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This article is about nonstationary nonlinear discrete-time deterministic and stochastic control systems with Borel
state and control spaces, possibly noncompact control constraint sets, and unbounded costs. The control
problem is to minimise an infinite-horizon total cost performance index. Using dynamic programming arguments
we show that, under suitable assumptions, the optimal cost functions satisfy optimality equations, which in turn

give a procedure to find optimal control policies.
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1. Introduction

This article concerns nonstationary (also known as
nonhomogeneous or time-varying) discrete-time deter-
ministic control systems of the form

X1 = Fp(xp,ay) forallm=0,1,...,

(1.1)

given an initial state xp, where x,€ X, and a,c 4,
denote the state and control (or action) variables at
time n. The state and action spaces X, and A,
respectively, are supposed to be Borel spaces, that is,
Borel subsets of complete and separable metric spaces.
Therefore, (1.1) essentially includes all the cases in
practical applications, namely, the cases in which the
spaces X, are denumerable sets, or subsets of finite-
dimensional Euclidean spaces, and also infinite-
dimensional spaces, as in distributed parameter
systems (see e.g. Zabczyk 1974). Moreover, we allow
noncompact control constraint sets 4,(x) C 4, for each
state x € X, (see Section 2 for details).

For notational ease, we first consider the determi-
nistic system (1.1) and then we explain how to extend
our results to stochastic systems

(1.2)

with x,€ X, and a,€ 4, as above, and independent
random disturbances £, € S,, where the S, are Borel
spaces.

Strictly speaking, some of our results can be
deduced from results by Hinderer (1970, Section 14);
see also Strauch (1966). Our proof techniques, however,
are straightforward, easy to follow and sell-contained.

Xn41 :Fn(xn:am‘én) for all n:O,l,..,,

Nonstationary systems such as (1.1) have been
studied by several authors, but usually under restrictive
assumptions. For instance, Engwerda (1988),
Schochetman and Smith (1994), and Tan and Rugh
(1998) consider linear systems. On the other hand,
Le Van and Dana (2003), Schochetman and Smith
(2005) and Zaslavski (2006) study systems in which the
state and/or the control sets are compact. For stochastic
systems (1.2) either the state space is denumerable, as in
Jia and Ding (2000), or they require some ergodicity
condition or strong Feller-like hypotheses which do not
hold for deterministic systems (see e.g. Guo, Liu, and
Liu 2000 or Guo and Hernandez-Lerma 2004). In fact,
as far as we can tell, the only result that is relatively
close to ours is by Keerthi and Gilbert (1985) (see
also Keerthi and Gilbert (1988), Section 10). This result,
however, is on Euclidean spaces and the general
approach is completely unrelated to ours.

In this article we study infinite-horizon optimal
control problems with unbounded cost functions. We
use dynamic programming techniques to characterise
the optimal cost functions and to prove the existence of
optimal control policies.

The remainder of this article is organised as
follows. In Section 2, we introduce the nonstationary
control model we will be dealing with, and state the
optimal control problem of interest. Our hypotheses
and one of our main results, Theorem 3.3, are stated in
Section 3. In Section 4, we give a proof of Theorem 3.3
based on another of our key results, namely,
Theorem 4.5, which states the convergence of the
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