

Cohete sonda con estabilización vertical activa

Edwin Rosario Gabriel*

*Centro de Desarrollo Aeroespacial CDA-IPN, CDMX. {edwinrg54@gmail.com }

October 17, 2018

Contenido

- Planteamiento del problema
- Diseño mecánico
 - Estructura del cohete
 - Sistema de control activo
- 3 Modelo Matemático
 - 4 Estimación de la Orientación
 - Control de orientación
 - Resultados de simulación
 - Resultados experimentales

October 17, 2018

2/24

Conclusiones

Planteamiento del problema

Figure: Efecto del viento lateral "Weather cocking effect".

・ロト ・回ト ・ヨト ・ヨト

October 17, 2018

Estabilidad estática

Figure: Estabilidad estática en un cohete sonda.

<ロ> <同> <同> < 同> < 同>

E

4/24

October 17, 2018

Estructura del cohete

Figure: Diseño estructural de Cohete Rocket-CDA I

- Aletas de estabilización pasiva tipo Trapezoidal (2d = 150 mm, MDF).
- Isselaje A Compartimento del sistema de propulsión (600 mm, PVC).
- Aletas de control tipo Triangular (50mm, MDF)
- Fuselaje B Compartimento del sistema de control (160mm, PVC)
- Solution Nariz LV-Haack de mínimo arrastre: C = 1/3 (340mm, Impresora 3D)

Estructura del cohete

Figure: Diseño estructural de Cohete Rocket-CDA I

- Ompartimento para el motor de combustible sólido.
- Anillos de centrado y sujeción (MDF).
- Ocople de fuselajes A y B (Impresión 3D).
- Sistema de control vertical activo: Servomotores MG90S.
- Aviónica: Microcontrolador, IMU, Batería, Xbee.

Parámetros de diseño

- La restricción principal para el diseño del prototipo Rocket-CDA I son las dimensiones del sistema de control vertical activo.
- La forma y las dimensiones de las aletas se seleccionaron con ayuda del software *OpenRocket Simulator*

• Ojiva serie LV-Haack:
$$r = \frac{R}{\sqrt{\pi}}\sqrt{\beta - \frac{1}{2}\sin(2\beta) + C\sin(\beta)^3}$$
,
con $\beta = \arccos(1 - \frac{2x}{L})$, $C = \frac{1}{3}$.

Parámetros de diseño. Fleeman (2006)	
Diámetro d	d = 76 mm (3 in),
Longitud de Fuselaje L_b	$L_b/d = 10$, con $(5 \le Lb/d \le 25)$.
R. de esbeltez Ojiva L_o	$L_o/d = 4,$
Margen de estabilidad estática	2 calibers.
Aletas pasivas	Bode de fuga = d.

Sistema de control activo

8/24

D

Modelo Matemático

Modelo Matemático

Asumimos las siguientes consideraciones para las fuerzas y momentos que inducen las superficies de control sobre el sistema:

- A) Cada superficie de control S_i genera un fuerza normal al eje \vec{b}_3 , dado por $f_i = v_a C_s a_t \sin(\eta)$, que es directamente proporcional a la velocidad del aire v_a , al coeficiente de sustentación C_s y al área de incidencia $a_t \sin(\eta)$.
- B) La fuerza f_i causa un efecto similar a la fuerza que induce una superficie de control en un vehículo de ala fija. El ángulo η ($-20 \le \eta \le 20$) está acotado debido a que para ángulos mayores se presenta un efecto de pérdida.
- C) Los momentos en cada eje del marco $\{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ generados por las superficies de control S_i con respecto al CG pueden ser escritos como:

$$\begin{bmatrix} M_1 \\ M_2 \\ M_3 \end{bmatrix} = \begin{bmatrix} d_l(f_1 + f_3) \\ d_l(f_2 + f_4) \\ d_r(f_1 + f_2 + f_3 + f_4) \end{bmatrix}$$
(1)

・ロン ・回 と ・ 回 と

October 17, 2018

Modelo Matemático

Modelo dinámico de rotación:

$$J\dot{\Omega} + \Omega \times J\Omega = M, \qquad \Omega = [p, q, r]^T$$
 (2)

Modelo cinemático de rotación:

$$\dot{R} = R\hat{\Omega}$$
 (3)

October 17, 2018

11/24

 $\operatorname{con} \hat{\Omega} : \mathbb{R}^3 \to \mathfrak{so}(3)$ definido como:

$$(\hat{\Omega}) = \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix} \in \mathfrak{so}(3)$$
(4)

• Modelo cinemático de orientación-reducida: Dado $\vec{k} \in \mathbb{S}^2$ en {e}, se puede escribir la orientación-reducida mediante $\Gamma = R^T \vec{k}$ en {b}.

$$\dot{\Gamma} = \dot{R}^T \vec{k} = (\hat{\Omega})^T R^T \vec{k} = (\hat{\Omega})^T \Gamma = -\hat{\Omega} \Gamma = \Gamma \times \hat{\Omega}$$
(5)

Estimación de la Orientación

• Algoritmo de Fusión Sensorial basado en el FK. *Rosario(2013)*. Dada la velocidad angular $\Omega_m = [p, q, r]^T \in \mathbb{R}^3$ y las aceleraciones $a_m = [a_1, a_2, a_3]^T \in \mathbb{R}^3$, representadas por los siguientes modelos:

$$\Omega_m = \Omega + b_\Omega + \mu_\Omega \qquad \Omega_m \in \mathbb{R}^3$$

$$\mathbf{a}_m = R_i^{b^T} (\dot{v} - g) + b_a + \mu_a \qquad \mathbf{a}_m \in \mathbb{R}^3$$
(6)
(7)

- Es posible estimar los ángulos *Pitch* y *Yaw* (ϕ , θ) con:
- Modelo de sistema

$$x_{k} = \begin{bmatrix} \phi_{g_{k+1}} \\ \zeta_{1 \ k+1} \\ \theta_{g_{k+1}} \\ \zeta_{2 \ k+1} \end{bmatrix} = \begin{bmatrix} 1 & -\Delta t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\Delta t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_{g_{k}} \\ \zeta_{1_{k}} \\ \theta_{g_{k}} \\ \zeta_{2_{k}} \end{bmatrix} + \begin{bmatrix} \Delta t \ p_{k} \\ 0 \\ \Delta t \ q_{k} \\ 0 \end{bmatrix}$$
(8)

Modelo de medición

$$y_{k+1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \phi_{a_k} \\ \zeta_{1_k} \\ \theta_{a_k} \\ \zeta_{2_k} \end{bmatrix} + \begin{bmatrix} \xi_{1_k} \\ 0 \\ \xi_{2_k} \\ 0 \end{bmatrix}$$
(9)

October 17, 2018

Estimación de la Orientación

- Ruido de sistema: $\zeta_1, \zeta_2 \sim N(\mu, \sigma^2)$
- Ruido de medición: $\xi_1, \xi_2 \sim N(\mu, \sigma^2)$
- Con varianza σ^2 y media $\mu = 0$.

Algorithm 1 : Fusión Sensorial mediante el FK

Require:
$$\mathbf{a}_m = [a_1, a_2, a_3]^T$$
, $\boldsymbol{\Omega}_m = [p, q, r]^T$, $P_{0,0} = var(x_0)$, $\hat{x}_0 = E(x_0)$

1: for $k = 1, 2, \dots$ do

2:
$$Q = \mathbf{I}_4 var(\zeta), V = \mathbf{I}_4 var(\xi)$$

3: $P_{k|k-1} = A P_{k-1,k-1} A^T + H_{k-1} Q_{k-1} H_{k-1}^T$

4:
$$\hat{x}_{k|k-1} = A \hat{x}_{k-1|k-1} + B_{k-1} u_{k-1}$$

5:
$$G_k = P_{k|k-1} C^T (C P_{k|k-1} C^T + V_k)^{-1}$$

- $\begin{array}{ll} \mathbf{6:} \quad P_{k|k} = \left[I G_k C\right] P_{k,k-1} \\ \end{array}$
- 7: $\hat{x}_{k|k} = \hat{x}_{k|k-1} + G_k(y_k C\hat{x}_{k|k-1})$

8: end for

Control de Orientación

Objetivo de control

Consiste en mantener una trayectoria vertical en el ascenso del cohete. Esto implica una rotación del cuerpo rígido de modo que su vector de orientación-reducida $\Gamma \in \mathbb{S}^2$ esté alineada con el vector de orientación-reducida deseado $\Gamma_d \in \mathbb{S}^2$, es decir $\Gamma \to \Gamma_d$.

• Control de orientación-reducida. *Chatuverdi (2011)* Dado un vector de apuntamiento deseado $\Gamma_d = R_d^T \vec{k}$, donde \vec{k} representa un vector fijo en el marco de referencia inercial, y la velocidad angular $\Omega = 0 \in \mathbb{R}^3$. La ley de control en lazo cerrado $u : \mathbb{S}^2 \times \mathbb{R}^3 \to \mathbb{R}^3$,

$$u = K_p(\Gamma_d \times \Gamma) - K_v \Omega \tag{10}$$

・ロン ・回 と ・ ヨ と ・ ヨ

October 17, 2018

14/24

estabiliza asintóticamente al punto de equilibrio definido por $(\Gamma_d, 0)$, donde K_p es un número real positivo y K_v una matriz definida positiva.

Resultados de simulación

• Matlab: Función
$$[x, t] = ode45()$$
.

- $J = [1.8603, 1.8603, 0.0189] kg.m^2$ CAD CatiaV5R20.
- Alinear $\vec{b_3}$ con $\vec{e_3}$. $\Gamma = R^T \vec{k} \rightarrow \Gamma_d$ con $\vec{k} = [0, 0, 1]$ y $\Gamma_d = [0, 0, 1]$.

•
$$k_p = 10 \text{ y} \ k_v = diag[7, 12, 17]$$

Las condiciones iniciales están dadas por:

$$\Omega_0 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \quad \Gamma_0 = R_0^T \vec{e_3} = \begin{bmatrix} -0.2588\\0.1677\\0.9513 \end{bmatrix}$$
(11)

donde $R_0(\psi, \theta, \phi)$ corresponde a la matriz de rotación dados los ángulos de Euler, con una rotación de 30° sobre el eje \vec{b}_3 , 15° sobre el eje \vec{b}_2 y 10° sobre el eje \vec{b}_1 .

$$R_0(30^\circ, 15^\circ, 10^\circ) = \begin{bmatrix} 0.8365 & -0.4535 & 0.3076 \\ 0.4830 & 0.8753 & -0.0229 \\ -0.2588 & 0.1677 & 0.9513 \end{bmatrix}$$
(12)

October 17, 2018

Resultados de simulación

Resultados de simulación

- Marco inercial $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$, Marco móvil $\{\vec{b}_1,\vec{b}_2,\vec{b}_3\}$.
- El Marco $\{\vec{\rho_1}, \vec{\rho_2}, \vec{\rho_3}\}$ muestra la orientación final

Figure: Representación gráfica de las Rotaciones.

Figure: Prototipo cohete Rocket-CDA I.

<ロ> <同> <同> < 同> < 同>

- 12

18/24

October 17, 2018

- ATMega32U4 Arduno Nano 16 MHz.
- IMU AltIMU-10 v5. Giroscopio LSM6DS33, Acelerómetro LIS3MDL , Barómetro LPS25H con I2C.
- Módulos XbeeS1 Conexión punto a punto con UART.
- Bateria Li-Po 1000 mA/h.
- Regulador de voltaje L7806CV.
- Programacion Multi-tasking usando la libreria FreeRTOS.
 - T1: Adquisición de datos.
 - T2: Estimación y control.
 - T3: Envío de datos a PC.

Figure: Electrónica del prototipo

October 17, 2018

19/24

CDA

• $k_p = 9.5 \text{ y} k_v = diag[7.6, 12.5, 17.4].$

• $\Omega_0 = [0, 0, 0]^T$ y $\Gamma_0 = R_0^T \vec{k}$ con ángulos menores a 30° en cada eje.

Figure: Pruebas en experimentales.

・ロト ・回ト ・ヨト ・ヨト

October 17, 2018

Conclusiones

- Se presentaron los resultados del desarrollo y pruebas de un sistema de estabilización vertical activo usando superficies de control para un cohete sonda.
- La variación en las gráficas experimentales se debe principalmente a la señal del giroscopio, ya que Ω se retroalimenta directamente en (10) sin filtrar μ_Ω.
- El túnel de viento horizontal y la balanza de momentos limitan las pruebas experimentales.
- Como trabajo a futuro, se pretende realizar experimentos en un contenedor de agua que permita simultáneamente las tres rotaciones del prototipo.

October 17, 2018

Gracias por su atención.

Centro de Desarrollo Aeroespacial CDA-IPN

Belisario Domínguez 22, Col. Centro, Delegación Cuauhtémoc, CP. 06010, México, Ciudad de México 57296000 ext. 64665

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣へで October 17, 2018