Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/17227
Título : Solving Multiple Queries through a Permutation Index in GPU
Otros títulos : Resolución de múltiples consultas usando índice de permutación en GPU
Autor : Lopresti, Mariela
Miranda, Natalia
Piccoli, Fabiana
Reyes, Nora
Palabras clave : Keywords. Metric space, approximate similarity search, permutation index, high performance computing, GPU.
Fecha de publicación : 11-sep-2013
Editorial : Revista Computación y Sistemas; Vol. 17 No.3
Citación : Revista Computación y Sistemas; Vol. 17 No.3
Citación : Revista Computación y Sistemas;Vol. 17 No. 3
Resumen : Abstract. Query-by-content by means of similarity search is a fundamental operation for applications that deal with multimedia data. For this kind of query it is meaningless to look for elements exactly equal to the one given as query. Instead, we need to measure dissimilarity between the query object and each database object. The metric space model is a paradigm that allows modeling all similarity search problems. Metric databases permit to store objects from a metric space and efficiently perform similarity queries over them, in general, by reducing the number of distance evaluations needed. Therefore, the goal is to preprocess a particular dataset in such a way that queries can be answered with as few distance computations as possible. Moreover, for a very large metric database it is not enough to preprocess the dataset by building an index, it is also necessary to speed up the queries via high performance computing using GPU. In this work we show an implementation of a pure GPU architecture to build a Permutation Index used for approximate similarity search on databases of different data nature and to solve many queries at the same time. Besides, we evaluate the tradeoff between the answer quality and time performance of our implementation.
URI : http://www.repositoriodigital.ipn.mx/handle/123456789/17227
ISSN : 1405-5546
Aparece en las colecciones: Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
341_Art. 5_VOL. 17 NO 3.pdf1.16 MBAdobe PDFVisualizar/Abrir

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.