Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/15421
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorMartínez Trinidad, José Fco.-
dc.contributor.advisorCarrasco Ochoa, Carrasco Ochoa-
dc.contributor.authorHernández Rodríguez, Selene-
dc.date.accessioned2013-04-25T17:23:53Z-
dc.date.available2013-04-25T17:23:53Z-
dc.date.issued2010-09-30-
dc.identifier.citationRevista Computación y Sistemas; Vol. 14 No.1es
dc.identifier.issn1405-5546-
dc.identifier.urihttp://www.repositoriodigital.ipn.mx/handle/123456789/15421-
dc.description.abstractAbstract. The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast k-NN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototype comparisons. Hence, the existing fast k-NN classifiers are applicable only when the comparison function is a metric (commonly for numerical data). However, in some sciences such as Medicine, Geology, Sociology, etc., the prototypes are usually described by qualitative and quantitative features (mixed data). In these cases, the comparison function does not necessarily satisfy metric properties. For this reason, it is important to develop fast k most similar neighbor (k-MSN) classifiers for mixed data, which use non metric comparisons functions. In this thesis, four fast k-MSN classifiers, following the most successful approaches, are proposed. The experiments over different datasets show that the proposed classifiers significantly reduce the number of prototype comparisons.es
dc.description.sponsorshipInstituto Politécnico Nacional - Centro de Investigación en Computación (CIC).es
dc.language.isoen_USes
dc.publisherRevista Computación y Sistemas; Vol. 14 No.1es
dc.relation.ispartofseriesRevista Computación y Sistemas;Vol. 14 No.1-
dc.subjectKeywords. Nearest neighbor rule, fast nearest neighbor search, mixed data, non-metric comparison functions.es
dc.titleFast Most Similar Neighbor (MSN) classifiers for Mixed Dataes
dc.title.alternativeClasificadores Rápidos basados en el Algoritmo del Vecino más Similar (MSN) para Datos Mezcladoses
dc.typeOtheres
dc.description.especialidadInvestigación en Computaciónes
dc.description.tipoPDFes
Aparece en las colecciones: Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESIS14-1.pdfReport on PhD Thesis de la Revista Computación y Sistemas; Vol. 14 No. 1393.36 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.