$, and $300 \mathrm{~cm}^{-1}$, respectively. ${ }^{8,14,15}$

In this article, we present the results of Raman scattering measurements carried out on fully strained Ge-rich $\mathrm{Ge}_{1-x} \mathrm{Sn}_{x}$ alloys grown on $\mathrm{Ge}(001) 2 \times 1$ by MBE at T_{s} $=60-100^{\circ} \mathrm{C}$. Single-layer alloy samples exhibit a $\mathrm{Ge}-\mathrm{Ge}$ LO phonon peak at a frequency $\omega_{\text {GeSn }}$, which decreases with

[^0]: ${ }^{\text {a/ }}$ Electronic mail: jegreene@uiuc.edu

