Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/17239
Título : | A New LU Decomposition on Hybrid GPU-Accelerated Multicore Systems |
Otros títulos : | Una nueva descomposición LU calculada en sistemas multi-core acelerados con GPU |
Autor : | González, Héctor Eduardo Carmona, Juan |
Palabras clave : | Keywords. New LU theorem, Cramer rule, Gauss elimination, Laplace expansion, determinants, GPU, multicore systems. |
Fecha de publicación : | 11-sep-2013 |
Editorial : | Revista Computación y Sistemas; Vol. 17 No.3 |
Citación : | Revista Computación y Sistemas; Vol. 17 No.3 |
Citación : | Revista Computación y Sistemas;Vol. 17 No.3 |
Resumen : | Abstract. In this paper, we postulate a new decomposition theorem of a matrix A into two matrices, namely, a lower triangular matrix M, in which all entries are determinants, and an upper triangular matrix U whose entries are also in determinant form. From a well-known theorem on the pivot elements of the Doolittle-Gauss elimination process, we deduce a corollary to obtain a diagonal matrix D. With it, we scale the elementary lower triangular matrix of the Doolittle-Gauss elimination process and deduce a new elementary lower triangular matrix. Applying this linear transformation to A by means of both minimum and complete pivoting strategies, we obtain the determinant of A as if it had been calculated by means of a Laplace expansion. If we apply this new linear transformation and the above pivot strategy to an augmented matrix (A|b), we obtain a Cramer’s solution of the linear system of equations. |
URI : | http://www.repositoriodigital.ipn.mx/handle/123456789/17239 |
ISSN : | 1405-5546 |
Aparece en las colecciones: | Revistas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
413_ART. 11_VOL. 17 No 3.pdf | 361.68 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.