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Abstract—Computing the equilibrium point of games plays
an important in computer science. A large number of methods
are known for finding a Nash equilibrium. Nevertheless, Nash
equilibrium can be adopted only for non-cooperative games.
In the last years, there has been a substantial effort in the
development methods for finding the Strong Nash Equilibrium
useful when coalitions are a fundamental issue.

In this paper we present a new method for computing strong
Nash equilibria in multiplayer games for a class of ergodic
controllable Markov chains. For solving the problem we propose
a two steps approach: a) we employ a regularized Lagrange
principle to construct the Pareto front and b) we regularized
the resulting Pareto front using the Tikhonov’s regularization
method for ensuring the existence of a unique equilibrium and
make use of the Newton method for converging to the Strong
Nash equilibrium. A numerical example illustrates the efficiency
of the approach.

Keywords: Strong Nash equilibrium, Pareto front, game
theory, Markov processes, optimization.

I. INTRODUCTION

The most common solution concept in game theory is the
Nash equilibrium (NE) [13]. The NE concept is ineffective
when players can form coalitions and deviate multilaterally in
a coordinated way. We consider that each coalition has a set
of feasible costs allocations, and use an explicit set of rules
for the interaction between the players The strong Nash equi-
librium (SNE) is a more refined concept that strengthens the
NE concept taking into account joint deviations of coalitions.
The SNE was proposed by Aumann [1] as an alternative to the
Nash equilibrium, which considers the fact that some of the
players, although having no unilateral incentive to deviate, may
benefit from forming coalitions with other players. In a SNE
there is no coalition of players that can improve their payoffs
(by collective deviation). Then, the SNE presents the benefits
of a cooperative behavior in a non-cooperative environment.
The importance of SNE is studied for classes of games that
allow the characterization of SNE, such as congestion games
[8], [9], connection games [4], maxcut games [7], voting
models [3], [12], coalition formation [2], [10],other fields [11].
Pareto efficiency plays a fundamental role in game theory
for finding the SNE [5]. Each player is related with one
objective function. The Pareto front identifies the trade-offs
among the different players’ goals. The Pareto front is defined

as the image of the collection of Pareto efficient solutions.
The bargaining procedure is based on the SNE on the Pareto
front due to Selten [15]. A number of solution concepts in
cooperative and non-cooperative game theory are based on
Pareto efficiency, prescribing the selection of specific points
on the Pareto front (see [6]).

The aim of this article is to compute SNE. We divide the
problem in two different sub-problems. First, we construct the
Pareto front finding Pareto optimal strategies. For ensuring
Pareto efficiency we formulate the problem based on the La-
grange principle adding a Tikhonov’s regularizator for making
certain the existence of Pareto optimal policies. In the second
sub-problem, we introduce an additional Tikhonov’s regular-
izator over the cost-functions making sure that the Pareto front
is strict convex. The introduction of a Tikhonov’s regularizator
is a necessary condition for ensuring the existence of a unique
strong Nash equilibrium. Then, we propose a method that
tracks the surface of the Pareto front by picking points from the
continuous space and converges to an equilibrium point based
on the Newton optimization method. The result is illustrated
with an application example.

The rest of the article is organized as follows. In the next
Section we present the formulation of the Pareto optimality. In
Section III we suggest an algorithm for finding the SNE. The
methods to obtain the optimal Pareto policies and the optimal
scalar values in order to compute the SNE are described in
Section IV. A numerical example is presented in Section V.
We close the paper with some remarks in Section VI.

II. PARETO OPTIMALITY

Thus, we have that the regularized average cost function is
given by
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Now, the function Vl
δ(c) is strictly convex if δ > 0.

Let
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where col is the column operator and define
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In a multi-objective problem, instead of minimizing the multi-
objective function, we can minimizing the correspond La-
grange function
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is the Lagrange function.
Let us also consider % > 0 a distance measure that restrict

the cost-functions allowing points in the Pareto front to have
a small distance from one another

Llδ(w
l
prev, λ)−% ≤ Llδ(w, λ) ≤ Llδ(wlprev, λ)+% for

(
l = 1,N

)
III. SNE ALGORITHM

We consider a regularized Lagrange function consisting
of two variables Lδ(w, λ). We describe the dependence of
the saddle points (w∗(δ), λ∗(δ)) of the regularized Lagrange
function on the regularizing parameter δ [14].

Theorem 2: [Uniqueness of the SNE] Let Lδ(w, λ) regu-
larized Lagrange function consisting of two variables w and
λ with nonnegative components, then when 0 < δn → 0 we
have

(w∗δn , λ
∗
δn)→ (w∗∗, λ∗∗) as n→∞

and(w∗∗, λ∗∗) = arg min
(w∗,λ∗)

(‖w∗‖2 + ‖λ∗‖2).

In addition, the equilibrium point w∗∗δ (λ∗∗δ ) is a strong
Pareto policy.

Now we construct a method of converge to a SNE. We em-
ploy the Newton optimization method for finding the SNE. The
approximation of the first and second derivative is computed
using the Euler method [14].

Let us define the regularized penalty function Φ as follows
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The solution λ∗ can be expressed mathematically as follows:

λ∗ ∈ Arg min
λ∈SN

Φ (λ) = Arg min
λ∈SN

Φδ=0 (λ) (2)

As it has been mentioned above λ∗, satisfying (2), may be
not unique that provokes several problems for the numerical
procedure implementation. Taking δ > 0 we can guarantee the
uniqueness of the solution so that we will try to find

λ∗∗δ = arg min
λ∈SN

Φδ (λ) , δ > 0 (3)

This solution corresponds to one of the solutions λ∗ (2) which
has the minimal norm of the vector ‖λ‖2.

To find λ∗∗δ let us apply the Newton’s optimization method
related to the following numerical procedure
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where PrSN is the projection operator into the simplex.

IV. COMPUTING THE PARETO OPTIMALITY AND THE SNE

The aim of this section is to present the methods to obtain
the optimal Pareto policies w∗ and the optimal scalar values
of λ∗ in order to compute the SNE. We consider:

1) Construct the Pareto front finding the Pareto optimal
strategies.

2) Find the SNE.

1) The method proposed to compute the Pareto front is as
follows:
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where Pr is the projection operator into the simplex.
1) Fix the parameters and initial conditions:

ε, λ0, δ0, θ0, ρ, µ0, γ0, n0
2) Let
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4) Normalize wn+1 projecting the values to the simplex
SNlMl , i.e. wn+1 = PrSNlMl :w̃n+1 → SNlMl , where
PrSNlMl {·} is the projection operator of the vector from
RNlMl into the simplex SNlMl . As well, normalize λn+1

projecting the values to the simplex SN , i.e. λn+1 =
PrSN :λ̃n+1 → SN where PrSN {·} is the projection
operator of the vector from RN into the simplex SN

5) Verify descent direction
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‖λn+1 − λn‖ < ελ then stop. Otherwise, set n = n+ 1
and return to Step 4. (vln+1 and λn+1 are computed
independently)
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8) Let λ← λ+ ε and go to step 2

Algorithm 3: Pareto front.
2) The method proposed to compute the strong Nash equi-

librium is as follows:
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4) Normalize λn+1 projecting the values to the simplex

λn+1 = PrSN :λ̃n+1 → SN where PrSN {·} is the
projection operator of the vector from RN into the
simplex SN

5) Verify descent direction∥∥∥λn − PrSN

{
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6) Check the convergence criteria ‖λn+1 − λn‖ < ελ then

stop. Otherwise, set n = n + 1 and return to Step 2.
(vln+1 and λn+1 are computed independently)

Algorithm 4: Strong Nash equilibrium.

V. NUMERICAL EXAMPLE

Let us consider a game with two players (l = 1, 2) trying
to conform a coalition. Let N1 = N2 = 5 and M1 = M2 = 2.
The transition matrices of the example are as follows

π
(1)
ij|1 =


0.9988 0.0002 0.0000 0.0010 0.0001
0.1498 0.5371 0.1758 0.0332 0.1042
0.1095 0.3825 0.0484 0.4495 0.0101
0.1147 0.2723 0.2470 0.2554 0.1105
0.0002 0.0006 0.0004 0.9988 0.0000



π
(1)
ij|2 =


0.3475 0.0973 0.0144 0.0637 0.4771
0.1836 0.0553 0.2155 0.0407 0.5048
0.2224 0.4401 0.1062 0.1559 0.0756
0.0000 0.9983 0.0008 0.0008 0.0001
0.1447 0.4308 0.2800 0.0250 0.1194



π
(2)
ij|1 =


0.0103 0.1959 0.6735 0.0649 0.0554
0.0371 0.1915 0.1700 0.3360 0.2654
0.0387 0.2916 0.2437 0.1997 0.2263
0.9998 0.0001 0.0000 0.0000 0.0000
0.3300 0.0822 0.2201 0.0256 0.3420





π
(2)
ij|2 =


0.0198 0.3242 0.3319 0.0496 0.2745
0.9983 0.0007 0.0001 0.0006 0.0002
0.4956 0.0018 0.0024 0.4946 0.0056
0.0444 0.1901 0.3024 0.1888 0.2744
0.1541 0.1359 0.2243 0.1936 0.2920


The individual cost matrices are as follows:

J
(1)
ij|1 =


600 54 30 6 24
6 18 30 0 18
12 48 30 42 0
12 6 24 24 36
42 24 36 54 42



J
(1)
ij|2 =


4 2 6 6 4
4 2 10 4 6
6 2 12 6 6
10 200 6 8 2
8 10 14 10 2



J
(2)
ij|1 =


510 6 9 3 300
3 9 24 510 12
12 15 12 6 15
3 15 0 9 3
9 3 0 12 15



J
(2)
ij|2 =


6 4 6 18 4
6 4 8 6 12
4 2 4 6 12
6 4 4 2 12
2 2 8 16 52


Fixing δ = 0.001, γ = 0.8, % = 0.1, n0 = 3 and the bounds
J1− = 920, J1+ = 1080, J2 = 405, J2 = 445. Then,the
resulting parameter λ(1)∗final = 0.5066 and λ

(2)∗
final = 0.4934.

The corresponding strong Nash equilibrium (see Figure 1 ) is
as follows:

c
(1)∗
i|k =


0.1222 0.1179
0.1371 0.1362
0.0486 0.0475
0.1286 0.1036
0.1523 0.0059

 c
(2)∗
i|k =


0.1352 0.1310
0.0874 0.0672
0.1220 0.1227
0.0709 0.0863
0.1378 0.0395


VI. CONCLUSION

In this paper we suggested a procedure that can be
used to efficiently compute strong Nash equilibrium. We
divided the formulation of the problem in two different sub-
problems. First, we constructed the Pareto front finding the
Pareto optimal strategies. Second, we introduced an additional
Tikhonov’s regularizator over the cost-functions making sure
that the Pareto front is strict convex. The proposed method
tracks the surface of the Pareto front by picking points from the
continuous space and converges to an equilibrium point using
the Newton optimization method. Our numerical example
showed that the proposed method is efficient in terms of the
conceptualization of the solution of the problem.

Fig. 1. Strong Nash equilibrium.
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