Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/15421
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Martínez Trinidad, José Fco. | - |
dc.contributor.advisor | Carrasco Ochoa, Carrasco Ochoa | - |
dc.contributor.author | Hernández Rodríguez, Selene | - |
dc.date.accessioned | 2013-04-25T17:23:53Z | - |
dc.date.available | 2013-04-25T17:23:53Z | - |
dc.date.issued | 2010-09-30 | - |
dc.identifier.citation | Revista Computación y Sistemas; Vol. 14 No.1 | es |
dc.identifier.issn | 1405-5546 | - |
dc.identifier.uri | http://www.repositoriodigital.ipn.mx/handle/123456789/15421 | - |
dc.description.abstract | Abstract. The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast k-NN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototype comparisons. Hence, the existing fast k-NN classifiers are applicable only when the comparison function is a metric (commonly for numerical data). However, in some sciences such as Medicine, Geology, Sociology, etc., the prototypes are usually described by qualitative and quantitative features (mixed data). In these cases, the comparison function does not necessarily satisfy metric properties. For this reason, it is important to develop fast k most similar neighbor (k-MSN) classifiers for mixed data, which use non metric comparisons functions. In this thesis, four fast k-MSN classifiers, following the most successful approaches, are proposed. The experiments over different datasets show that the proposed classifiers significantly reduce the number of prototype comparisons. | es |
dc.description.sponsorship | Instituto Politécnico Nacional - Centro de Investigación en Computación (CIC). | es |
dc.language.iso | en_US | es |
dc.publisher | Revista Computación y Sistemas; Vol. 14 No.1 | es |
dc.relation.ispartofseries | Revista Computación y Sistemas;Vol. 14 No.1 | - |
dc.subject | Keywords. Nearest neighbor rule, fast nearest neighbor search, mixed data, non-metric comparison functions. | es |
dc.title | Fast Most Similar Neighbor (MSN) classifiers for Mixed Data | es |
dc.title.alternative | Clasificadores Rápidos basados en el Algoritmo del Vecino más Similar (MSN) para Datos Mezclados | es |
dc.type | Other | es |
dc.description.especialidad | Investigación en Computación | es |
dc.description.tipo | es | |
Aparece en las colecciones: | Revistas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESIS14-1.pdf | Report on PhD Thesis de la Revista Computación y Sistemas; Vol. 14 No. 1 | 393.36 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.