Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/7017
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Díaz de León, Juan Luís | - |
dc.contributor.author | Salgado Rámirez, Julio César | - |
dc.date.accessioned | 2012-09-26T00:18:06Z | - |
dc.date.available | 2012-09-26T00:18:06Z | - |
dc.date.issued | 2011 | - |
dc.identifier.uri | http://www.repositoriodigital.ipn.mx/handle/123456789/7017 | - |
dc.description | Doctorado en Ciencias de la Computación | es |
dc.description.abstract | El presente trabajo de tesis muestra un nuevo modelo de memoria heteroasociativa min robusta al ruido mezclado; este modelo se basa en la obtención de un kernel que cumple con las condiciones suficientes para garantizar la recuperación completa de patrones. La creación del kernel se basa en el conocimiento de la distribución real del ruido de adquisición en imágenes binarias y en tonos de gris; como este tipo de ruido, es mezclado y se distribuye por los bordes de la imagen (esto se demuestra en esta tesis), la transformada de distancia permite medir qué tanto el ruido se aleja o se acerca de los bordes; por lo tanto, la transformada de distancia permite construir un kernel. Este trabajo, además, presenta una forma ingeniosa de modelar el ruido de adquisición a través de la transformada rápida de distancia y muestra probabilísticamente cómo un kernel, aunque sea afectado con ruido, es capaz de recuperar completamente los patrones aprendidos, situación que no permite el modelo original propuesto por Ritter, Sussner y Díaz de León. // The current thesis work shows an new model of robust heteroassociative min to mixed noise; this model is based on the getting of a kernel which successfully fulfills enough conditions to guarantee the complete recovery of patterns. The creation of this kernel is based on the knowledge of distribution of real noise acquired in binarial and gray toned images; since this kind of noise is mixed and distributed by the image borders (shown in the current work), the distance transformation allows us to measure how far or close a noise gets to the borders; thus this distance transformation allows the construction of a kernel. This work, besides, presents a genius way to model the noise acquisition through this fast process, and shows probabilistically how a kernel, even affected by a noise, is able to recover the learned patterns, which the original model proposed by Ritter, Sussner and Díaz de León is unable to perform. | es |
dc.description.sponsorship | Instituto Politécnico Nacional. CIC | es |
dc.language.iso | es | es |
dc.publisher | Instituto Politécnico Nacional. Centro de Investigación en Computación | es |
dc.subject | Pattern recognition systems (Data processing) | es |
dc.subject | Image processing (Data processing) | es |
dc.title | Memorias asociativas en álgebra min y max robustas a ruido mezclado | es |
dc.type | Thesis | es |
dc.description.especialidad | Físico-Matemáticas | es |
dc.description.tipo | es | |
Aparece en las colecciones: | Doctorado |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Tesis 12351.pdf | 7.64 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.