Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/16614
Título : | Optimizing Selection of Assessment Solutions for Completing Information Extraction Results |
Otros títulos : | Optimización de selección de soluciones de evaluación para completar los resultados de recuperación de información |
Autor : | Feilmayr, Christina |
Palabras clave : | Keywords. Information extraction, information quality, method selection, data and text mining. |
Fecha de publicación : | 7-jun-2013 |
Editorial : | Revista Computación y Sistemas; Vol. 17 No.2 |
Citación : | Revista Computación y Sistemas; Vol. 17 No.2 |
Citación : | Revista Computación y Sistemas;Vol. 17 No.2 |
Resumen : | Abstract. Incomplete information produces serious consequences in information extraction: it increases costs and leads to problems in downstream processing. This work focuses on improving the completeness of extraction results by applying judiciously selected assessment methods to information extraction based on the principle of complementarity. Our recommendation model simplifies the selection of assessment methods which can overcome a specific incompleteness problem. This paper also focuses on the characterization of information extraction and assessment methods as well as on a rule-based approach that allows estimation of general processability, profitability in the complementarity approach, and the performance of an assessment method under evaluation. |
URI : | http://www.repositoriodigital.ipn.mx/handle/123456789/16614 |
ISSN : | 1405-5546 |
Aparece en las colecciones: | Revistas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
169_ART 6.pdf | 572.1 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.