

DESALINATION

Desalination 217 (2007) 85-92

www.elsevier.com/locate/desal

Calcium carbonate scale inhibition using the "allotropic cell" device

E. López-Sandoval^a, C. Vázquez-López^{a*}, B.E. Zendejas-Leal^a, G. Ramos^b, E. San Martín-Martínez^c, N. Muñoz Aguirre^d, E. Reguera^e

^aDepto. de Física del Cinvestav-IPN, Apdo. postal 14-740, México 07000, D.F. México
 Tel. +52 (55) 5061-3800; Fax: +52 (55) 5061-3388; email: cvlopez@fis.cinvestav.mx
^bCicata-IPN, Cerro Blanco 141, Col. Colinas del Cimatario, C.P. 76090, Queretaro, Qro, México
 ^cCicata-IPN, Calzada Legaria No. 694, Col Irrigación, México 11500, D.F. México
^dPrograma de Ingeniería Molecular del Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152,
 Col. San Bartolo Atepehuacan, México 07730, D.F. México
^eInstitute of Materials and Reagents, University of Havana, San Lazaro and L. Vedado, 10400 Havana, Cuba

Received 11 July 2006; Accepted 18 February 2007

Abstract

A study of the scale inhibition in water solutions induced by a galvanic device known as the "allotropic cell" is presented. The scale inhibition effect is related to the release of metal ion impurities of Zn^{+2} and Cu^{+2} from the surface of the device. An induced crystal structure modification of the precipitates with a trend to form the metastable aragonite structure is produced. The antiscale effect results from changes in crystallization behavior promoting bulk solution precipitation rather than formation of adherent scale.

Keywords: Scale inhibition; Water treatment; Tyndall effect

1. Introduction

The build-up of scale formation in water systems is a serious problem, whose solution normally requires costly chemical softeners. Calcium carbonate is the predominant component of scales deposited from natural water, especially in cooling and in heating water systems.

*Corresponding author.

There is ample evidence in the literature [1,2] that small amounts of metal ion impurities, notably Zn⁺², Cu⁺², Fe⁺², Fe⁺³, and Mg⁺², can affect the nucleation and crystallization rates of precipitating CaCO₃ and induce morphological changes of the crystal habit. For example, a scale suppression effect is obtained with 1 to 1.5 ppm Zn⁺² ion, added to the water either by dosing a Zn⁺² solution or by the release of Zn⁺² ions through contact with a redox Zn-Cu alloy