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Abstract 
In pattern recognition, supervised classifiers assign a class to unseen objects or prototypes. For classifying new 
prototypes a training set is used which provides information to the classifiers during the training stage. In practice, 
not all information in a training set is useful therefore it is possible to discard some irrelevant prototypes. This 
process is known as prototype selection and it is the main topic of this thesis. Through prototype selection the 
training set size is reduced which allows reducing the runtimes in the classification and/or training stages of 
classifiers. 
Several methods have been proposed for selecting prototypes however their performance is strongly related to the 
use of a specific classifier and most of the methods spend long time for selecting prototypes when large datasets 
are processed. 
In this thesis, four methods for selecting prototypes, which solve drawbacks of some methods in the state of the art 
are proposed. The first two methods are based on the sequential floating search and the two remaining methods 
are based on clustering and prototype relevance respectively.  
Keywords: Prototype selection, Data Reduction, Sequential Selection, Border Prototypes. 
 
Resumen 
En reconocimiento de patrones, los clasificadores supervisados asignan una clase a nuevos objetos o prototipos. 
Para clasificar prototipos se usa un conjunto de entrenamiento el cual proporciona información a los clasificadores 
durante la etapa de entrenamiento. En la práctica, no toda la información en los conjuntos de entrenamiento es útil, 
por lo que se pueden descartar prototipos irrelevantes. A este proceso se le denomina selección de prototipos, el 
cual es el tema central de esta tesis. 
Mediante la selección de prototipos se reduce el tamaño de los conjuntos de entrenamiento, lo cual permite una 
reducción en los tiempos de ejecución en las fases de clasificación o entrenamiento de los clasificadores. 
Se han propuesto diversos métodos para la selección de prototipos cuyo desempeño depende del uso de un 
clasificador particular, por otra parte, la mayoría de los métodos para la selección de prototipos son costosos, 
principalmente cuando se procesan grandes conjuntos de datos. 
En esta tesis se presentan cuatro métodos para la selección de prototipos; dos de ellos se basan en la búsqueda 
secuencial flotante y los dos restantes en agrupamientos y relevancia de prototipos respectivamente.  
Palabras clave: Selección de Prototipos, Reducción de Datos, Selección Secuencial, Prototipos Frontera. 
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1 Introduction 
  
The supervised classification task is a process for assigning a class to unseen prototypes1

In practice, T contains useless information for the classification task (that is, superfluous prototypes which can 
be noisy or redundant) therefore a process to discard them from T is needed. This selection process is known as 
prototype selection (Figure 1). The main goal of a prototype selection method is to obtain a set S

. In order to assign the class 
to a new prototype, a previously assessed prototype set is provided to the classifiers, this set is known as training set, 
denoted in this document as T.  

⊂ T such that S does 
not contain superfluous prototypes and ( ) ( )≅Acc S Acc T where ( )Acc X  is the classification accuracy obtained 
using X as training set. Through prototype selection, the training set size is reduced, which could be useful for 
reducing the runtimes in the classification process, particularly for instance-based classifiers.  

 
 

 

 

 

 

 
Fig. 1. Prototype selection process 

 
There are two approaches (like in feature selection) for prototype selection: Wrapper and Filter. 
-Wrapper. The selection criterion is based on the accuracy obtained by a classifier. In this approach the selection 
can be done for a specific classifier (FSC) or for any classifier (FAC). The first one uses a particular classifier 
during the selection process; the second one is not restricted to use a specific classifier. 
-Filter. The selection criterion does not use a classifier for discarding prototypes.  
In this thesis, four methods for selecting prototypes are presented, two of them are wrapper FAC and the other 

two methods are filter. The wrapper FAC methods are based on the sequential floating search; the filter methods are 
based on clustering and prototype relevance respectively. 
 
2 Prototype selection methods 
 
Several methods have been proposed in the literature for solving the prototype selection problem following either 
wrapper or filter strategies. In table 1, some of the most successful prototype selection methods (according to their 
author’s results) are shown. In this table, the kind of each method (wrapper FSC, FAC or filter) and the kind of 
features they can deal with (numeric, non numeric) are indicated (*). 

According to table 1, we can observe that most of the methods are wrapper FSC; all of them (excluding SV-
kNNC) can be applied over mixed features (i.e. numeric and non numeric) and the best methods are DROP 
(Decremental Reduction Optimization Procedure) and GCNN (Generalized Condensed Nearest Neighbor).  

The DROP methods are based on the concept of associate. The associates of a prototype p are those prototypes 
such that p is one of their k-Nearest Neighbors. These methods discard the prototype p if its associates can be 
correctly classified without p. According to the authors’ results, the best methods are DROP3 and DROP5.  

                                                 
1 In this thesis, each element in a training set is named prototype. 

 
 Selection 

criterion  

Training set T 

Subset selected S 
S ⊂ T 

 

Superfluous prototypes in T 
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The GCNN method starts with ∅=S  and its initial step consists in randomly including in S one prototype 
belonging to each class. Then, prototypes are included in S according to the Absorption(p) criterion, which is 
calculated in terms of the nearest neighbor and nearest enemy (nearest prototype with different class) of p in S. The 
selection process finishes when all prototypes in T have been strongly absorbed, that is, when their Absorption 
satisfies a threshold value given by the user. 

Only some methods: BSE (Backward Sequential Edition), Genetic algorithms, and Tabu Search (TS) are 
wrapper FAC but they are expensive methods. On the other hand, only few filter methods have been proposed and all 
of them can only be applied over numeric features. TS starts over an initial subset Si (named initial solution) from T. 
TS finds a subset iS S⊂ such that S contains the prototypes with the best classification accuracy. In order to decide 
the prototypes added to S, TS evaluates all the neigboring subsets to Si i. e. the prototype sets that differ from Si by 
just one element. 

 
Table 1. Characteristics of some prototype selection methods 

Method 
Wrapper 

Filter 
Features 

FSC FAC Numeric Non 
numeric 

CNN (Hart, 1968) *   * * 
ENN (Wilson, 1972) *   * * 
SNN (Ritter et al., 1975) *   * * 
Multiedit (Devijver and Kittler, 1980) *   * * 
IB (Aha, 1991) *   * * 
DROP (Wilson and Martínez, 2000) *   * * 
ICF (Brighton and Mellish, 2002) *   * * 
SETRED (Li et al., 2005) *   * * 
GCNN (Chien-Hsing et al., 2006) *   * * 
SV-kNNC (Srisawat et al., 2006) *   * * 
CNNDD (Angiulli, 2007) *   * * 
Genetic Algorithms (Kuncheva and Bezdek, 1998; 2001)  *  * * 
Tabu search (Zhang and Sun, 2002)  *  * * 
BSE (Olvera et al., 2005)  *  * * 
SCE (Eick et al., 2004)   * *  
POC-NN (Raicharoen and Lursinsap, 2005)   * *  
kd-trees (Narayan et al., 2006)   * *  
CLU (Lumini and Nani, 2006)   * *  

 
Some authors (Bezdek and Kuncheva, 2001; Liu and Motoda, 2002; Spillman, 2006) have suggested the idea of 

using clustering for prototype selection; this idea consists in: after splitting T in n clusters, the selected prototypes 
will be the centers of the n clusters. The CLU prototype selection method is based on this idea. 

Based on these drawbacks of prototype selection methods, this thesis is focused on proposing wrapper FAC and 
filter methods. In particular four methods are proposed: Restricted Floating Prototype Selection (RFPS), Restricted 
Floating Prototype Selection-Inverse (RFPS-Inv), Prototype Selection by Clustering (PSC), and Prototype Selection 
by Relevance (PSR). These methods are described in the following sections. 
 
2.1 Restricted Floating Prototype Selection (RFOS) 
This method is based on the idea of the Sequential Floating Search (SFS) (Pudil et al., 1994), which allows 
backtracking, i.e. reconsiders the inclusion/exclusion (in the prototype subset) of prototypes previously 
discarded/included. SFS consists in applying conditional inclusion/exclusion steps after each exclusion/inclusion in 
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S. This kind of search (like the sequential search) can be done in backward and forward directions. 
The backward SFS consists in applying a number of inclusion steps after each exclusion step as long as the 

classification results are better than the previously evaluated ones. The forward SFS is the counterpart of backward 
SFS. These floating searches are very expensive therefore we propose a pre-processing step (in order to reduce the 
training set size) before applying our prototype selection method based on the SFS. Our method named Restricted 
Floating Prototype Selection (RFPS) is restricted since it applies the floating search just once in each direction: 
conditional exclusion followed by the conditional inclusion. 

RFPS starts applying a pre-processing step followed by the conditional exclusion and finally the conditional 
inclusion is applied (figure 2). The conditional exclusion sequentially discards prototypes of the training set. This 
process analyzes the classification contribution of each prototype and at each step it excludes the prototype with the 
smallest contribution for the subset quality, in terms of the accuracy of a classifier. The conditional inclusion consists 
in analyzing the prototypes discarded from T (prototypes discarded in both pre-processing and conditional exclusion) 
for including in S those that their inclusion improves the classification accuracy, that is, a prototype p will be 
included if the classification accuracy obtained using p is better than the one obtained without it. 

 

 
 

 
Fig. 2. RFPS method for prototype selection 

 
This restricted floating method can be done in the inverse direction (RFOS-Inv), that is, first applying the 

conditional inclusion (from the prototype discarded in the pre-processing) followed by the conditional exclusion 
(figure 3). 
 

 
 

 
Fig. 3. RFPS-Inv method for prototype selection 

 
2.2 Prototype Selection by Clustering (PSC) 
In a training set, the border prototypes of a class are located in a region where there are prototypes from different 
classes. These prototypes contain useful information for preserving the class discrimination regions (Wilson and 
Martínez, 2000; Brighton and Mellish, 2002). On the other hand, interior prototypes of a class (those that are not 

T 
S’ S’’ S 

Pre-processing Conditional exclusion Conditional inclusion 

Discarded 
prototypes 

T S’’ 
S’ S 

Pre-processing Conditional exclusion Conditional inclusion 

Discarded 
prototypes 
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border) could be discarded without affecting the classification quality of the set. Although interior prototypes could 
be discarded, some of them are necessary for representing interior regions.  

In this section, we introduce a prototype selection method named PSC (Prototype Selection by Clustering) 
which is based on clustering. When clusters are created from a training set they can be either homogeneous (all the 
prototypes belong to the same class) or non homogeneous (the prototypes belong to two or more classes). In order to 
find border prototypes PSC analyzes the non homogeneous clusters. 
 

 

 
a) 

 

 
b) 

 

 
c) 

 

 
d) 

Fig. 4. a) Dataset with classes “+” and “●”. b) Clusters created from the dataset.  
c) Prototypes selected in each cluster. d) Subset selected by PSC 

 
The PSC works as follows: first, clusters are generated from a training set, after that, PSC works over each 

cluster. If the cluster Cj is non homogeneous then Cj contains some prototypes located at critical regions, i.e. border 
prototypes. In order to find the border prototypes, PSC finds the majority class among the cluster prototypes. The 
border prototypes in the majority class are those prototypes that are the most similar to a prototype belonging to a 
different class, and the border prototypes in the other classes are those prototypes that are the most similar to each 
border prototype in the majority class. If Cj is homogeneous then the prototypes in Cj are interior prototypes and they 
could be discarded from T without affecting the classification accuracy. Therefore, PSC finds the representative 
prototype (the prototype that is in average the most similar to all other prototypes in Cj ) and discards the remaining 
prototypes so that Cj is reduced to its representative prototype. Finally, the prototypes selected by PSC are the 
representative ones from each homogeneous cluster and the border from each non homogeneous cluster. 
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In order to illustrate the PSC idea let us consider the dataset shown in figure 4a which is a bi-dimensional 
dataset with prototypes belonging to the classes “+” and “• ”. In figure 4b, the clusters (C1…C12) created from the 
dataset are depicted, the non homogeneous clusters are C2, C6 and C11 whereas the remaining clusters are 
homogeneous. In the clusters C6 and C11 the minority class is “+”, then the border prototypes in the most frequent 
class ( • ) are the most similar prototypes to each minority class prototype (+). On the other hand, the border 
prototypes in class “+” are the most similar (belonging to class “+”) to each border in class “ • ”.  

The same process described before is applied to cluster C2 where the minority class is “• ”. The prototypes 
selected in each cluster are depicted in figure 4c and the subset selected by PSC is depicted in figure 4d. 
 
2.3  Prototype Selection by Relevance (PSR) 
In a training set, among the prototypes belonging to the same class only some of them could be considered as 
representative or relevant prototypes in the class. For prototype selection, it makes sense to select the most relevant 
prototypes and discard the remaining. In this thesis, the relevance of each prototype is computed in terms of the 
average similarity that it has with all other prototypes in the same class thus the most similar to all other prototypes, 
the most relevant in the class. 

In this section, we present the PSR (Prototype Selection by Relevance) method which computes the relevance of 
each prototype and retains the most relevant ones. Additionally, in order to preserve the discrimination regions 
between classes, PSR also retain border prototypes which are found through the most relevant prototypes. 
 

 
a) 

 
b) 

 

 
c) 

 

 
d) 

Fig. 5. a) Dataset with classes “+” and “●”. b) 30% of the most relevant prototypes per class.  
c) Border prototypes found through figures 5a and 5b. d) Subset selected by PSR 
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PSR starts computing the relevance weight (average similarity) of each prototype in the training set. Once the 
prototype relevance weights have been computed, for each class i, the r most relevant prototypes are chosen and 
through them some border prototypes are selected. It can be noticed that depending on the training set and/or the 
relevance function, some relevant prototypes could also be border prototypes. PSR finds the border prototypes as 
follows: for each prototype of the r chosen, the most similar prototype belonging to each class different from i is 
selected as a border prototype. Finally, S contains the r most relevant prototypes found through the relevance 
criterion described above and the border prototypes found from them. 

To illustrate the PSR selection process let us consider the dataset shown in figure 5a (the same shown in figure 
4a). Figure 5b shows the 30% of the most relevant prototypes per class (according to the average similarity). 
Through the prototypes depicted in figures 5a-5b, the border prototypes are selected (figure 5c) and finally the subset 
selected by PSR is depicted in the figure 5d. 
 
3 Experimental results 
 
In this section, we report some experimental results obtained by applying our methods presented in section 2 over 
different datasets taken from the UCI repository (Asunción and Newman, 2007); we used numeric (Glass, Iris, Liver, 
Wine), and mixed (Bridges, Echocardiogram, Hearth Cleveland, Hepatitis, Zoo) datasets. In our experiments we 
used 10-fold cross validation and the average over the ten trials is reported. The average results over all the tested 
datasets are depicted on scatter graphs of classification accuracy (Acc) versus storage (Str), where Str is the 
percentage of prototypes retained by each method with respect to the training set size, that is Str=100|S|/|T|. In these 
graphs, the Pareto front is shown, which is formed by those methods such that they are the best in either accuracy or 
storage.  

In our experimentation, we included some of the most successful prototype selection methods, in particular 
DROP3, DROP5, GCNN, TS and CLU methods. 

For PSC, PSR and CLU methods it is necessary to fix the initial parameter: number of cluster to create (PSC and 
CLU) and the number r of relevant prototypes to choose in the initial phase (PSR). We carried out some experiments 
varying the value of the initial parameters. The results are reported in tables 2-3. Table 2 shows the classification 
accuracy obtained using as training set (for k-NN, k=3) the selected prototypes by PSC and CLU creating different 
number of clusters n, in particular the values n=  4c, 6c, 8c 10c and 12c (where c is the number of classes in the 
training set) were tested. In this table, the Zoo dataset was omitted because n=12c is higher than the total prototypes 
in the training set.  
 

Table 2. Classification accuracy obtained by PSC and CLU creating different number of clusters in the initial phase 

Dataset 
Number of clusters 

n=4c n=6c n=8c n=10c n=12c 
CLU PSC CLU PSC CLU PSC CLU PSC CLU PSC 

Bridges 51.63 51.63 53.54 56.54 58.38 59.45 61.27 61.09 61.07 60.03 
Echocardiogram 85.90 86.42 90.71 86.42 94.10 91.42 90.71 85.53 88.10 85.67 
Glass 53.26 56.21 52.83 59.09 55.58 56.16 56.08 63.52 57.63 56.72 
Heart Cleveland 74.61 71.26 73.00 73.27 75.29 72.26 76.33 74.00 75.18 73.54 
Hepatitis 77.50 73.12 75.00 75.37 75.87 79.29 75.66 75.54 76.45 76.95 
Iris 84.00 84.66 86.66 94.66 87.33 88.88 89.00 90.00 85.43 94.00 
Liver 51.57 55.32 52.18 55.36 52.58 54.54 51.87 54.78 53.97 55.36 
Wine 85.91 88.30 88.11 92.67 87.37 88.41 88.30 88.19 89.52 91.00 
Average 70.55 70.87 71.50 74.17 73.31 73.80 73.65 74.08 73.42 74.16 
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Table 3. Classification accuracy obtained by PSR selecting different number of relevant prototypes in the initial phase 

Dataset Percentage (r) of relevant prototypes per class 
r=10% r=20% r=30% r=40% r=50% 

Bridges 48.90 50.90 57.63 57.54 61.18 
Echocardiogram 83.21 83.92 90.53 90.53 89.28 
Glass 61.12 64.37 64.85 65.80 69.17 
Heart Cleveland 75.81 75.84 79.18 78.20 77.21 
Hepatitis 74.95 82.58 83.16 81.91 79.91 
Iris 86.66 88.66 91.33 89.33 92.00 
Liver 61.96 62.85 63.77 64.92 64.61 
Wine 94.00 92.12 92.18 92.74 93.00 
Zoo 93.33 93.33 93.33 93.33 93.33 
Average 75.55 77.17 79.55 79.37 79.97 

 
Table 3 shows the accuracy obtained by PSR selecting different number r of relevant prototypes per class, the 

tested values for r were r=  10%, 20%, 30%, 40% and 50% of the prototypes in each class. 
According to table 2, in the average case, the best value for the n parameter in PSC is n=6c and the best one for 

CLU is n=10c. We used these values in the experiments reported in the following sections. For PSR we decided to 
use r=30% since its accuracy is similar to the best obtained (r=50%) but with less storage. 
 
3.1 RFPS and RFPS-Inv results 
The results obtained by applying RFPS and RFPS-Inv over the datasets are reported in tables 4-5 and figure 6. In 
order to compare our methods, the results obtained by DROPs, GCNN and Tabu Search (TS) are also reported; the 
classifier used was k-NN (k=3, the best value for the DROPs according to their authors’ results). In these tables, the 
accuracy obtained by the original training set without applying prototype selection (Orig) is shown; ENN+RFPS, 
DROP3+RFPS and DROP5+RFPS mean that ENN, DROP3, DROP5 methods were used in the pre-processing step 
of the restricted floating methods. 

From the obtained results, the best methods in accuracy were DROP3, DROP5 and ENN+RFPS. Among our 
methods RFPS outperformed to RFPS-Inv and both of them were better than TS; the best in accuracy were 
ENN+RFPS, DROP3+RFPS and the last is part of the Pareto front. 
 

Table 4. Accuracy (Acc) and Storage (Str) results obtained by: Original training set (Orig), RFPS and RFPS-Inv 

Dataset Orig. ENN+RFPS DROP3+RFPS DROP5+RFPS ENN+RFPS-Inv DROP3+RFPS-Inv DROP5+RFPS-Inv 

Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 
Bridges 66.09 100 60.00 48.10 56.45 14.28 53.63 23.71 51.54 26.80 55.45 12.37 54.54 19.58 
Echocardiogram 95.71 100 93.23 86.56 91.96 9.85 87.67 8.16 93.21 11.94 87.85 8.95 89.10 7.46 
Glass 71.42 100 69.43 29.34 64.48 25.75 67.74 26.11 58.35 19.47 43.50 23.36 55.49 16.45 
Heart Cleveland 82.49 100 79.52 22.41 77.21 12.61 79.22 12.53 78.74 13.60 77.90 7.77 76.48 9.12 
Hepatitis 79.29 100 79.00 18.71 78.20 8.38 76.66 8.67 77.95 11.47 78.45 6.66 74.08 5.23 
Iris 94.66 100 93.33 10.07 93.00 9.92 93.33 10.00 80.66 5.33 92.66 7.18 86.00 6.29 
Liver 65.22 100 59.98 33.68 61.70 16.94 60.03 19.64 58.84 21.80 59.75 19.25 60.30 19.54 
Wine 94.44 100 93.63 10.23 94.44 8.17 93.85 8.30 90.00 4.36 88.23 5.18 91.04 4.42 
Zoo 93.33 100 91.33 71.14 91.33 14.81 91.11 14.93 91.11 15.92 90.00 13.58 80.00 14.19 
Average 82.52 100 79.94 36.70 78.75 13.41 78.14 14.67 75.60 14.52 74.87 11.59 74.11 11.36 

 
Table 5. Accuracy (Acc) and Storage (Str) results obtained by: Original training set (Orig), DROPs, GCNN and TS 

Dataset Orig. DROP3 DROP5 GCNN TS 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Bridges 66.09 100 56.36 14.78 62.82 20.66 68.20 88.20 45.90 18.94 
Echocardiogram 95.71 100 92.86 13.95 98.42 14.87 93.39 22.67 85.71 7.46 
Glass 71.42 100 66.28 24.35 62.16 25.91 69.61 61.62 62.59 15.98 
Heart Cleveland 82.49 100 78.89 11.44 79.87 14.59 67.63 9.09 72.63 4.54 
Hepatitis 79.29 100 78.13 11.47 75.42 15.05 60.66 17.75 74.33 5.73 
Iris 94.66 100 95.33 15.33 94.00 12.44 96.00 38.00 70.66 6.50 
Liver 65.22 100 67.82 26.83 63.46 30.59 66.09 83.70 64.13 5.21 
Wine 94.44 100 94.41 15.04 93.86 10.55 94.44 78.89 79.44 6.10 
Zoo 93.33 100 90.00 20.37 95.56 18.77 95.55 26.17 88.88 14.12 
Average 82.52 100 80.01 17.06 80.22 18.16 79.06 47.34 71.59 9.40 
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Fig. 6. Scatter graphic from the average results shown in tables 4-5 

 
In the above results the used classifier was k-NN; in order to know the performance of the prototype selection 

methods using other classifiers, the subsets selected by each method were used as training for C4.5 (decision trees) 
and Naïve Bayes (NB). The results obtained are depicted in figures 7-8. We can notice that using these classifiers, the 
DROPs are not as good in accuracy as for k-NN. In both classifiers, ENN+RFPS and ENN+RFPS-Inv are on the 
Pareto front and ENN+RFPS was the best in accuracy. 
 

  
Fig.7. Results obtained using the subsets selected by DROPs, 
TS, GCNN, RFOS, RFOS-Inv as training for C4.5 

Fig. 8. Results obtained using the subsets selected by DROPs, 
TS, GCNN, RFOS, RFOS-Inv as training for NB 

 
Our restricted prototype selection methods and TS are wrapper FAC then they can use any classifier during the 

selection process; in figures 9-10, the results of applying RFPS ( the best of our restricted floating methods) and TS 
results using C4.5 and NB during the selection process are shown. 

According to figures 9-10, using C4.5 and NB in the selection process TS was outperformed by RFPS 
(excluding DROP3+RFPS for C4.5) and for NB, the accuracy obtained by the subsets selected by ENN+RFPS was 
better than those obtained by the original training set. 
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Fig. 9. Results obtained using C4.5 in the selection process     Fig. 10. Results obtained using NB in the selection process 

 
3.2 PSC and PSR results 
In this section, the results obtained by PSC and PSR are reported; for comparison we have included DROP3, 
DROP5, GCNN and CLU methods again. The obtained results using k-NN are shown in table 6 and figure 11.  
 
Table 6. Accuracy (Acc) and Storage (Str) results obtained by: Original training set (Orig), DROPs, GCNN, CLU, PSC and PSR 

Dataset Orig. DROP3 DROP5 GCNN CLU PSC PSR 
Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. Acc. Str. 

Bridges 66.09 100 56.36 14.78 62.82 20.66 68.20 88.20 61.27 63.68 56.54 42.86 57.63 47.79 
Echocardiogram 95.71 100 92.86 13.95 98.42 14.87 93.39 22.67 90.71 30.03 86.42 19.82 90.53 37.68 
Glass 71.42 100 66.28 24.35 62.16 25.91 69.61 61.62 56.08 31.15 59.09 38.45 64.85 42.36 
Heart Cleveland 82.49 100 78.89 11.44 79.87 14.59 67.63 9.09 76.33 18.33 73.27 22.51 79.18 36.96 
Hepatitis 79.29 100 78.13 11.47 75.42 15.05 60.66 17.75 75.66 14.33 75.37 7.95 83.16 33.40 
Iris 94.66 100 95.33 15.33 94.00 12.44 96.00 38.00 89.00 22.22 94.66 20.45 91.33 38.07 
Liver 65.22 100 67.82 26.83 63.46 30.59 66.09 83.70 51.87 6.44 55.36 45.87 63.77 35.55 
Wine 94.44 100 94.41 15.04 93.86 10.55 94.44 78.89 88.30 37.03 92.67 37.15 92.18 42.94 
Zoo 93.33 100 90.00 20.37 95.56 18.77 95.55 26.17 90.00 76.41 92.22 41.48 93.33 51.11 
Average 82.52 100 80.01 17.06 80.22 18.16 79.06 47.34 75.47 33.29 76.18 30.73 79.55 40.65 

 

 
Fig. 11. Scatter graphic from the average results shown in table 6 

 
From these results, we can notice that the best methods were the DROPs but it was expected since they are 

based on k-NN. In these results, PSC was better than CLU. 
Like in the previous experiments, in figures 12-13 we report the results obtained using the subsets selected by 

the prototype selection methods as training for C4.5 and NB classifiers. According to these figures, for both 
classifiers PSR and PSC were the best methods in accuracy respectively. Between them, the best one in accuracy was 
PSR and he best one in retention was PSC. 
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Fig. 12. Results obtained using the subsets selected by 
DROPs, GCNN, CLU, PSC and PSR as training for C4.5 

Fig. 13. Results obtained using the subsets selected by DROPs, 
GCNN, CLU, PSC and PSR as training for NB 

 
 Another experiment reported in this document is related to the runtimes spent by each prototype selection 

method. In this experiment we measured the runtimes spent by each method over different training set sizes 
constructed from the prototypes in the Shuttle- Statlog dataset (58000 prototypes, 9 features, 7 classes). The results 
are shown in figures 14-15. In figure 14, some points are not depicted because they are out of the vertical axis scale. 
We have not included RFOS because it is an expensive method (like TS and some other wrapper methods) when it is 
applied over medium/large datasets. Based on the runtimes from figures 14-15, clearly CLU, PSC and PSR are the 
fastest methods. The runtimes spent by CLU and PSC are very similar but CLU is outperformed in accuracy by both 
PSC and PSR (according to the results reported in previous tables). 
 

  
Fig. 14. Runtimes spent by DROPs, GCNN, CLU, PSC and 
PSR for different training sets built from the Shuttle- Statlog 
dataset  

Fig. 15. Runtimes spent by CLU, PSC and PSR for different 
training sets built from the Shuttle -Statlog dataset 

 
3.3 Comparison among the proposed methods 
The last experiment consisted in comparing the methods introduced in this thesis. In figures 16-18 the results 
obtained by RFOS, RFOS-Inv, PSC, PSR using k-NN, C4.5 and NB are shown. According to these figures, the best 
method in accuracy (excepting for C4.5) was ENN+RFPS followed by PSR and PSC. Among our methods, the best 
one in storage was DROP5+RFPS-Inv. 
 



460   José Arturo Olvera López 

Computación y Sistemas Vol. 13 No. 4, 2010, pp 449-462 
ISSN 1405-5546 

 
Fig. 16. Scatter graphic from the average results obtained by the proposed methods using k-NN 

 

  
Fig. 17. Scatter graphic from the average results obtained by 
the proposed methods using C4.5 

Fig. 18. Scatter graphic from the average results obtained by 
the proposed methods using NB 

 
4 Conclusions  
 
In this thesis, four prototype selection methods were introduced: RFOS, RFOS-Inv (wrapper FAC methods), PSC and 
PSR (filter methods). They were compared against other successful prototype selection methods (DROPs, GCNN, TS 
and CLU) and from our results we can conclude that our methods are competitive in accuracy when the k-NN 
classifier is used; in addition our methods are the best when C4.5 and NB classifiers are used. 

Based on the experimentation, among our methods, the best one in accuracy was ENN+RFPS but it is mainly 
recommended to be applied over small datasets because it is an expensive method (like other wrapper methods such 
as TS). On the other hand, when medium/large datasets are processed, PSC and PSR were clearly faster than all other 
methods. PSC is faster than PSR but the last is better in accuracy than PSC.  

PSC and PSR require initial parameters given by the user: the number of clusters to create and the percentage of 
relevant prototypes per class respectively; as future work we are interested in proposing techniques for automatically 
fixing these parameters. 
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