Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodigital.ipn.mx/handle/123456789/19985
Autor : Clepner Kerik, Julio Bernardo
Palabras clave : Lyapunov game
Lyapunov equilibrium point
forward decision process
Fecha de publicación : 2011
Editorial : International Journal of applied mathematics and computer science, Vol. 21, No. 2
Resumen : We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by the sink of the game graph. It is important to note that in previous works this convergence has not been guaranteed even if the Nash equilibrium point exists. The best reply dynamics result in a natural implementation of the behavior of a Lyapunov-like function. Therefore, a Lyapunov game has also the benefit that it is common knowledge of the players that only best replies are chosen. By the natural evolution of a Lyapunov-like function, no matter what, a strategy played once is not played again. As a construction example, we show that, for repeated games with bounded nonnegative cost functions within the class of differentiable vector functions whose derivatives satisfy the Lipschitz condition, a complex vector-function can be built, where each component is a function of the corresponding cost value and satisfies the condition of the Lyapunov-like function. The resulting vector Lyapunov-like function is a monotonic function which can only decrease over time. Then, a repeated game can be represented by a one-shot game. The functionality of the suggested method is successfully demonstrated by a simulated experiment.
URI : http://www.repositoriodigital.ipn.mx/handle/123456789/19985
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
amc21211.pdf461.62 kBAdobe PDFVisualizar/Abrir

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.