Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/14685
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Ismael, López-Juárez | - |
dc.contributor.author | Reyes, Rios-Cabrera | - |
dc.contributor.author | Mario, Peña-Cabrera | - |
dc.contributor.author | Gerardo, Maximiliano Méndez | - |
dc.contributor.author | Román, Osorio | - |
dc.date.accessioned | 2013-03-23T01:21:47Z | - |
dc.date.available | 2013-03-23T01:21:47Z | - |
dc.date.issued | 2010-12-10 | - |
dc.identifier.citation | Revista Computación y Sistemas; Vol. 16 No. 4 | es |
dc.identifier.issn | 1405-5546 | - |
dc.identifier.uri | http://www.repositoriodigital.ipn.mx/handle/123456789/14685 | - |
dc.description.abstract | Abstract: Working in unstructured assembly robotic environments, i.e. with unknown part location; the robot has to accurately not only to locate the part, but also to recognize it in readiness for grasping. The aim of this research is to develop a fast and robust approach to accomplish this task. We propose an approach to aid the learning of assembly parts on-line. The approach which is based on ANN and a reduced set of recurrent training patterns which speed up the recognition task compared with our previous work is introduced. Experimental learning results using a fast camera are presented. Some simple parts (i.e. circular, squared and radiused-square) were used for comparing different connectionist models (Backpropagation, Perceptron and FuzzyARTMAP) and to select the appropriate model. Later during experiments, complex figures were learned using the chosen FuzzyARTMAP algorithm showing a 93.8% overall efficiency and 100% recognition rate. Recognition times were lower than 1 ms, which clearly indicates the suitability of the approach to be implemented in real-world operations. | es |
dc.description.sponsorship | Instituto Politécnico Nacional - Centro de Investigación en Computación (CIC). | es |
dc.language.iso | en_US | es |
dc.publisher | Revista Computación y Sistemas; Vol. 16 No. 4 | es |
dc.relation.ispartofseries | Revista Computación y Sistemas;Vol. 16 No. 4 | - |
dc.subject | Keywords: Artificial neural networks, invariant object recognition, machine vision, robotics. | es |
dc.title | Fast Object Recognition for Grasping Tasks using Industrial Robots | es |
dc.title.alternative | Reconocimiento rápido de objetos para tareas de agarre usando robots industriales | es |
dc.type | Article | es |
dc.description.especialidad | Investigación en Computación | es |
dc.description.tipo | es | |
Aparece en las colecciones: | Revistas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
421_Art. 4_ 96.pdf | 1.02 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.