Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/14982
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorChávez, R. Omar-
dc.contributor.authorMontes, Manuel-
dc.contributor.authorSucar, L. Enrique-
dc.date.accessioned2013-04-10T00:09:52Z-
dc.date.available2013-04-10T00:09:52Z-
dc.date.issued2011-06-06-
dc.identifier.citationRevista Computación y Sistemas; Vol. 14 No. 4es
dc.identifier.issn1405-5546-
dc.identifier.urihttp://www.repositoriodigital.ipn.mx/handle/123456789/14982-
dc.description.abstractAbstract. We propose a novel method to re-order the list of images returned by an image retrieval system (IRS). The method combines the original order obtained by the IRS, the similarity between images obtained with visual and textual features, and a relevance feedback approach, all of them with the purpose of separating relevant from irrelevant images, and thus, obtaining a more appropriate order. The method is based on a Markov random field (MRF) model, in which each image in the list is represented as a random variable that could be relevant or irrelevant. The energy function proposed for the MRF combines two factors: the similarity between the images in the list (internal similarity); and information obtained from the original order and the similarity of each image with the query (external similarity). Experiments were conducted with resources from the Image CLEF 2008 forum for the photo retrieval track, taking into account textual and visual features. The results show that the proposed method improves, according to the MAP measure, the order of the original list up to 63% (in the textual case) and up to 55% (in the visual case); and suggest future work using a combination of both kind of features.es
dc.description.sponsorshipInstituto Politécnico Nacional - Centro de Investigación en Computación (CIC).es
dc.language.isoen_USes
dc.publisherRevista Computación y Sistemas; Vol. 14 No. 4es
dc.relation.ispartofseriesRevista Computación y Sistemas;Vol. 14 No. 4-
dc.subjectKeywords. Image Re-ranking, Image Retrieval, Markov Random Field, Relevance Feedback.es
dc.titleUsing a Markov Random Field for Image Re-ranking Based on Visual and Textual Featureses
dc.title.alternativeUtilizando un Campo Aleatorio de Markov para el Reordenamiento de Imágenes Basado en Atributos Visuales y Textualeses
dc.typeArticlees
dc.description.especialidadInvestigación en Computaciónes
dc.description.tipoPDFes
Aparece en las colecciones: Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
393_5_599_10.pdf955.41 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.