

Tratamiento de Residuales Líquidos Textiles mediante Oxidación con Ozono

P. Colindres¹ y E. Reguera¹

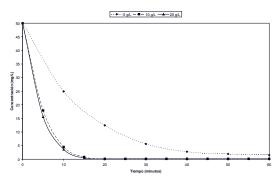
¹Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Legaria 694. Colonia Irrigación, 11500 México D. F.

Resumen

Reportamos la descomposición parcial de soluciones modelo de colorantes textiles de tipo reactivo hasta su decoloración. El proceso se sigue mediante espectroscopia UV-Vis, para determinar de forma preliminar la cinética de descomposición, así como la acumulación de subproductos. Asimismo, se realizan pruebas de recirculación del agua tratada, evaluadas mediante espectrofotocolorimetría de reflectancia.

Introducción

El uso de ozono en el tratamiento de aguas residuales, se ha expandido en la medida que los requerimientos de calidad del agua se vuelven más estrictos [1]. Se ha demostrado que el ozono posee la capacidad de destruir a los colorantes [2]. El ozono destruye los enlaces múltiples conjugados, que imparten el color a las moléculas de los colorantes [3]. La ozonación de los colorantes no genera compuestos químicos biológicamente más tóxicos [4] y se hace posible la biodegradación por ozonación de los residuos.


Procedimiento Experimental

Se prepararon soluciones modelo de 50, 100, 150 y 300 mg/L de tres colorantes de tipo reactivo de uso común en la industria textil: Negro 5 (NR5), Rojo 141 (RR141) y Amarillo 84 (AR84). Fueron ozonadas en un reactor semi-batch (400 mL) con una concentración inicial de 2 mg/L de O₃, y un flujo de 0.3 L/min, a temperatura ambiente (20°C). Se hizo el seguimiento preliminar de la descomposición midiendo absorbancia usando un equipo Cary 50 (Varian).

Asimismo, se hicieron ensayos de teñido con el agua ozonada por hasta 5 ciclos de recirculación, evaluando con un espectrofotómetro Gretag Macbeth Color Eye 7000.

Resultados y Análisis

La figura 1 muestra la dinámica de decoloración del AR84 variando la concentración de sal (Na₂SO₄). La decoloración se lleva a cabo de forma casi completa durante los primeros 15 minutos. La tabla 1 muestra los coeficientes ΔE de muestras de algodón teñidas con agua tratada, previamente contaminada con AR84, para 1-5 ciclos de ozonación, utilizando la tricromía integrada por los colorantes bajo estudio y otra integrada por tres colorantes directos de diferentes clases tintóreas: Amarillo Directo 50 (AD50, clase A), Azul Directo 80 (AD80, clase B) y

Figura 1. Efecto del sulfato de sodio sobre la ozonación de Amarillo reactivo 84.

Rojo Directo 23 (RD23, clase C). La tolerancia del coeficiente ΔE para el método empleado es de 1.0 (AATCC, 1999).

Tabla I. Diferencias de color de muestras teñidas con agua tratada respecto a estándar teñido con agua destilada.

Colorante	1	2	3	4	5
NR5	0.28	1.45	1.91	2.95	3.09
RR141	0.51	0.91	0.93	1.14	1.34
AR84	0.42	0.55	0.68	0.83	1.35
AD50	0.71	0.94	0.98	1.21	1.51
AD80	0.43	0.44	0.53	0.68	0.99
RD23	0.72	0.72	0.77	0.85	1.08

Agradecimientos

Agradecemos al Instituto Politécnico Nacional (IPN) y al Consejo Nacional de Ciencia y Tecnología (CONACYT) por su apovo a este trabajo.

Referencias

[1] Sevimli, M.F., Sarikaya, H.Z. and Yazgan, M.S., A New Approach to Determine the Practical Ozone Dose for Color Removal from Textile Wastewater, Ozone Science and Engineering 25, 137-143 (2003).

[2] Carriere, J., Jones, J.P. and Judd, S.J., Decolorization of Textile Dye Solution, Ozone Science and Engineering, 15, 189-200 (1993).

[3] Horvath, M., Bilitzky, L. and Hüttner, J., Ozone, Elsevier Science Publishers (1985).

[4] Gähr, F., Hermanuts, F. and Oppermann, W., Ozonation an Important Technique to Comply with New German Laws for Textile Wastewater Treatment, Water Science and Technology 30, 255-263 (1994).