

Síntesis y Caracterización de Nanopartículas Semiconductoras Luminiscentes

E. Montes Ramírez¹, J. Guzmán Mendoza¹ y J. R. Gonzalez²

¹Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Legaria 694. Colonia Irrigación, 11500 México D. F. ² Laboratorio de Análisis Estructural del instituto de Ciencias y Tecnología de Materiales Universidad de la Habana, Ciudad de la Habana, Cuba

Resumen

En este trabajo se busca la síntesis y caracterización de nanopartículas [NPs] luminiscentes semiconductoras en coloide, utilizando un compuesto tiolado como estabilizador de la superficie. La síntesis se llevará a cabo mediante el método de síntesis hidrotermal, variando la temperatura y el tiempo de reacción. Este proyecto tiene como objetivo, estudiar las propiedades ópticas de las nanopartículas en función de la distribución de tamaños y analizar su posible aplicación como marcadores luminiscentes en bioquímica analítica.

Introducción

En las últimas décadas se ha demostrado la estrecha relación entre el tamaño de las NPs y propiedades tales como punto de fusión, calor especifico reactividad superficial, comportamiento óptico, magnético [1]. Las NPs semiconductoras han sido especialmente estudiadas debido a las propiedades ópticas y eléctricas que presentan en función de su tamaño. Las propiedades que presentan estos materiales hacen que sea de interés su estudio para aplicaciones en la industria electrónica, o bien como nos atañe a nosotros, como marcadores fluorescentes bioquímicos [2].

En comparación con las NPs semiconductoras, los fluoróforos orgánicos empleados comúnmente en la bioquímica analítica presentan grandes desventajas, tales como anchas bandas de excitación y de emisión, lo que dificulta su detección simultánea. Además de que presentan una baja resistencia a la fotodegradación y a la degradación química [3]. Por otro lado, las NPs semiconductoras presentan características fotoluminiscentes dependientes del tamaño de cristal, presentando una ancha banda de excitación y una estrecha banda de emisión, así como una excelente resistencia a la fotodegradación y a la degradación química [3].

Procedimiento Experimental

La síntesis de las NPs semiconductoras se llevará a cabo por vía hidrotermal con el método Guo como se reporta en la literatura [4-5] con algunas variantes. Utilizando como precursores CdCl $_2$, Acido 3-Mercaptopropionico [AMP] como estabilizador de superficie de las NPs, Na $_2$ S y NaOH para ajustar el PH de la disolución. La solución CdCl $_2$ + AMP previamente ajustada en PH, se le hace pasar N $_2$ con el objeto de desplazar el oxigeno disuelto en la solución.

Posteriormente de agrega Na_2S y se coloca dentro de un reactor para ser llevado a una mufla previamente calentada, durante un tiempo que se irá variando para cada experimento.

Análisis

Para realizar la caracterización de las NPs semiconductoras se utilizaran 4 técnicas principalmente. Espectroscopia UV-Vis, para determinar el tamaño de las nanopartículas en función al máximo en el pico de absorbancia [6]. Espectroscopia de Fotoluminiscencia, con el fin de detectar el rango del espectro de emisión y excitación, mediante el empleo de un espectro-fluorimetro. Difracción de Rayos X, para identificar la fase de las NPs y su estructura cristalina. Microscopia electrónica de transmisión (TEM), la cual nos permitirá determinar el tamaño de las partículas y verificar el análisis estructural de las NPs obtenido mediante rayos x.

Resultados

Se espera obtener NPs de CdS por síntesis hidrotermal con una fina relación de tamaños de partículas que presenten emisión luminiscente, estabilizadas en la superficie con un tiol.

Referencias

- [1] A. P. Alivisatos. "Perspectives on the Physical Chemistry of semiconductor Nanocrystals" J. Phys Chem. 100, 13226-13239. (1996)
- [2] C.N.R. Müller & Co "The chemistry of Nanomaterials" Chapter 2, 15-17 (2004)
- [3] Wang F., Beng W. Zhang Y., Fan X. & Wang M. "Luminicent nanomaterials for biological labeling" Nanotechnology, 17 R1-R13, (2006)
- [4] Guo J. & Co "Systematic Study of the Photoluminescence Dependence of Thiol-Capped CdTe Nanocrystals on the Reaction Conditions" J. Phys. Chem. B 109, 17467-17473, (2005)
- [5] J.R. González & Co "Nanoparticulas de CdS Estabilizadas con AMP: Síntesis hidrotermal" R. C. Química V.XX No1, 77-83 (2008)
- [6] W. William Yu & Co, "Experimental Determination of Extinction Coefficient of CdTe, CdSe and CdS Nanocrystals" Chem Mater 15, 2854-2860. (2003)

ISBN: 978-607-414-180-1 43 I&C-MTA-SD1-04