Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/14685
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorIsmael, López-Juárez-
dc.contributor.authorReyes, Rios-Cabrera-
dc.contributor.authorMario, Peña-Cabrera-
dc.contributor.authorGerardo, Maximiliano Méndez-
dc.contributor.authorRomán, Osorio-
dc.date.accessioned2013-03-23T01:21:47Z-
dc.date.available2013-03-23T01:21:47Z-
dc.date.issued2010-12-10-
dc.identifier.citationRevista Computación y Sistemas; Vol. 16 No. 4es
dc.identifier.issn1405-5546-
dc.identifier.urihttp://www.repositoriodigital.ipn.mx/handle/123456789/14685-
dc.description.abstractAbstract: Working in unstructured assembly robotic environments, i.e. with unknown part location; the robot has to accurately not only to locate the part, but also to recognize it in readiness for grasping. The aim of this research is to develop a fast and robust approach to accomplish this task. We propose an approach to aid the learning of assembly parts on-line. The approach which is based on ANN and a reduced set of recurrent training patterns which speed up the recognition task compared with our previous work is introduced. Experimental learning results using a fast camera are presented. Some simple parts (i.e. circular, squared and radiused-square) were used for comparing different connectionist models (Backpropagation, Perceptron and FuzzyARTMAP) and to select the appropriate model. Later during experiments, complex figures were learned using the chosen FuzzyARTMAP algorithm showing a 93.8% overall efficiency and 100% recognition rate. Recognition times were lower than 1 ms, which clearly indicates the suitability of the approach to be implemented in real-world operations.es
dc.description.sponsorshipInstituto Politécnico Nacional - Centro de Investigación en Computación (CIC).es
dc.language.isoen_USes
dc.publisherRevista Computación y Sistemas; Vol. 16 No. 4es
dc.relation.ispartofseriesRevista Computación y Sistemas;Vol. 16 No. 4-
dc.subjectKeywords: Artificial neural networks, invariant object recognition, machine vision, robotics.es
dc.titleFast Object Recognition for Grasping Tasks using Industrial Robotses
dc.title.alternativeReconocimiento rápido de objetos para tareas de agarre usando robots industrialeses
dc.typeArticlees
dc.description.especialidadInvestigación en Computaciónes
dc.description.tipoPDFes
Aparece en las colecciones: Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
421_Art. 4_ 96.pdf1.02 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.