

IMPORTANCIA TOPOLÓGICA DE ESPECIES CARISMÁTICAS Y COMERCIALES EN UNA RED TRÓFICA DEL GOLFO DE CALIFORNIA

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN MANEJO DE RECURSOS MARINOS

PRESENTA

RUBÉN OLMO GILABERT

LA PAZ, B.C.S., DICIEMBRE DEL 2017

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA DE INVESTIGACIÓN Y POSGRADO ACTA DE REVISIÓN DE TESIS

En la Ciudad de La Paz, B.C.S., siendo las <u>12:00</u> horas del día <u>23</u> del mes de <u>Noviembre</u> del <u>2017</u> se reunieron los miembros de la Comisión Revisora de Tesis designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de <u>CICIMAR</u> para examinar la tesis titulada:

"IMPORTANCIA TOPOLÓGICA DE ESPECIES CARISMÁTICAS Y COMERCIALES EN UNA RED TRÓFICA DEL GOLFO DE CALIFORNIA"

Presentada por el alumno:

OLMO	GILABERT	RUBÉN						
Apellido paterno	materno	nombre(s)						
		Con registro: A	1	6	0	9	9	6

Aspirante de:

MAESTRIA EN CIENCIAS EN MANEJO DE RECURSOS MARINOS

Después de intercambiar opiniones los miembros de la Comisión manifestaron **APROBAR LA DEFENSA DE LA TESIS**, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISION REVISORA

Directores de Tesis M en C. GUSTAVO DE LA CRUZ AGÜERO DR. ANDRÉS FELIPE NAVIA LÓPEZ Director de Tesis 2º. Director de Tesis DR. LEONARDO ANDRÉS ABITIA CÁRDENAS DR. RODRIGO MONCAYO ESTRADA DR. XCHEL GABRIEL MORENO SÁNCHEZ PRESIDENTE DEL COLEGIO DE PROFESO DR. SERGIO HERNÁNDEZ TRUJILLO I.P.N. CICIMAR **DIRECCIÓN**

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

CARTA CESIÓN DE DERECHOS

En la Ciudad de	La Paz, B.C.S.,	el día	08	del mes de	Diciembre	del año	2017
El (la) que suscribe		CEAN. RU	BÉN OL	MO GILABERT	Al	umno (a) de	el Programa
	MAESTRÍA E	N CIENCL	AS EN M	IANEJO DE RECU	JRSOS MARINOS	S	
con número de reg	istro A16099	6 adsc	rito al	CENTRO INTE	RDISCIPLINARIO	DE CIENCIAS	MARINAS
manifiesta que es autor(a) intelectual del presente trabajo de tesis, bajo la dirección de:							
M en C. GUSTAVO DE LA CRUZ AGÜERO Y DR. ANDRÉS FELIPE NAVIA LÓPEZ							
y cede los derechos del trabajo titulado:							
"IMPORTANCIA TOPOLÓGICA DE ESPECIES CARISMÁTICAS							
Y COMERCIALES EN UNA RED TRÓFICA DEL GOLFO DE CALFIORNIA"							
al Instituto Politécnico Nacional, para su difusión con fines académicos y de investigación.							

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Éste, puede ser obtenido escribiendo a la siguiente dirección: <u>sialamar@gmail.com - gaguero@ipn.mx - anavia@squalus.org</u> Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

OCEAN. RUBÉN OLMO GILABERT Nombre y firma del alumno

DEDICATORIA

Dedico este trabajo a todas las personas inconformistas, rebeldes y críticas que hacen que la humanidad avance éticamente. Para que la ciencia y la filosofía nos guíen en el desarrollo social y económico y para que los adultos recuperemos la curiosidad y la creatividad de los niños.

Dedicado especialmente a mi sobrina Inés, ya que esta maestría, aunque muy provechosa, me separó de ella en sus primeros pasos. Espero recuperar el tiempo "perdido", ya que la vista y el pelo perdido en estos bonitos dos años ya no volverán. Deseando lo mejor para mi hermana en la víspera del nacimiento de Julia.

Dedicado también a mi familia porque sienten cada decisión y confían en mi forma de ser un tanto peculiar, porque se emocionan con cada logro. Y para mi madre, porque crecemos juntos desde hace mucho tiempo, nunca olvido nuestra frase:

"Ningún camino fácil te hará llegar a algún lugar que merezca la pena"

Y para mis mejores amigos que ya saben ellos quienes son y los he hechado de menos en este tiempo. Con ganas de chelas y tapas.

AGRADECIMIENTOS

A mi director, el Dr. Navia, director, profesor y mentor. Gracias Andrés por tu exigencia porque me hizo crecer y sacar lo mejor. Exigencia justificada con tu ejemplo, tu crítica constructiva y respetuosa y tu paciencia.

A mi director y profesor, el MC. Gustavo de La Cruz. Por su brillantez, su orden y su vocación para enseñar, con el que aprendí mucho de ecología y de tantas cosas más. Gracias por pláticas interesantes y por el apoyo.

Al Dr. Scotti, por esos dos meses en el GEOMAR (Alemania) y por el curso intensivo de redes tróficas en Escocia. Gracias Marco por creer en mí y apoyarme, darme seguridad y entusiasmo. Me sentí casi en casa y a un alto nivel de trabajo, mejorándolo y abriéndome la mente.

A mi comité, los doctores Andrés Abitia, Rodrigo Moncayo y Xchel Moreno por sus consejos y por mejorar mis seminarios y el manuscrito. También al Dr. Cruz-Escalona por recibirme en el CICIMAR y por su apoyo.

Agradecimiento general a aquellos investigadores a los que consulté y a los compañeros y amigos que tuve la suerte de encontrar en La Paz. Y gracias México que a través del CONACyT, me diste la oportunidad por primera vez de dedicarme en exclusiva a mis estudios. Gracias al Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), porque me ha sorprendido la calidad de la enseñanza. Orgulloso de ser egresado suyo.

LISTA DE CONTENIDO DEDICATORIA

AGRADECIMIENTOS

LISTA DE FIGURASi
LISTA DE TABLASiii
GLOSARIOvi
RESUMENix
ABSTRACTx
1. INTRODUCCIÓN 1
2. ANTECEDENTES
2.1. LA CIENCIA SISTÉMICA Y LAS REDES
2.1.1. LAS MATEMÁTICAS COMPLEJAS Y LA AUTOORGANIZACIÓN 4
2.1.2. AUTOPOIESIS
2.1.3. LAS ESTRUCTURAS DISIPATIVAS DE PRIGOGINE, NOBEL EN 1977 . 5
2.2. LA EVOLUCIÓN DE LA TEORÍA DE LAS REDES TRÓFICAS 5
2.2.1. ESTRUCTURA O DINÁMICA 5
2.2.2. LA BÚSQUEDA DE PATRONES TOPOLÓGICOS6
2.2.3. DESARROLLO TECNOLÓGICO Y APROXIMACIONES MÁS PRECISAS8
2.3. ANTECEDENTES DEL ÁREA DE ESTUDIO 10
2.3.1. MODELOS DE BALANCE DE MASA 10
2.3.2. MODELOS TOPOLÓGICOS 13
3. PLANTEAMIENTO DEL PROBLEMA 14
4. HIPÓTESIS
5. OBJETIVOS
OBJETIVO GENERAL

OBJETIVOS PARTICULARES	16
6. MÉTODOS	17
6.1. ÁREA DE ESTUDIO	17
6.2. CONSTRUCCIÓN DEL MODELO	19
6.3. PREPARACIÓN DE LA MATRIZ	20
6.4. NIVELES TRÓFICOS	22
6.5. CARACTERIZACIÓN Y ELECCIÓN DE ESPECIES CARISMÁTICA	S 23
6.6. ELECCIÓN DE LAS ESPECIES DE INTERÉS PESQUERO	25
6.7. ANÁLISIS TOPOLÓGICOS	27
6.7.1. ÍNDICES DE ESCALA GLOBAL	27
6.7.2. ÍNDICES DE CENTRALIDAD	28
6.7.3. Escenarios sin especies carismáticas ni comerciales	36
7. RESULTADOS	37
7.1. COMPOSICIÓN TAXONÓMICA DEL MODELO TRÓFICO	37
7.2. GENERALIDADES DE LA RED	37
7.3. ANÁLISIS TOPOLÓGICO DE LA RED TRÓFICA DEL GOLFO DE CA	ALIFORNIA
	42
7.3.1. ÍNDICES GLOBALES	42
7.3.2. ÍNDICES DE CENTRALIDAD	43
7.3.3. ÍNDICE DE IMPORTANCIA TOPOLÓGICA (K)	46
7.3.4. ÍNDICE DEL CONJUNTO DE JUGADORES CLAVE (KPP-2)	47
7.4. EFECTO DE LA ELIMINACIÓN DE ESPECIES CARISM/ COMERCIALES SOBRE LA RED TRÓFICA DEL GC	ÁTICAS Y 48
7.4.1. ANÁLISIS DE LA CENTRALIDAD	50
7.4.2. IMPORTANCIA TOPOLÓGICA	57
7.4.3. ÍNDICE DEL CONJUNTO DE JUGADORES CLAVE	61

8. DISCUSIÓN
9. CONCLUSIÓN
9. RECOMENDACIONES
10. BIBLIOGRAFÍA
Anexo I
Interacciones eliminadas por canibalismo y ciclos
Canibalismo y ciclos de alimentación96
Equivalentes ecológicos
Anexo II. Lista de especies y referencias de dietas y atributos
Referencias de las dietas 105
Bibliografía de los atributos116
Anexo III. Código en R 121
Construcción de la Edge list o lista de interacciones 121
De una Lista de interacciones a una Matriz de adyacencia 121
Análisis con el paquete Igraph (Diversidad, conectancias, densidad, grados del nodo (promedio, máximo, mínimo), distancia media etc.)
Análisis con el paquete Cheddar 124
Cálculo de los niveles tróficos 126
Índices de centralidad 126
Índice de importancia de centralidad 127
Cálculo del índice de importancia de centralidad128
Anexo IV. Lista de interacciones 129
Anexo V. Resultados de los índices y niveles tróficos

LISTA DE FIGURAS

Figura 1. Mapa del Golfo de California representando el área de estudio. La intensidad Figura 2. Ejemplo de mapas de distribución de especies para la elección de las componentes de la red trófica. 19 Figura 4. Ejemplo ilustrativo para el análisis de la intermediación parcial sobre un nodo "k" con respecto a un nodo "i". Las esferas marcan los caminos geodésicos y las rectas punteadas son las interacciones de depredación y los colores las distintas rutas posibles. La esfera punteada marca el único camino geodésico entre dos nodos i-j por el que el nodo "i" no necesita pasar a través del nodo "k", para el resto, el nodo "k" es Figura 5. Ejemplo ilustrativo del funcionamiento del índice de cercanía para un nodo "i". Las líneas curvas marcan los caminos geodésicos para llegar al resto de nodos de la red y la suma de esos caminos sería el cálculo básico de la lejanía, que aplicando Figura 7. Red trófica del Golfo de California. En colores se muestran 20 grupos de especies. Los nodos están distribuidos por niveles tróficos aproximados, calculados a partir de las dietas de la red trófica y el eje x representa una aproximación a la zona de uso de las especies siendo la izquierda la costa y la derecha la zona más alejada a Figura 8. Número de nodos por grupos que forman la red trófica. Pec (peces); Tib (tiburones); Zoo (zooplancton); Ray (rayas); Fito (fitoplancton); Inv (Invertebrados bentónicos); Mam (mamíferos); Macr (Macroalgas); Fane (fanerógamas marinas); Cam (camarones); Can (cangrejos y jaibas); Cef (cefalópodos); Egu (eguinodermos) y Figura 9. Mapa del Golfo de California con la distribución de las abundancias de los nodos por zonas. Los círculos representan el número y porcentaje de nodos por zonas:

Desde todo el Golfo, a las zonas combinadas norte y centro, así como centro y sur,

Figura 11. Índice de densidad de interacciones e índice de conectancia directa para la red original (primer punto de la izquierda), para los escenarios sin cada una de las especies carismáticas (de izquierda a derecha: vaquita, ballena azul, tiburón blanco y lobo marino) y comerciales (sardina monterrey, corvina golfina, calamar gigante y camarón azul), para el escenario sin las cuatro especies carismáticas elegidas (9) y para el escenario de las cuatro especies comerciales elegidas (10). El eje de la izquierda corresponde con el de la conectancia y el de la derecha con el de la densidad.

Figura 12. Promedio del grado del nodo (columnas) y de las distancias medias entre nodos (línea con marcadores) para la red original (primera columna), para la red sin las especies elegidas, una a una, para la red sin especies carismáticas (9) y para la red sin especies comerciales (10). El eje izquierdo refiere al grado del nodo promedio y el derecho a la distancia media.
49
Figura 13. Distribución de frecuencias para las propiedades del grado del nodo (izquierda) e intermediación (derecha). Arriba la red original, en el centro el escenario sin especies carismáticas y abajo el escenario sin especies comerciales. Se muestran las especies más importantes con su código y entre paréntesis la cantidad de presas y depredadores.

Figura 14. Red trófica original (1), escenario de especies carismáticas (2) y escenario de especies comerciales (3) para el grado del nodo (a) e intermediación (b). Distribución vertical por nivel trófico y horizontal por su lejanía a la costa. Rangos de

LISTA DE TABLAS

Tabla 6. Índices de importancia topológica (K) para los 20 nodos más importantes delescenario sin especies carismáticas. Índice del control de abajo hacia arriba (Kbu), dearriba hacia abajo (Ktd), de los efectos directos (Kdir), de los efectos indirectos (Kindir)y la suma (K) de los controles ecosistémicos (Kbu y Ktd) o de los efectos (kdir y Kindir).Sombreado en gris los nodos más valorados por índice.58**Tabla 7.** Índices de importancia topológica (K) para los 20 nodos más importantes delescenario sin especies comerciales. Índice del control de abajo hacia arriba (Kbu), dearriba hacia abajo (Ktd), de los efectos directos (Kdir), de los efectos indirectos (Kindir)y la suma (K) de los controles ecosistémicos (Kbu y Ktd) o de los efectos indirectos (Kindir)y la suma (K) de los controles ecosistémicos (Kbu y Ktd) o de los efectos (kdir y Kindir).Sombreado en gris los nodos más valorados por índice.59

GLOSARIO

Agregación: Acción de incluir más de una especie en un nodo de la red trófica (Sugihara et al., 1989).

Autopoiesis: Fenómeno de auto organización de los sistemas, la autopoiesis es la creación de sí mismo. La estructura de las interacciones de los componentes del sistema definen el patrón de organización y son los propios nodos los que producen y transforman a los otros nodos por medio de la auto regulación del sistema (Varela *et al.*, 1974).

Cadena trófica: Conjunto de nodos y sus interacciones por los que fluye la energía desde que es sintetizada por los productores primarios hasta que llega al depredador tope (Curtis H. *et al.*, 2008).

Ciclos de alimentación: Flujo energético que vuelve a un nodo anterior. Camino por el que la depredación se repite en uno de los nodos (Belgrano *et al.*, 2005).

Conectancia: Número de interacciones observadas con respecto a al número total de interacciones posibles (Martinez, 1991).

Control ecosistémico: Mecanismo a través del cual se determinan la estructura y la función de las redes tróficas (Jordán *et al.*, 1999).

Control ecosistémico de abajo hacia arriba: Control poblacional que ejercen los productores primarios sobre la biomasa del ecosistema que se encuentra en niveles tróficos superiores (Navia *et al.*, 2012).

Control ecosistémico de arriba hacia abajo: Control poblacional que ejercen los depredadores tope sobre la biomasa del ecosistema que se encuentra en niveles tróficos menores (Navia *et al.*, 2012).

Depredador tope: Especie que no tiene depredadores (Navia et al., 2012).

Efectos tróficos directos: Efectos que produce un depredador sobre el tamaño poblacional de sus presas por interacción directa (alimentación) (Legendre & Legendre, 1998).

Efectos tróficos indirectos: Efecto que produce un depredador sobre el tamaño poblacional de una especie a través de la depredación de sus depredadores (Menge, 1995).

Especie bandera: Especie que atrae la atención de la gente para su conservación y sirve, a diferencia de la especie carismática, como especie focal, ya sea indicadora o paraguas (Ducarme *et al.*, 2013).

Especie basal: Especie que produce su propio alimento, es decir que son autótrofos o también denominados productores primarios (Pimm, 1980).

Especie carismática: Especie que al funcionar como símbolo sirve como estímulo para la conservación (Ducarme *et al.*, 2013).

Especie focal o sustituta: Especie útil para la conservación de la biodiversidad en cuanto a que refleja condiciones positivas o negativas para algunas de las especies o para el ecosistema. Pueden ser especies sustitutas las especies bandera, paraguas, Keystone o indicadoras (Ducarme *et al.*, 2013).

Especie indicadora: Especie que funciona como sustituta de otras formas de biodiversidad y/o refleja cambios en los patrones o procesos de los ecosistemas (Ducarme *et al.*, 2013).

Especie "Keystone": Especie de la que depende la estabilidad del ecosistema o por la que saber el estado de salud del ecosistema (Jordán *et al.*, 1999; Ducarme *et al.*, 2013).

Especie paraguas: Especie de amplio rango de distribución cuya protección se hace extensible a otras especies que viven en el mismo hábitat (Ducarme *et al.*, 2013).

Grafo: Representación gráfica de una red de interacciones (Heredia-Doval, 2013).

Grupo funcional: Conjunto de especies que poseen atributos (morfológicos, fisiológicos, conductuales o de historia de vida) que son semejantes y que desempeñan un papel ecológico equivalente (de Ruiter *et al.*, 2005).

Indices de centralidad: índices que miden las interacciones entre especies (nodos) y aportan información sobre la estructura de la red trófica (Barnes & Harary, 1983).

Nodo: Especie o conjunto de especies que funcionan como los componentes individuales que forman la red trófica (Heredia-Doval, 2013).

Patrón de escala libre: Estructura teórica que presentan algunos sistemas complejos y en la cual la mayoría de las especies tienen baja conectividad, y muy pocas, alta conectividad (Strogatz, 2001).

Red trófica: Entramado de cadenas tróficas interrelacionadas y completamente conectado (Curtis H. *et al.*, 2008).

Resolución de la red: grado de agregación de los nodos de una red trófica (Martinez, 1993).

Topología: Aplicado a ecología, es la ciencia que estudia las relaciones que existen entre las especies o nodos de la red trófica, medidas a través de sus interacciones de depredación-presa (Ashby, 1961; Scotti *et al.*, 2009).

RESUMEN

Especies carismáticas y comerciales están sujetas a planes de conservación, ignorando en ocasiones el efecto que éstas tienen en la comunidad o viceversa. Cada vez hay mayor consenso en el uso del enfogue ecosistémico en la gestión de recursos marinos y las redes tróficas son una herramienta y una vía para conseguirlo. En el Golfo de California, este enfoque se ha desarrollado mediante modelos de balance de masa. Con base en estudios de dietas previamente publicados, se construyó una red trófica de la mayor resolución taxonómica posible para el Golfo de California. A partir de dicha red se evaluó la importancia estructural de las principales especies carismáticas y comerciales aplicando modelos topológicos. La red trófica se integró de 317 taxa, 74% de ellos identificados a nivel de especie. Los grupos analizados estuvieron representados por peces (49.2%), tiburones (7.9%), zooplancton (7.6%), rayas (5.4%), fitoplancton (4.7%), invertebrados bentónicos (4.7%), mamíferos (4.4%), aves (3.15%), macro algas (3.15%), fanerógamas (2.2%), camarones (1.9%), cangrejos (1.9%), cefalópodos (1.9%), equinodermos (1.26%) y reptiles (0.63%). Lolliguncula (spp.) fue el mayor intermediario, aunque camarones, jaibas o estomatópodos también ocuparon posiciones centrales en la red. El mayor control ecosistémico lo ejerció el tiburón blanco al depredar sobre niveles tróficos altos, pero el tiburón martillo, el fitoplancton y las diatomeas también influyeron, sugiriendo un control ecosistémico mixto. El tiburón piloto, así como los camarones café y azul fueron claves en la transmisión de efectos directos debido a su conectividad. En los efectos indirectos influyeron sobretodo depredadores tope, productores y consumidores primarios. El conjunto de nodos óptimo en distribuir los efectos tróficos en la red fueron los loligínidos y los anfípodos. Al excluir las especies carismáticas (ballena azul y tiburón blanco) o las cuatro especies comerciales en conjunto, se modificaron las rutas tróficas óptimas y la velocidad de dispersión de los efectos en la red; sin embargo, en general la red fue robusta ante perturbaciones.

Palabras clave: conectividad; conservación; centralidad; especie clave; ecosistémico

ABSTRACT

Charismatic and commercial species are subjects of conservation and regulation plans, but without knowledge about their impact on the community or vice versa. Ecosystembased management for marine resources is becoming a consensus and the food webs are a powerful tool and the path to explore it. In the Gulf of California, food webs were studied through mass balance models. Based on previously published studies of diets, it be constructed a food web with major taxonomic resolution as possible for the Gulf of California. From this network it be assessed the structural importance of the main charismatic and commercial species applying topological models. The trophic network studied consisted of 317 taxa, 74% of which were identified at the species level. The food web be composed of fishes (49.2%); sharks (7.9%); zooplankton (7.6); rays (5.4%); phytoplankton (4.7%); benthic invertebrates (4.7%); mammals (3.15%); macroalgae (3.15%); phanerogams (2.2%); shrimp (1.9%); crabs (1.9%); cephalopods (1.9%); echinoderms (1.26%) and reptiles (0.63%). Lolliguncula (spp.) is the most intermediary of the energy flow, even though shrimp, crabs or stomatopods also occupied central positions in the trophic network. Greater ecosystem control is derived from the white shark, because his predation on high trophic levels, but Hammerhead shark, phytoplankton and diatoms also influenced on the energy flow suggesting mixed ecosystem control. Carcharhinus falciformis as the brown and blue shrimps were main nodes on the direct effects due to their high connectivity, and the most influents nodes for indirect effects were top predators, producers and primary consumers. The key players set to expand trophic effects in the network were Lolliguncula (spp.) and amphipods. Excluding the blue whale, the white shark or the four-commercial species at time, modified the optimum trophic routes and the dispersion's speed of the effects; however, the food web shows robustness against disturbances. Even so, is suggested take care the health of loliginid squid and white shark populations.

Keywords: conectivity; conservation; keystone; centrality; ecosystem-based

1. INTRODUCCIÓN

Existen dos formas esenciales de concebir la naturaleza, mediante su formación desde la biología molecular o, por el contrario, mediante los patrones que surgen de cada estructura viva. La visión científica sistémica, donde el todo es más que la suma de sus partes, es opuesta a la visión reduccionista, donde la aproximación al conocimiento del todo se hace por la suma de sus partes (2.1. LA CIENCIA SISTÉMICA Y LAS REDES). Una de las aproximaciones sistémicas es la teoría de redes y se ha expresado en multitud de formas, pero en biología y ecología, su objetivo ha sido describir la estructura de las células (redes moleculares), los organismos (redes celulares), las poblaciones (redes de organismos y redes sociales) y las comunidades (redes de especies, redes ecológicas) (Capra, 1996). Las redes son una forma de observar la naturaleza y los patrones que forman su estructura son sus atributos.

La complejidad de los ecosistemas es uno de los mayores factores de dificultad en la búsqueda de patrones. Factores como la diversidad, los procesos biogeoquímicos, la física del océano, o factores intrínsecos de las comunidades y de la idiosincrasia de los investigadores hacen del ecosistema marino un sistema todavía más desafiante (Link *et al.*, 2005). El estudio de las redes tróficas se ha convertido en una herramienta esencial para describir y entender la estructura de las comunidades y los ecosistemas y es un tema central en ecología (Belgrano *et al.*, 2005; de Ruiter *et al.*, 2005; Pascual & A. Dunne, 2006; R. McClanahan & M. Branch, 2008; Rossberg, 2013). A través del análisis de las interacciones tróficas se puede entender el papel que juegan las especies en la comunidad y viceversa, la relación entre las especies advertirá sobre la salud de la comunidad (Montoya *et al.*, 2006; Braga *et al.* 2012).

La evolución de la teoría de redes y la caracterización de las propiedades de los ecosistemas a través de la búsqueda de patrones en las redes tróficas y de las características que los condicionan no sólo está vigente en la actualidad sino que es un reto del futuro (Belgrano *et al.*, 2005). El principal objetivo de la cuantificación de las redes tróficas es encontrar patrones universales que establezcan principios fundamentales en ecología (Martinez, 1992; Garlaschelli *et al.*, 2003).

Las redes tróficas son como mapas de carreteras o de ciudades con pequeños y grandes caminos (interacciones) que conectan lugares más o menos visitados (nodos), y la ciencia que mide las distancias entre cada punto de ese mapa, y que describe los mejores lugares para colocar un puente o un paso peatonal o, que define las estrategias para las salidas de emergencia en caso de evacuación, es la topología (Paine, 1988). Las redes tróficas están formadas por especies en vez de lugares, por interacciones de depredación en vez de carreteras o calles, y el transporte de un punto a otro no es de personas sino de biomasa y energía propias de cada organismo en un proceso auto regulativo (De Angelis *et al.*, 1982; Paine, 1988).

Recientemente, el estudio de redes tróficas se ha implementado como una aproximación para el análisis de los efectos que las presiones antrópicas ejercen en los ecosistemas marinos. Particularmente, son una herramienta de simulación de los cambios estructurales y/o funcionales que podrían derivarse de dichas presiones (Navia *et al.*, 2010, 2012; Navia, 2013; Bornatowski *et al.*, 2014; Rocchi *et al.*, 2017). Así, estudios basados en balances de masa y en topología sugieren que actividades humanas como la sobreexplotación causan efectos de corto plazo en la estructura y de mediano y largo plazo en la función (Pauly *et al.*, 1998; Bascompte *et al.*, 2005; Essington *et al.*, 2006; Cruz-Escalona *et al.*, 2016).

De los resultados encontrados en la literatura, los invertebrados son el grupo topológicamente más importante. Especialmente, la langostilla, los estomatópodos y los camarones son especies muy conectadas y estratégicamente posicionadas de forma que distribuyen la energía entre las especies basales y el resto de compartimentos tróficos (Zetina-Rejón *et al.*, 2003; Irigoyen-Arredondo, 2013; Salinas-Mayoral, 2014; Maciel-Zapata, 2016). A excepción de los camarones, las especies topológicamente importantes no siempre son especies de interés pesquero o especies objeto de conservación. Sin embargo, en muchas ocasiones se consideran las especies comerciales o carismáticas como especies ecológicamente importantes (Zetina-Rejón *et al.*, 2007; Arreguín-Sánchez & Arcos-Huitrón,

2011; Díaz-Uribe *et al.*, 2012). La gestión y conservación de los recursos marinos se debe hacer desde una aproximación ecosistémica y no basada en especies individuales (Wilson, 1992). En el presente trabajo se propone desde una visión sistémica y a partir de la creación de una red trófica, la evaluación mediante escenarios de extinción de especies, de la importancia que las principales especies de interés conservacional y pesquero en México, tienen para el mantenimiento de la estructura de la trama trófica del Golfo de California.

2. ANTECEDENTES

2.1. LA CIENCIA SISTÉMICA Y LAS REDES

El reduccionismo era la base de la ciencia clásica, el objetivo era entender el objeto de estudio a través del análisis de sus partes; sin embargo, el siglo pasado se fue desarrollando la ciencia sistémica con la convicción de esta corriente científica de que el estudio se debía de hacer desde el patrón resultante de la organización de sus partes, la ciencia sistémica (Capra, 1996).

De la ciencia sistémica surgieron la ciencia cibernética y la psicología Gestalt basadas en los patrones de comunicación o de comportamiento, respectivamente. La ciber ciencia se utilizó a partir de la segunda guerra mundial con propósitos militares y para la descripción del sistema neuronal, base por la cual se inventaron las computadoras (Wiener, 1948; Von Neumann, 1951). La teoría de sistemas tuvo gran repercusión también en la psiquiatría mediante la aplicación de las bases científicas cibernéticas en el estudio del mapa mental (Bateson, 1972). La comprensión matemática del funcionamiento del cerebro desde una visión holística, de sistemas, de redes, fue uno de los hitos de la cibernética (Capra, 1996). La teoría de la información fue uno de los soportes de la cibernética, desarrollada por Claude Shannon para describir la transmisión de información a través de la red telegráfica y telefónica y por Norbert Wiener quien intentó describir la red del cerebro humano, desarrollada décadas más tarde por Ross Ashby (Shannon, 1948; Wiener, 1948; Ashby, 1961). La evolución de la aplicación sistémica se instaló en el mundo empresarial también, intentando describir las propiedades emergentes que se producían de sus redes clientelares (Capra, 1996).

2.1.1. LAS MATEMÁTICAS COMPLEJAS Y LA AUTOORGANIZACIÓN

El enfoque científico sistémico evolucionó con las matemáticas complejas, la capacidad de cómputo y el desarrollo de los patrones de auto organización, "La comprensión de la vida empieza con la comprensión del patrón" (Capra, 1996). Los patrones no son cuantificados sino mapeados para entender la estructura de las relaciones. Lo importante desde este punto de vista es el cambio del patrón, no el cambio en los componentes que lo organizan. Las matemáticas complejas son matemáticas de patrones visuales en el campo de la topología donde los sistemas vivos se pueden ver como patrones en red, como componentes auto organizados en forma de red (McCulloch & Pitts, 1943; Capra, 1996).

2.1.2. AUTOPOIESIS

Maturana & Varela (1984) le dan un nuevo nombre y significado al fenómeno de la auto organización, la autopoiesis (creación de sí mismo). Los componentes o nodos de un sistema dejan de tener sentido por sí mismos y son sus relaciones, es decir, la estructura de las interacciones de los componentes del sistema, las que definen el patrón de organización, donde son los propios nodos los que producen y transforman a los otros nodos por medio de la auto regulación del sistema (Varela *et al.*, 1974; Maturana & Varela, 1984). La teoría de la auto organización se llevaría a escala planetaria por Lovelock (1979)a través de su teoría Gaia donde se concibe al planeta Tierra como un sistema vivo auto organizado (Lovelock, 1979, 2016; Lovelock & Margulis, 1996; Margulis & Sagan, 1997; Lovelock & Lovelock, 2000).

Según Capra (1996), "la red de la vida son redes dentro de redes... y comprender los ecosistemas significará comprender las redes". La diferencia de estudiar el sistema en su conjunto o en red (ciencia sistémica) o, por el contrario, estudiarlo en sus partes (ciencia cartesiana) es que la ciencia sistémica considera al conjunto como un ente

con propiedades propias o esenciales, *propiedades emergentes* que no pueden describirse de forma reduccionista por la suma de las partes del todo.

2.1.3. LAS ESTRUCTURAS DISIPATIVAS DE PRIGOGINE, NOBEL EN 1977

En la ciencia sistémica, los trabajos de Bogdanov (1912) y von Bertalanffy (1940 & 1950) son pioneros en la formulación de la teoría de la organización de los sistemas vivos (Capra, 1996). Se mezclan los conceptos de flujo y equilibrio (equilibrio dinámico), contradictorios a simple vista, pero que representan los ecosistemas como compartimentos de materia y energía interactuando, en forma de redes tróficas. El siguiente eslabón teórico fue combinar estructura y cambio en los sistemas a través de los trabajos de estructuras disipativas que le darían el nobel en 1977 a Ilya Prigogine (Prigogine & Nicolis, 1961; Prigogine, 1978; Prigogine & Stengers, 1984; Capra, 1996).

El estudio de las relaciones tróficas entre especies permite describir la estructura de un ecosistema, lo que algunos autores denominan la arquitectura de la naturaleza (Odum, 1953; Margalef, 1974; Krebs, 1986). La modificación de esta estructura repercute, entre otras funciones, en el ciclo de carbono del ecosistema (Schulze & Mooney, 1994; Montoya *et al.*, 2001) y este flujo de materia y energía a través del ecosistema es la fase posterior al flujo compartido en las vías metabólicas a través del organismo (una red dentro de otra red). Se produce el organismo por sus redes metabólicas y se comparte su materia y energía a través de redes tróficas (Capra, 1996).

2.2. LA EVOLUCIÓN DE LA TEORÍA DE LAS REDES TRÓFICAS

2.2.1. ESTRUCTURA O DINÁMICA

La forma de ver la naturaleza a través de las redes ha sugerido un cambio de paradigma sobre la teoría de la evolución. Este nuevo enfoque se basa en el complejo entramado de interacciones que forman las redes en vez de centrarse en la singularidad de cada uno de sus componentes. Una de las primeras definiciones de

las redes tróficas fue realizada por Elton (1927) en su libro "Animal ecology", mencionando a las redes tróficas como ciclos alimenticios.

Cercano al enfoque estructural que propone Elton (1927) para el estudio de la comunidad, MacArthur (1955) propone que la estabilidad de la comunidad está en función de la complejidad de la red, entendida la complejidad como número de nodos o diversidad. Desde otra perspectiva, Lindeman (1942) & Odum (1953) propusieron el estudio de las redes tróficas con base en los flujos de energía entre los diferentes componentes de un sistema. A partir de su trabajo se desarrolló una de las más importantes líneas de investigación de las redes, la cual tiene sus principales exponentes en la teoría de la información aplicada a redes tróficas (Ulanowicz, 1989) y en los modelos de balance de masas (Polovina, 1984; Christensen & Pauly, 1993; Walters *et al.*, 1997; Pauly *et al.*, 2000; Christensen & Walters, 2004)

2.2.2. LA BÚSQUEDA DE PATRONES TOPOLÓGICOS

Posteriormente a Elton (1927) y MacArthur (1955), numerosos autores abordaron la relación entre diversidad y estabilidad de las redes, obteniendo resultados contradictorios entre sí. Los primeros trabajos de referencia fueron los de May (1972, 1973), sugiriendo que la estabilidad de las redes no iba en función de la complejidad (número de nodos de la red), como defendían los autores anteriores, sino de la conectividad, la relación entre la cantidad de nodos y la cantidad de interacciones. El principal problema de los postulados de May fue que se basó en el estudio de redes al azar. Después de estos trabajos se produce un gran esfuerzo en la búsqueda de patrones o regularidades topológicas de las redes tróficas.

Uno de los primeros investigadores que rechazó la hipótesis de May (1972) fue de Angelis (1975), aludiendo al azaroso fenómeno de la auto regulación del sistema sobre todo en niveles tróficos superiores. Otros autores encontraron que los resultados de May dependían de la dinámica de las conexiones y su hipótesis sólo era válida si la fuerza de interacción era constante (Yodzis, 1981, 1988; Pimm, 1982). Pimm (1982)propuso que la razón de presas por depredador era constante y que la omnivoría

no era común, es decir, las especies no solían alimentarse de diferentes niveles tróficos. El autor indicó también, junto a otros autores, que las cadenas tróficas eran cortas, de no más de 3 o 4 pasos (Hutchinson, 1959; Pimm, 1982; Briand, 1983), pero esta tesis cambiaba dependiendo de la complejidad del ecosistema, habiendo cadenas más cortas en ecosistemas más simples (Briand & Cohen, 1987).

Briand & Cohen (1984) tuvieron un papel importante en el desarrollo de la teoría de redes tróficas. Encontraron relaciones entre el promedio de conexiones por nodo y la diversidad (número de nodos) y establecieron escalas constantes en las proporciones de especies basales, intermedias y depredadores tope (Briand & Cohen, 1984; Cohen & Briand, 1984). Además observaron que la conectancia no era igual dependiendo del tipo de ecosistema, donde ecosistemas con estabilidad ambiental mostraban mayores proporciones de conectividad entre depredadores tope y especies basales (Briand, 1983; Cohen *et al.*, 1985). Otros autores evaluaron estas propiedades y concluyeron que la ratio constante entre depredadores y presas definido por los autores anteriores era más probable que sucediera en sistemas lacustres (Jeffries & Lawton, 1985) o simplemente, algunos patrones establecidos no eran igual dependiendo del ecosistema y se proponía relativizar las hipótesis o resultados al ecosistema en cuestión (Schoener, 1989).

Lawton & Warren (1988) revisaron los patrones encontrados hasta el momento en las dos perspectivas del estudio de redes tróficas, la estructural y la dinámica, identificando que existían algunos patrones compartidos entre las dos disciplinas. Sin embargo, advirtieron del peligro de confirmar cualquier tipo de hipótesis sobre las propiedades de las redes porque estaban influenciadas por una colección de datos empíricos no confiables, debido a las dificultades de obtención de los datos. Sumado a lo anterior, reflexionaron sobre el problema de inferir patrones topológicos sin unificar la forma de agregación de las especies en los nodos de la red (especies, grupos funcionales, trofoespecies o gremios tróficos). Uno de los autores más escépticos a las propuestas de las primeras regularidades de las redes tróficas fue Paine (1980, 1988), argumentando la subjetividad inherente en la construcción de las redes tróficas,

por el criterio de adhesión, el nivel de agregación, las diferentes escalas espaciotemporales y la propia idiosincrasia del investigador, aunque algunos trabajos con redes tróficos reales apoyaban los patrones de conectancia teniendo en cuenta sus limitaciones (Winemiller, 1983, 1987, 1989). Para acabar esta "era" o progreso teórico, Joel Cohen y colaboradores formulan y desarrollan el "modelo en cascada" recogiendo de forma empírica las generalidades de las redes tróficas (Cohen & Newman, 1985; Cohen *et al.*, 1985, 1986, 1990; Cohen, 1990; Cohen & Palka, 1990).

2.2.3. DESARROLLO TECNOLÓGICO Y APROXIMACIONES MÁS PRECISAS

Los análisis topológicos derivaron en métodos más complejos y potentes donde las limitaciones no fueron la cantidad de redes sino la calidad de los datos (Pimm *et al.*, 1991; Cohen *et al.*, 1993; McCann, 2000). Por ejemplo, la omnivoría y las cadenas eran más largas de lo reportado (Hall & Raffaelli, 1991, 1993; Morin & Lawler, 1995; McCann & Hastings, 1997); la hipótesis de la conectancia, la escala invariante, la limitación de la longitud de las cadenas y algunas premisas del modelo en cascada eran erróneas según Martinez (1991, 1992) y la crítica fue aún más amplia por Polis (1991), coincidiendo en la necesidad de redes más diversas y menos agregadas. Uno de los patrones más extendido y buscado en esta década fue la distribución de escala libre del número de interacciones (Strogatz, 2001; Albert & Barabási, 2002), pero fue rebatida por algunos investigadores (Camacho *et al.*, 2002). Una justificación a la crítica del patrón de escala libre tiene que ver con la elección adaptativa de las especies en su alimentación, la cual produce estabilidad en la red trófica (Kondoh, 2003).

Se extendió el uso de los índices de centralidad en las redes tróficas. La idea de centralidad deriva de la antropología, querían entender la posición central que ocupaban las personas con las que influir en los procesos comunicativos de grupos reducidos (Bavelas, 1948; Shaw, 1954). Por ejemplo, en una distribución de estrella, la posición más central es la del medio y este tipo de conocimiento hacía eficiente el análisis de problemas grupales. A través de la centralidad se resolvieron todo tipo de

problemas, diseño de la distribución de puentes, integración política, redes sociales, red de transporte etc. (Freeman, 1978).

La centralidad enfocada a estudios ecológicos está basada en la búsqueda de las especies estratégicamente situadas como para producir los mayores efectos tróficos en la comunidad. La posición central en una red es intuitivamente la más conectada, el grado del nodo (Shaw, 1954). Pero una baja conectividad no exime de ocupar una posición central en la red, por poner un ejemplo estremo, una especie conectada sólo a dos nodos (una presa y un depredador) podría ser la gran limitante del paso de energía en la red, desde los productores hacia los depredadores tope, y ocupar una posición de intermediación clave (Freeman, 1977). La medida de intermediación tiene como objetivo identificar las especies que más eficientemente transmiten los efectos en la red trófica ante posibles perturbaciones, ya sea por presión pesquera, contaminación u otros factores. La centralidad también se puede analizar desde el papel que juega un nodo como transmisor por su cercanía al resto de la red. Cualquier efecto que pase por una especie muy cercana, transmitirá de forma masiva los efectos a la red, por tanto, afecta a la velocidad de la transmisión de los efectos.

Un nuevo avance fueron los trabajos de cuantificación de extinciones secundarias de forma teórica (Jordán *et al.*, 1999, 2006; Allesina *et al.*, 2006) o aplicada, para comprobar el impacto de la pesca en las redes tróficas (Navia *et al.*, 2012), analizar el rol de algunas especies de interés (Navia *et al.*, 2010; Rocchi *et al.*, 2017) o describir el estado de la biodiversidad (Borer *et al.*, 2002; Dunne *et al.*, 2002; Thompson *et al.*, 2012). Un trabajo reciente sugiere un cambio de estrategia para la gestión basada en ecosistemas desde las redes tróficas, encontrar las especies a proteger no es lo mismo que encontrar las especies cuyas extinciones impactan más en la estructura (McDonald-Madden *et al.*, 2016).

2.3. ANTECEDENTES DEL ÁREA DE ESTUDIO

2.3.1. MODELOS DE BALANCE DE MASA

Siendo el Golfo de California uno de los ecosistemas marinos más diversos y productivos del planeta, ha despertado un fuerte interés científico. En este sentido, se han realizado numerosas investigaciones enfocadas en analizar el impacto de la actividad pesquera sobre diferentes poblaciones y comunidades marinas de esta región. La mayoría de los estudios sobre este tema se han desarrollado a partir de modelos de balance de masas utilizando las herramientas Ecopath y Ecosim (Arreguín-Sánchez *et al.*, 2002, 2007, Zetina-Rejón *et al.*, 2004, 2003; Arreguín-Sanchez *et al.*, 2004; Morales-Zárate *et al.*, 2004; Lercari-Bernier, 2006; Lozano, 2006; Díaz-Uribe *et al.*, 2007, 2012; Lercari *et al.*, 2007).

Con base en esta aproximación metodológica, Lozano (2006) desarrolló un modelo en la zona norte del Golfo de California, con el objetivo de estudiar los impactos ecológicos de la flota pesquera y el balance hídrico del río Colorado en la comunidad del Alto Golfo, así como el efecto del fenómeno climático El NIÑO. Este autor reportó que existe un control ecosistémico por parte de especies de bajos niveles tróficos (control de abajo hacia arriba), que la pesca artesanal afectó a todos los niveles tróficos del ecosistema y que el balance hídrico del río Colorado influyó en la producción primaria.

En esta misma región, Lercari *et al. (*2007), evaluaron el efecto de las reservas marinas en función de la presión ejercida por la pesquería de camarón sobre la vaquita marina (*Phocoena sinus*) y la totoaba (*Totoaba macdonaldi*). Concluyeron que las dos especies no fueron determinantes en el flujo energético de la trama trófica, además identificaron que la conservación y la pesca interactuaron negativamente, sugiriendo la disminución de la flota camaronera industrial y el desarrollo de una pesquería de camarón más selectiva. Finalmente, establecieron que la Reserva de Biosfera situada en el Alto Golfo tuvo un efecto positivo sobre la fauna acompañante en la pesquería de camarón y sobre las dos especies protegidas, donde al parecer, la protección de la vaquita actúo como paraguas de protección para otras especies de la zona. Por su parte, también en la zona norte, (Morales-Zárate *et al.*, 2004) evaluaron la importancia ecológica de especies comerciales y el impacto de la pesca en la comunidad, llegando a la conclusión de que el impacto sobre la comunidad fue mayor por efectos tróficos como la depredación y la competencia que por la presión pesquera. Mantuvieron como nodos sin agregar a especies ecológicamente importantes encontrando que sólo la pesquería de camarón afectaba a la población de lobos marinos.

En cuanto a la zona centro del Golfo de California, Arreguín-Sánchez *et al.* (2002) evaluaron el efecto de la pesca incidental de camarón, la pesca de sardina y la pesca multi específica artesanal en la comunidad bentónica, encontrado que la única vía para la conservación del ecosistema es la maximización de la estabilidad de la red.

Para la Bahía de la Paz existen dos trabajos sobre redes tróficas a través de los balances de biomasa. Arreguín-Sánchez *et al.* (2007) estudió la comunidad de demersales, concluyendo que el sistema se encontraba en buen estado y la pesca no afectaba significativamente, aunque sí advirtieron posibles efectos en cascada. A pesar de los resultados positivos, los autores recomendaron precaución ante la posible entrada de la pesquería de camarón en la bahía. Por otra parte, Díaz-Uribe *et al.* (2007) sugiere un control ecosistémico de abajo a arriba con matices de cintura de avispa (mayor control de la energía desde especies basales o intermedias que de los depredadores tope), indicaron que el ecosistema estaba en desarrollo todavía. También encontraron que había dos fases marcadas vinculadas a las surgencias. Con respecto a la influencia de la pesquería artesanal, descubrieron que el pargo rojo y los tiburones eran impactados negativamente y, por último, encontraron que el 29% de la biomasa era exportada a mar abierto.

También para la zona sur del Golfo de California, Zetina-Rejón *et al.* (2003) analizaron una red trófica lagunar en la parte continental, encontrado que las especies que controlaron el flujo de energía hacia niveles superiores fueron el zooplancton, los microcrustáceos y los poliquetos. La presa principal del sistema lagunar fueron los camarones de la familia Penaeidae e identificaron que la entrada principal de energía hacia la red trófica se lleva a cabo por el fitoplancton. Sugirieron un control ecosistémico de abajo hacia arriba cuya principal fuente es el detritus y, por último, se producen los efectos indirectos conocidos como cascadas tróficas.

A la fecha, el único estudio que incorpora las tres zonas del Golfo es el de Díaz-Uribe *et al.* (2012) quienes reportaron que el ecosistema se encontraba en desarrollo y que tenía una relativa alta resiliencia. Así mismo indicaron que los grupos que más impactos tróficos positivos producían en la comunidad eran los pelágicos menores y que los pelágicos medianos y los tiburones inducían el mayor impacto negativo en la red. También evaluaron los efectos de las pesquerías y encontraron que, en el norte, los efectos fueron positivos para los mamíferos marinos al pescar sobre tiburones, excepto para la vaquita, donde el efecto directo negativo por la pesca accidental fue mayor al efecto indirecto positivo del descenso de depredación por tiburones. También encontraron que, el mayor impacto de la pesca en el lado peninsular fue sobre las tortugas, mientras que en lado continental fue sobre tiburones pequeños. Finalmente, concluyeron que sería errónea una gestión basada exclusivamente en las pesquerías porque el impacto por depredación es mayor en muchos casos.

Los modelos Ecopath son muy potentes, pero tienen ciertas limitaciones. En primer lugar, el ciclo de nutrientes se considera estanco y la cantidad que se reparte en el sistema depende de la limitación de nutrientes, asumiendo siempre la máxima concentración de nutrientes. Una de las limitaciones más importantes es la incertidumbre del proceso por las posibilidades de que sea utilizado erróneamente por parte del investigador, tanto a propósito como sin darse cuenta. Por ejemplo, el modelo tiene una rutina semi automática para completar datos faltantes y queda a juicio del investigador seguir buscando los datos que pide el modelo o estimarlos. La elección de presas raras o no en el modelo también es un factor de riesgo en las predicciones de Ecopath con Ecosim (Walters *et al.*, 1997). Finalmente, la mayor limitación de estos modelos con respecto a la teoría de redes es la agregación de especies en grupos funcionales. El modelo necesita gran cantidad de información, pero ésta no se

encuentra para muchas de las especies, las especies son integradas en grupos, normalmente con una misma función trófica. La agregación, como se ha visto en anteriores secciones es uno de los problemas por los que los patrones de antes de la década de los noventa no valen o están en cuestión en la actualidad (Pauly & Weingartner, 1998; Pitcher & Cochrane, 2002; Christensen & Walters, 2004).

2.3.2. MODELOS TOPOLÓGICOS

Desde la perspectiva topológica, el primer trabajo y uno de los más citados en el campo de las redes tróficas, es el de Paine (1966). Este autor analizó una red del intermareal rocoso del Alto Golfo, encontrado que la diversidad de una localidad acotada, en espacio en este caso, va en función del número de depredadores y de su eficiencia en controlar la monopolización del espacio por las presas.

Posteriormente, Irigoyen-Arredondo (2013) estudió la topología de la red trófica de un arrecife en la isla de San José. Esta autora concluyó que los nodos más importantes en la estructura fueron especies de niveles tróficos bajos o incluso productores primarios (el detritos, las algas bentónicas, la microfauna, los cangrejos y los camarones) sugiriendo esto que el control ecosistémico dominante en la isla San José fue de abajo hacia arriba.

Por su parte, en la reserva natural de Cabo Pulmo, al sur del Golfo de California Salinas-Mayoral (2014) encontró un control ecosistémico mixto dominado por tiburones, fitoplancton y crustáceos, donde estos nodos presentaron la mayor conectividad y la mayor participación en la dispersión de los efectos tróficos en la red trófica.

El más reciente estudio topológico, desarrollado en la Bahía de La Paz (Maciel-Zapata, 2016), presentó como una de sus principales contribuciones el más alto número de componentes tróficos analizados hasta dicha fecha (250 nodos). En este trabajo se evaluó el efecto de las interacciones débiles en la estructura de la red trófica encontrando que el sistema fue robusto ante la pérdida de interacciones débiles y que

el fitoplancton y el zooplancton fueron los nodos de mayor importancia estructural. La red mostró un control ecosistémico de abajo hacia arriba. Sin embrago el autor sugirió que el alto nivel de agregación taxonómica de grupos como fitoplancton o zooplancton pudo afectar los resultados obtenidos.

El estudio de las redes tróficas se ha enfocado en menor medida en las redes marinas, y las que existen se restringen normalmente a lagunas, costas o a la zona intermareal. La baja representatividad de las redes tróficas marinas es debido a la complejidad de obtener los datos, por recursos económicos y humanos, pero gracias al esfuerzo de muchos investigadores e instituciones, este estudio ejemplifica una red trófica típicamente marina (Link *et al.*, 2005).

3. PLANTEAMIENTO DEL PROBLEMA

El Golfo de California ha sido considerado por la UNESCO como un área especial a conservar, debido a su alta diversidad, endemismos y peculiaridades, descritas más adelante. Para mantener dicha consideración, México debe de entregar extensos reportes sobre las acciones acordadas en la última reunión de expertos de la comisión. Con el objetivo de permanencia en la Lista del Patrimonio Mundial de la UNESCO, el país debe monitorear las 244 islas, islotes y zonas litorales marcadas, así como las especies, dentro de las cuales destacan los 90 endemismos en los que hay especial atención (Durban, 2005; Cudney-Bueno *et al.*, 2009; SEMARNAT & NOAA, 2015; Krakow, 2017).

A pesar de esta importancia ecología, existen dos importantes sectores económicos asociados a la gran diversidad y alta productividad del Golfo de California; el sector turístico y las pesquerías. Ambos han llevado a que esta zona haya sido sometida por décadas a presiones de explotación comercial y degradación de hábitats. Estas presiones antrópicas podrían alterar la estructura y función de las redes tróficas, así como la abundancia, distribución y productividad de las poblaciones que son sometidas a explotación comercial (López-Martínez & Arreguín-Sánchez, 2000; Arreguín-Sánchez & Arcos-Huitrón, 2011; Navia *et al.*, 2012; Valenzuela-Quiñonez *et*

al., 2016). Al respecto, existe abundante literatura que sustenta cómo el desarrollo continuo de la pesca y la degradación de hábitats entre otros, ha alterado la estructura, la función e incluso las interacciones de especies en numerosos ecosistemas marinos (Sala *et al.*, 2004; Morgan *et al.*, 2005; Aburto-Oropeza & López-Sagástegui, 2006; Díaz-Uribe *et al.*, 2007, 2013; Lluch-Cota *et al.*, 2007; Díaz-Uribe *et al.*, 2012).

Las especies clave para la comunidad son raramente carismáticas y a veces son ignoradas por los programas de conservación. La utilización del carisma de las especies puede aprovecharse para la conservación de la biodiversidad o convertirse sólo en un plan de protección de la especie, alejándose de un propósito ecológico (Ducarme *et al.*, 2013). ¿Es más importante una especie en peligro de extinción que una especie estratégicamente situada en una red o comunidad? ¿Y si una especie conservada por su carisma depende fuertemente de alguna especie de importancia ecológica? ¿Cuál es el factor que hace a unas especies más importantes que otras?. Según Ducarme *et al.* (2013), será mejor que sea el conocimiento de la naturaleza el que influya en nuestra percepción hacia la biodiversidad que nuestro lado emocional.

En este sentido, y para rediseñar planes de conservación bajo el enfoque ecosistémico, es crucial conocer la estructura y función de las redes tróficas en los sistemas de interés. Dado que los planes de conservación y gestión para las especies carismáticas pueden derivarse de la subjetividad, desde un punto más ecologista que ecológico, y los planes de ordenación pesquera para el aprovechamiento de los recursos marinos obedecen solo a intereses comerciales, surgen varias preguntas; ¿Obedece entonces la conservación a una razón científica? ¿Puede protegerse el recurso pesquero a la vez que a la comunidad?

Basados en este paradigma de la importancia ecológica de las especies y de cuál o qué criterio será más adecuado para determinarlas, se plantearon las siguientes preguntas de investigación como marco de referencia de esta tesis:

¿Cuáles son las especies más importantes en la estructura de la red trófica, las especies carismáticas o las comerciales?,

¿Existen especies que no se incluyen en ninguno de estos grupos pero que son ecológicamente importantes para la estructura de la red?

La importancia topológica de las especies y la topología misma de la red en su conjunto pretende poner de manifiesto aspectos objetivos para el mantenimiento de la comunidad.

4. HIPÓTESIS

Con la intención de comprobar si el ecosistema depende y en qué grado de las especies carismáticas o de interés pesquero, se planteó la hipótesis siguiente:

La ausencia de las especies carismáticas o de interés pesquero no modificará los patrones de conectividad de la red del Golfo de California y por tanto no jugarán un rol significativo en la estructura de la misma.

5. OBJETIVOS

OBJETIVO GENERAL

Identificar el rol estructural de las especies carismáticas y de interés comercial en una red trófica del Golfo de California.

OBJETIVOS PARTICULARES

- 1. Cuantificar las propiedades estructurales de la trama trófica identificando la centralidad de las especies objetivo en la red.
- 2. Identificar las especies o grupos clave de la red trófica del Golfo de California.
- 3. Definir el mecanismo de control ecosistémico de la red.
- Evaluar posibles efectos en la estructura, especies clave y control ecosistémico de la red bajo escenarios de extinción de especies carismáticas versus especies de interés comercial.

6. MÉTODOS

6.1. ÁREA DE ESTUDIO

El área de estudio fue el Golfo de California (Figura 1), el único mar perteneciente a un solo país, México y situado en el noroeste del territorio, muy próximo a Estados Unidos. Esta área se separó de forma arbitraria en tres zonas, la zona norte a partir de las grandes islas hacia arriba, la zona centro hasta la Bahía de La Paz y la zona sur por debajo de la Bahía de La Paz. La integración de las especies en la red en base a sus distribuciones espaciales fue exhaustiva y se dividió así con la intención de no incorporar especies cuya distribución estuviera restringida a alguna de las zonas, aunque se hicieron algunas excepciones explicadas en metodología.

El Golfo de California es un mar semicerrado, separado del océano Pacífico por la península de Baja California, situado entre el 24º N y 32º N con un clima con características más continentales que oceánicas. Mide 1126 km de largo y entre 48 y 241 km de ancho. Pese a sus relativas estrechas dimensiones horizontales, es uno de los mares más profundos. La parte norte cuenta con uno de los deltas más extraordinarios del mundo, el delta del río Colorado que le da un enclave completamente diferente, además está separado por las grandes islas donde se encuentra la mayor isla de México (isla Tiburón). La parte este cuenta con ríos que generaron extensas plataformas continentales por acumulación de sedimentos, opuesto a su lado oeste donde no desembocan más que arroyos, principalmente intermitentes, y la plataforma continental es mínima. Temperaturas superficiales entre 13 y 31 °C y salinidades entre 35 y 35.8 ups se suman a las particularidades del Golfo de California. Todas estas características hacen que en el Golfo de California existan 19 Áreas Naturales Protegidas, entre las que destacan 10 Reservas de la Biosfera (Álvarez-Borrego, 2002; Delgado-Argote, 2003; Lavín & Marinone, 2003; Gutiérrez et al., 2004; Nix, 2007; Calmus, 2008; Ramirez-Llodra et al., 2010; Comision Nacional de Areas Marinas Protegidas, 2012).

Figura 1. Mapa del Golfo de California representando el área de estudio. La intensidad de azules marca la profundidad representada también por las isóbatas.

Con la intención de que la red trófica estuviera compuesta por especies frecuentes en el Golfo de California se sacaron los mapas de registros mediante la aplicación "MapMaker" del programa MODEST R (García-Rosello *et al.*, 2013) (Figura 2). Cuando no hubo suficientes registros se comprobaron las distribuciones a través de los registros en el Ocean Biogeographic Information System (OBIS) y en el buscador de información de especies ISPECIES (Intergovernmental Oceanographic Commission of UNESCO, 2017; Ispecies, 2017). De esta manera se sacaron de la matriz hasta 70 especies que no se consideraron frecuentes en el área de estudio o sólo se situaban en el norte o en el sur del Golfo de California con respecto a la Figura 2.

Figura 2. Ejemplo de mapas de distribución de especies para la elección de las componentes de la red trófica.

6.2. CONSTRUCCIÓN DEL MODELO

La red trófica se construyó a partir de los datos del contenido estomacal en revistas arbitradas o de tesis disponibles públicamente en repositorios institucionales de México. A partir de esta información se construyó una matriz de doble entrada (especie x especie) en la cual se identificaron los depredadores (columnas) y las presas (filas). La proporción de la presa en el depredador se estandarizó ya que no se contabilizó la proporción para compartimentos no vivos como el detrito. Esta proporción tampoco vino dada siempre por las mismas unidades, pero se incluyó el valor del índice de importancia relativa presa-específico (%PSIRI) siempre que hubiera sido calculado. En caso contrario se utilizó el índice de importancia relativa (%IRI), el peso del total (%W), el volumen (%V) o la frecuencia de aparición (%F) respectivamente por preferencia. Este inconveniente no se consideró una limitación ya que el peso de interacción sólo podía variar unas décimas arriba o abajo entre un índice u otro y para el análisis de la fuerza de interacción se podrían incluso distinguir entre tres o cuatro medidas

discretas, como, por ejemplo, interacción casual, débil, media o fuerte. De esta matriz original se construyó una matriz binaria, de ceros y unos, sin fuerza de interacción, sólo presencia o ausencia de interacción (0= interacción ausente, 1= interacción presente). Esta estrategia de uso y combinación de información para la construcción y análisis de redes tróficas ha sido ampliamente utilizada y ha demostrado ser lo suficientemente útil para este tipo de investigaciones (Martinez, 1991; 1992; Gaichas & Francis, 2008; Navia, 2009; Navia et al. 2010; Navia et al. 2012).

6.3. PREPARACIÓN DE LA MATRIZ

Para resolver dudas al respecto de alguna especie y en su oportunidad, se recurrió a la consulta de expertos. Como base se empezó buscando todas las referencias de la matriz de dietas publicada por Díaz-Uribe *et al.*, (2012). Sin embargo, este estudio se realizó a partir de modelos Ecopath previamente publicados y la mayoría de los componentes de la red eran grupos funcionales. Los principales objetivos en la construcción de la matriz de dietas y, por ende, de la red trófica fueron en primer lugar aportar la mayor resolución taxonómica posible y segundo, presentar las dietas con fuerza de interacción, es decir con la proporción de la presa en el depredador. La resolución y la fuerza de interacción son dos de los grandes debates en la teoría de redes aplicada a ecología (Paine, 1980, 1992; McCann *et al.*, 1998; Berlow, 1999; Neutel, 2002; Berlow *et al.*, 2004; Bascompte *et al.*, 2005).

El objetivo de tener una alta resolución fue reducir la incertidumbre que a menudo caracteriza a las redes tróficas, particularmente relevante con las especies de invertebrados. Aunque es imposible tenerlos a todos representados, al menos, se intentó caracterizar y distinguir en la medida de lo posible, a las especies bentónicas de las pelágicas y a las de fondos someros de las de hábitats profundos.

La búsqueda se hizo con Google académico y los repositorios institucionales de México (IPN, UABC, UABCS y CIBNOR) a través de la biblioteca del CICIMAR-IPN, probando con las siguientes palabras clave: feed, diet, stomach content, gut content, hábitos alimentarios, dieta, contenido estomacal. La mejor estrategia resultó la

combinación de "feed", "diet" y el nombre científico de la especie;.. Sólo se escogieron los estudios que incorporaban la fracción de la dieta y no se incluyeron el detrito, las bacterias u otro tipo de material que no fueran organismos vivos.

La dieta no se encontró siempre con las mismas unidades. Como la fracción de la dieta en el depredador no necesita ser extremadamente precisa, sino que lo que se busca es diferenciar entre presas casuales u ocasionales, comunes, frecuentes o principales, se aceptaron distintos tipos de unidades con un orden de preferencia. Las unidades que formaron las dietas de las especies fueron en orden de preferencia, el PSIRI (índice de importancia relativa presa-específico), el IRI (índice de importancia relativa, previo al PSIRI), la proporción del peso de la presa en el total del contenido estomacal, fracción de volumen y por último la frecuencia de aparición. Para estandarizar se ponderaron todos los ítems alimenticios:

$$P_{ij} = \frac{P_{nj}}{\sum_{1}^{i} P_{nj}}; \sum P_{ij} = 1$$

 P_{ij} = Proporción estandarizada de la presa i en el depredador j P_{nj} = Proporción de la presa del estudio n (no estandarizada) en el depredador j $\sum P_{ij}$ = Sumatorio de todas las proporciones de las presas en el depredador Se identificaron y eliminaron las interacciones de canibalismo y los ciclos. Los ciclos más simples son nodos que actúan como ambos, presa y depredador, para un nodo dado. Hay ciclos más complicados, de dos o más interacciones, donde la presa de una presa puede ser al mismo tiempo depredador de su depredador. Se realizó esta corrección porque en el algoritmo utilizado para calcular los índices de importancia topológica, el canibalismo y los ciclos provocan errores que se transmiten al resto de la matriz y porque los ciclos sobreestiman los niveles tróficos de las especies. Los errores se corrigieron al eliminar interacciones que destruían el canibalismo o los ciclos.

Fue particularmente difícil encontrar las dietas de algunas especies de tiburón, ya que, por ser cosmopolitas, el estudio de la dieta puede haberse realizado en otra zona geográfica y se tuvo que buscar las presas equivalentes en el Golfo de California. Para ello, lo primero fue encontrar las especies con afinidad taxonómica (Género normalmente, pero en algún caso, Familia u Orden), el reto fue después encontrar la afinidad en talla y rango de profundidad. Otra novedad relevante fue la de recopilar información de las propiedades o atributos de cada especie (e.g., rango de profundidad, talla, hábitat...) pretendiendo incluir la perspectiva bio-ecológica.

6.4. NIVELES TRÓFICOS

Los niveles tróficos se calcularon a través de R con el paquete Cheddar (Hudson *et al.*, 2013, 2016) que utiliza los algoritmos de Levine (1980) y Williams & Martinez (2004).

(Levine, 1980)identificó la posición trófica como la media de la función trófica de una especie, entendida como el promedio de la longitud a través de la cual el organismo recibe la energía.

$$x_i = \sum_{k=0}^{\infty} k p_i(k)$$

Donde *k* representa la longitud del camino entre la presa y el depredador y $p_i(k)$ es la función de probabilidad de la presa *i*.

Descrito por Williams & Martinez (2004), los niveles tróficos de las especies representan el número de veces que la energía es transformada químicamente en biomasa a lo largo de las cadenas tróficas. Estos investigadores diferenciaron entre tres tipos de aproximaciones en el cálculo de los niveles tróficos, (1) por funciones comunes a cualquier ecosistema, (2) por el tipo de ecosistema o (3) por los roles característicos de las especies dentro de los ecosistemas, incluido el rol de las pesquerías.

Según los autores del índice, las redes tróficas juegan un rol determinante en el cálculo de los niveles tróficos ya que presentan toda la información necesaria para su cálculo. Además, se obtiene en función de la comunidad estudiada, cuyas cadenas alimentarias están completamente descritas por lo que el índice calculado va en función de la longitud de las cadenas de la red trófica y la contribución energética

relativa de las presas. De estas propuestas, se eligió la basada en las proporciones de la dieta porque era la que menos sobreestimó los valores de los niveles tróficos.

Nivel trófico basado en la proporción de la presa en el depredador (TL):

$$TL_j = 1 + \sum_{i=1}^{S} TL_i p_{ij}$$

 TL_j = Nivel trófico de la especie j

 TL_i = Nivel trófico de la i presa

P_{ij} = Fracción que representa la presa i en el depredador j

En este índice se debe de considerar que las tasas de asimilación no se tienen en cuenta y se sabe que son diferentes entre especies y entre niveles tróficos por lo que la media de los niveles tróficos es orientativa y sirvió para representar las especies en función de la posición trófica en la red.

6.5. CARACTERIZACIÓN Y ELECCIÓN DE ESPECIES CARISMÁTICAS

Las especies sustitutas son aquellas que se utilizan para la evaluación, o son objeto de protección, de otras especies o de determinados ecosistemas. Por ejemplo, existen especies indicadoras de contaminación, llamadas especies bioindicadoras; otras pueden indicar cambios de patrones poblacionales, las llamadas especies paraguas; o algunas son indicativo de puntos calientes de biodiversidad. Hay otro tipo de especies sustitutas, las especies bandera, las cuales suelen ser endémicas y/o estar en peligro de extinción y dentro de este grupo se sitúan las especies carismáticas. Algunos autores recogen algunos criterios para la clasificación de estas especies, sin embargo, existe un debate sobre si las especies carismáticas y las especies bandera son lo mismo (Lambeck, 1997; Simberloff, 1998; Caro & O'Doherty, 1999; Wiens *et al.*, 2008; Ducarme *et al.*, 2013). Las especies carismáticas llaman la atención a la sociedad, normalmente a través de grandes campañas de marketing y esta atención, repercute en la probabilidad de financiamiento para proyectos de conservación, que, en ocasiones puede ser utilizado indirectamente para proteger otras especies (Sergio *et al.*, 2008; Cabeza *et al.*, 2008).

Así, y siguiendo los criterios para la designación apropiada de especies carismáticas, (sensu Landres *et al.*, 1988; Caro *et al.*, 1999), se escogieron las siguientes especies como carismáticas para el Golfo de California: la vaquita marina *(Phocaena sinus)*, la ballena azul (*balaenoptera musculus*), el tiburón blanco (*Carcarodon carcharias*) y el lobo marino (*Zalophus californianus*).

La Vaquita marina (*Phocoena sinus*) es una especie endémica del Norte del Golfo de California, siendo el cetáceo más pequeño del mundo y con el mayor peligro de extinción, está clasificada por IUCN como Críticamente Amenazada y la principal amenaza actual es la pesca incidental en las pesquerías de totoaba, tiburones y camarón (Rojas-Bracho *et al.*, 2008; Avila-Forcada *et al.*, 2012; NOAA, 2016). Esta especie es considerada especialmente "carismática" en el Golfo de California debido al enorme despliegue mediático que recibe y a la gran cantidad de dinero que se destina a las actividades de conservación de la misma (Le Quesne *et al.*, 2007; Rojas-Bracho *et al.*, 2008; SAGARPA, 2010).

La ballena azul (*Balaenoptera musculus*) y los lobos marinos (*Zalophus californianus*) son una atracción turística principal en el Golfo de California. La ballena azul es el animal más grande del planeta y es un reclamo turístico desde los años ochenta, siendo en invierno las zonas de Loreto (parque marino nacional) y La Paz sus zonas de nacimiento, crianza y alimentación. El avistamiento de ballena azul está calificado como "uno de los espectáculos de la fauna silvestre más importantes del mundo" (Guerrero Ruiz *et al.*, 2006). Sin embargo, y pese a su riesgo de extinción, no hay información sobre el efecto que produciría su extinción en la comunidad.

En el Golfo de California, las loberas son visitadas diariamente. Las poblaciones de lobos marinos residentes, especialmente las hembras, se quedan en el Golfo de California porque encuentran condiciones ideales de alimentación (Aurioles-Gamboa *et al.*, 2011). Al lobo marino de california se le considera una especie emblemática y una especie en riesgo por la NOM 059, principalmente por su captura en redes de

enmalle (Diario Oficial, 2010). Esta especie está sometida fuertemente a la presión turística, hasta el punto de clausurar la actividad de nado con lobo marino durante la época de reproducción (FONATUR, 2001; CONANP, 2017). Estas características hacen del lobo marino del Golfo de California una especie de interés; sin embargo, la información sobre el impacto de las especies de la comunidad sobre el lobo marino, como es el caso de la correlación entre las abundancias de sardina y lobo marino, es mínima (Aurioles-Gamboa & Zavala-González, 1994).

La mayoría de las especies carismáticas son depredadores tope y el tiburón blanco (Carcarodon carcharias) es sin duda el depredador más carismático de todos (Salomón-Aguilar et al., 2009; SAGARPA, 2010; Castillo-Geniz & Tovar-Ávila, 2016). El carisma y la vulnerabilidad del tiburón blanco pueden ser utilizadas para conseguir indirectamente la protección de ecosistemas en un hábitat determinado, de hecho, a lo largo de los océanos se establecen áreas marinas protegidas en función de las especies vulnerables (Salomón-Aguilar et al., 2009; Ducarme et al., 2013). El tiburón blanco no representa el atractivo turístico de la ballena azul o el lobo marino dentro del Golfo de California, aunque sí es principal activo turístico-económico para otra región mexicana emblemática, la isla de Guadalupe donde se establecen planes de manejo y áreas reservadas para la observación del tiburón (CONANP-SEMARNAT, 2007; CONANP, 2009). Algunos investigadores sugieren la existencia de un área de crianza dentro del Golfo que sigue la distribución de las colonias de lobo marino en las islas (presa principal de tiburones blanco adultos) o las poblaciones de corvina golfina y totoaba en el Alto Golfo (presas de tiburón blanco) (Galván-Magaña et al., 2010). Al igual que con el lobo marino, no hay estudios de ecología de comunidades del tiburón blanco dentro del Golfo de California.

6.6. ELECCIÓN DE LAS ESPECIES DE INTERÉS PESQUERO

El Golfo de California es una de las cuencas más productivas de México. Las costas orientales del Golfo de California son las más productivas y de mayor valor económico para México y se suma una larga tradición pesquera también en el lado de la península de California (Comisión Nacional de Acuacultura y Pesca (CONAPESCA), 2013).

Los pelágicos menores constituyen los principales recursos pesqueros del planeta. En México representan el 30% de las capturas totales, la mayoría en aguas del Golfo de California. Los principales componentes en las descargas en Baja California son de sardina Monterrey (*Sardinops sagax*), la anchoveta (*Engraulis mordax*), la macarela (*Scomber japonicus*) o el charrito (*Trachurus symmetricus*). Para el estado de Sonora, además de las anteriores especies, se encuentran la sardina crinuda, la sardina bocona (*Cetengraulis mysticetus*), la sardina japonesa (*Etrumeus teres*) y la sardina piña (*Oligoplites* (spp.)), siendo en ambos estados la sardina Monterrey el principal recurso pesquero. Forman cardúmenes y se alimentan de plancton, principalmente diatomeas y son presas de numerosas especies. Este recurso es utilizado, tanto como proteína de calidad para los humanos, como para alimento en acuicultura y ganadería, así como de carnada para otros tipos de pesca (INAPESCA, 2012).

La pesquería de camarón es una de las más importantes en México, con tres principales representantes, el camarón blanco (*Litopenaeus vannamei*), el camarón azul (*Litopenaeus stylirostris*) y el camarón café (*Farfantopenaeus californiensis*). Las capturas más importantes se encuentran en la parte oriental del Golfo de California (Sinaloa y Sonora). Existe un descenso en las capturas relacionado con el desarrollo de la acuicultura de camarón, la pérdida de manglares y el deterioro en la calidad del agua (Páez-Osuna *et al.*, 2003). Esta pesquería representa el cuarto recurso pesquero más abundante de México y el primero a nivel económico. También es el principal recurso pesquero exportado, cuyos principales destinos son Estados Unidos, Japón y España (Secretaría de agriculturra, ganadería, desarrollo rural, 2012a).

Los calamares son otra pesquería importante en México que ha pasado de cerca de 90,000 toneladas en 2004 a un mínimo con poco más de 22,000 toneladas en 2012, recuperándose con 36000 toneladas en 2013. Es un recurso de gran importancia económica, situándose el séptimo en abundancia y el vigésimo en valor económico total, aunque el rendimiento por esfuerzo es mayor, debido a las capturas fluctuantes; (Comisión Nacional de Acuacultura y Pesca (CONAPESCA), 2013). La principal

producción se encuentra en el estado de Baja California con casi la mitad de la producción total, seguido de Baja California Sur. Las presas principales de los calamares son los mictófidos y los cangrejos rojos pelágicos (Markaida, 2006; Rosas-Luis *et al.*, 2008)

La segunda especie de interés pesquero en el alto Golfo son las corvinas (Scianidae), tanto por su volumen como por su valor. Al igual que el camarón azul son recursos de muy alto valor, en especial la corvina golfina (*Cynoscion othonopterus*). Hay tres puertos de pesquería artesanal en esta zona, pero los principales desembarques se producen en San Felipe. La corvina la pescan mediante trasmallos o paños (Rodríguez-Quiroz *et al.*, 2010).

Existe una disminución general en las tendencias de las capturas de los recursos pesqueros en México y además, una preocupante falta de información científica en esta región para el desarrollo de planes de manejo efectivos (Ainsworth, 2011).

6.7. ANÁLISIS TOPOLÓGICOS

6.7.1. ÍNDICES DE ESCALA GLOBAL

Densidad de interacciones (D)

La densidad de interacciones divide el número de interacciones observadas (L) entre el número de nodos de la red trófica (S), indicando así el promedio de interacciones por nodo. Esta relación da información acerca de la conectividad de la red trófica siendo más densa cuanto más conectada esté y se calculó como:

$$D = \frac{L}{S}$$

Conectancia (C)

La conectancia representa la fracción de interacciones observadas con respecto al máximo de interacciones posibles. Para este estudio en particular se escogió la conectancia directa sobre la conectancia interactiva (Martinez, 1991), pues la red

estudiada presentó un alto número de ciclos tróficos (Tabla 9), también llamado depredación mutual. La conectancia se calculó como:

$$C = \frac{L}{S^2}$$

Longitud del camino promedio

Corresponde a la longitud promedio de los caminos más cortos (distancia geodésica) entre cualquier par de nodos de la red (West, 2008). El cálculo corresponde a la estimación de todas las distancias geodésicas basadas en el algoritmo de Dijkstra (Dijkstra, 1959) divididas entre el número de permutaciones sobre tantos nodos como tenga la red (*S*-1)². Este índice se calculó con el paquete Igraph del programa R.

Grado del nodo promedio

Esta medida es la media de los grados del nodo de la red trófica:

$$\overline{DC} = \frac{\sum_{i}^{n} DC}{S}$$

El grado del nodo promedio hace referencia al detalle con que se construyó la red, es decir, a su resolución y está influenciada por la cantidad de presas que se incluyen en el depredador (cantidad de interacciones débiles incluidas). También es otra manera de ver lo conectada que está la red y describe la diferencia entre los nodos muy conectados y poco conectados (Estrada, 2007).

6.7.2. ÍNDICES DE CENTRALIDAD

6.7.2.1. Grado del nodo (DC)

El grado de un nodo es el número de nodos conectados directamente a un nodo dado, es decir, la suma de sus relaciones como presa (*in-degree*, $D_{in,i}$) o como depredador (*out-degree*, $D_{out,i}$) (Figura 3). Es el índice topológico más local y que menos información proporciona ya que describe la propiedad de los componentes de la red trófica de forma individual (Jordán *et al.*, 2006).

$$DC_i = D_{in,i} + D_{out,i}$$

Figura 3. Ejemplo ilustrativo del grado del nodo.

Para determinar si cada red analizada presentó el patrón escala libre, los resultados del grado del nodo fueron ajustados a los modelos potencial, exponencial y Poissson. Posteriormente y para determinar cuál de estos modelos describió mejor la distribución del grado del nodo se aplicó el criterio de información de Akaike (Burnham & Anderson, 2004). Si el modelo mejor ajustado resultaba ser el potencial (valor de AIC más bajo), se concluyó que dicha red presentó patrón de escala libre (Solé & Montoya, 2001; Montoya & Sole, 2002; Bornholdt & Schuste, 2003; Newman & Girvan, 2004; Montoya *et al.*, 2006).

Índices de centralidad de mesoescala:

6.7.2.2. Índice de intermediación (IC)

Mide la frecuencia con que un nodo se encuentra en el camino más corto entre otro par de nodos, incorporando así, la conectividad de los nodos vecinos. Un nodo tendrá un *BC* más alto o una intermediación más alta cuanto más probable sea encontrarlo en ese camino más corto entre cualquier par de nodos. Este índice se calculó como:

$$Ip_{k(ij)} = \left(\frac{1}{C_{ij}}\right) \left(C_{ij}(k)\right) = \frac{C_{ij}(k)}{C_{ij}}$$
$$k \neq i \neq j$$

Donde:

k es diferente de *i* y ambos son diferentes de *j* porque están implicados en el proceso tres nodos de la red, el intermediario y cualquier par de nodos.

 $I_{Pk(ij)}$ = intermediación parcial del nodo "k" como intermediario entre los nodos "l" y "j"

 C_{ij} = caminos geodésicos posibles entre los nodos "*l*" y "*j*"

 $1/C_{ij}$ = probabilidades de cada camino geodésico para que un efecto pase del nodo "*i*" al nodo "j"

k = nodo evaluado como intermediario

 $C_{ij}(k)$ = caminos entre los nodos "*i*" y "*j*" donde se encuentra el nodo "*k*"

Para averiguar el índice de intermediación de cada nodo sólo queda sumar todas sus intermediaciones parciales:

$$IC_{k(ij)} = \sum_{i}^{n} < \sum_{j}^{n} Ip_{k(ij)}$$

Donde n es el número de nodos de la red trófica.

Si la única posibilidad de conectar dos nodos por sus caminos geodésicos, es decir, los caminos más cortos, es a través del nodo *k*, entonces la intermediación parcial de *k* es 1 y desciende cuando hay más caminos posibles. Esta es la forma indicada por Freeman (1977a), cuyo máximo valor posible sería la cantidad de nodos menos 1. Sin embargo, Harary *et al.* (1965) optimiza computacionalmente el algoritmo y el paquete cheddar utiliza una versión modificada (Brandes, 2001). Brandes simplifica el algoritmo para poder ser calculado en redes de tamaños mayores.

Se obtiene la frecuencia con que un nodo *i* interactúa con la interacción directa o más corta entre todos los pares de nodos *j* y *k*. Mide por tanto la incidencia de un nodo

sobre las principales interacciones de la red, la centralidad del nodo como intermediario en la comunicación entre otros pares de nodos. Esto significa que si el índice BC_i de un nodo dado es alto, afectará en mayor medida a la red (Jordán *et al.*, 2006).

Figura 4. Ejemplo ilustrativo para el análisis de la intermediación parcial sobre un nodo "k" con respecto a un nodo "i". Las esferas marcan los caminos geodésicos y las rectas punteadas son las interacciones de depredación y los colores las distintas rutas posibles. La esfera punteada marca el único camino geodésico entre dos nodos *i-j* por el que el nodo "i" no necesita pasar a través del nodo "k", para el resto, el nodo "k" es intermediaro de "i" con los demás nodos, hasta en 3 ocasiones.

La intermediación se representó mediante gráficos de dispersión situando en el eje x los valores de intermediación y en el eje y las frecuencias, mediante el programa PAST.

6.7.2.3. Índice de cercanía (CC)

El segundo índice de centralidad usado fue el de cercanía "closeness centrality" (*CCi*), el cual se basa en el principio de cercanía, y sirve para cuantificar qué tan cortos son los pasos mínimos de un nodo dado a todos los otros (Wasserman & Faust, 1994). Este índice se calculó usando el paquete Igraph del programa R (Csardi & Nepusz, 2006).

La cercanía se calculó como el inverso de la *distancia* que es la suma de caminos que separan a los nodos más alejados, pero por la vía más corta. Esta medida de cercanía

depende del número de nodos de la red, por tanto no se puede comparar con la cercanía de otras redes (Beauchamp, 1965; Freeman, 1977).

$$CC_{i} = \left[\frac{\sum_{i=1}^{n} d(p_{i}, p_{k})}{n-1}\right]^{-1} = \frac{n-1}{\sum_{i=1}^{n} d(p_{i}, p_{k})}$$

d(*pi, pk*) = número de interacciones desde el nodo "*i*" hasta el nodo "*j*" en distancias geodésicas

n = el número de nodos de la red trófica

Figura 5. Ejemplo ilustrativo del funcionamiento del índice de cercanía para un nodo "i". Las líneas curvas marcan los caminos geodésicos para llegar al resto de nodos de la red y la suma de esos caminos sería el cálculo básico de la lejanía, que aplicando la fórmula descrita nos daría el valor de cercanía.

La fórmula presentada asume que el grafo no es dirigido, es decir, que no importa la dirección de flujo de la energía. Esta medida se puede tomar de dos perspectivas diferentes para los grafos dirigidos:

- In_CC_{k(i)}: distancias geodésicas entre todos los nodos de la red "*i*" y hasta el nodo en cuestión "*k*". Son los pasos que necesita la red para llegar al nodo k desde cualquier punto, a través de las rutas más cortas.
- Out_CC_{k(i)}: distancias geodésicas desde el nodo "k" a los demás nodos de la red "i". Son los pasos que necesita el nodo i para llegar al resto de nodos de la red por las rutas más cortas.

Para calcular el grado del nodo y los índices de intermediación y cercanía se utilizaron los programas R y UCINET VI (Borgatti *et al.*, 2002); Excel y Past3.

6.7.2.4. Índice de importancia de centralidad (IIC)

Dado que cada uno de los índices de centralidad aporta información en escalas de valor independientes, ha sido difícil establecer una única escala de interpretación para determinar cuál es el nodo de mayor centralidad. Aunque en principio se realizaron algunos esfuerzos para encontrar un único índice de centralidad esos no llegaron a buen término (Bavelas, 1948; Beauchamp, 1965; Freeman, 1977).

En este estudio, y en busca de tener una medida cuantitativa que permita una mejor comparación de los resultados obtenidos entre diferentes redes o escenarios de la misma red, se realizó una modificación al índice del valor biológico de Sanders (Sanders, 1960). El procedimiento se puede resumir en cuatro pasos:

- 1. Se jerarquiza cada índice (ranking) en función del valor obtenido para cada índice de centralidad (grado del nodo, intermediación y cercanía).
- Se ponderan por el número de nodos de la red (N) y se invierten los valores de modo que el mayor valor sea el más importante, el que valía 1 en el ranking, ahora vale N.
- 3. Se suman los valores ponderados de cada índice, lo cual da el valor del índice.
- 4. Se relativiza el valor en porcentaje (1 a N x 3 índices, se pasa de 0 a 100).

6.7.2.5. Índice de Importancia Topológica (IIT)

Usado para caracterizar la importancia de especies en ecosistemas, de acuerdo con su posición en la red trófica. Este índice considera información adicional a los nodos directamente conectados entre sí, y fue definido con detalle por (Jordán *et al.*, 1999, 2006; Jordán & Scheuring, 2002), de la forma:

$$K_i = \sum_{c=1}^n \frac{1}{d_c} (1 + K_{bc}) + \sum_{e=1}^m \frac{1}{f_e} (1 + K_{te})$$

Simplificado en:

$$K_i = K_{bu,i} + K_{td,i} = K_{dir,i} + K_{indir,i};$$

Desarrollado en:

$$K_{i} = \sum_{c=1}^{n} \frac{1}{d_{c}} + \frac{K_{bc}}{d_{c}} + \sum_{e=1}^{m} \frac{1}{f_{e}} + \frac{K_{te}}{f_{e}}$$
$$\sum_{c=1}^{n} \frac{1}{d_{c}} (1 + K_{bc}) = K_{bu,i}$$
$$\sum_{e=1}^{m} \frac{1}{f_{e}} (1 + K_{te}) = K_{td,i}$$
$$\sum_{c=1}^{n} \frac{K_{bc}}{d_{c}} + \sum_{e=1}^{m} \frac{K_{te}}{f_{e}} = K_{indir,i}$$
$$\frac{1}{d_{c}} + \frac{1}{f_{e}} = K_{dir,i}$$

Donde *n* es el número de depredadores de la presa *i*; *d*_c es el número de presas del depredador *c*; *K*_{bc} es el índice clave del efecto de abajo a arriba del depredador *c*; *m* es el número de presas de *i*; *f*_e es el número de depredadores de la presa *e*; *K*_{te} es el índice clave de arriba a abajo de la presa *e*; *K*_{bu,i} es el índice clave del control ecosistémico de abajo a arriba para la especie i; *K*_{td,i} es el índice clave del control de los efectos indirectos y *K*_{dir,i} es el índice clave del control de los efectos directos.

Este índice además de dar información sobre el número de conexiones entre nodos informa sobre cómo estos vecinos se conectan entre sí (Jordán *et al.*, 2006), enfatizando en interacciones verticales sobre interacciones horizontales (e.g. cascadas tróficas vs competencia aparente); asimismo, caracteriza la importancia posicional, separando efectos directos e indirectos, así como efectos de abajo-arriba de efectos de arriba-abajo en la red trófica (Jordán *et al.*, 2002). Este índice se estimó usando el software FLKS 1.1 suministrado directamente por Ferenc Jordán.

Los índices clave de los nodos se calcularon a través del programa FLKS 1.1 (Jordán, 2005), caracterizando el posicionamiento vertical de las especies según su importancia en las redes tróficas.

6.7.2.6. El problema del jugador clave (Key Player Problem)

Es un índice derivado de las ciencias sociales que calcula el conjunto de nodos más eficientes para transmitir un efecto al mayor número de nodos en la red (Borgatti, 2006). Este índice ha sido aplicado recientemente a redes tróficas (Borgatti, 2003b, 2006; Sathik & Rasheed, 2009; Navia, 2013; Cruz-Escalona *et al.*, 2016; Maciel-Zapata, 2016) y se usa para identificar la secuencia de nodos o especies a través de los cuales un efecto podría dispersarse al 100% de la red (KPP-2) o el conjunto de nodos o especies que al ser eliminados produce el máximo fraccionamiento de la red (KPP-1). En este estudio se aplicó el KPP-2, el cual fue realizado en el software libre KeyPlayer 1.44 (Borgatti, 2003a; b, 2006).

Se utilizaron los siguientes criterios para el análisis:

- a. # of Nodes Riched Criterion
- b. Run Multiple Group Sizes
- c. max. group size: 15
- d. n° of steps: 2
- e. n° of starts: 10
- f. n° of iterations: 10000.

KPP-2 refiere al problema de la alta cohesión de algunas especies clave con el resto de la red, referido como "*Key Player Problem Positive*" (KPP-Pos). En este caso el objetivo fue buscar los conjuntos de nodos más interconectados, así como los mayores intermediarios de la red, que son los que podrían volver a conectar la red con la eliminación de otros nodos menos importantes vía enlaces directos o caminos cortos.

Figura 6. Ejemplo ilustrativo para el cálculo del conjunto de jugadores clave

6.7.3. Escenarios sin especies carismáticas ni comerciales

Para estructurar las matrices de interacciones de los escenarios de extinción de especies (carismáticas y comerciales), se eliminaron las columnas y filas de la matriz de interacciones correspondientes a los nodos que se deseaba excluir. Este procedimiento dio como resultado un total de 10 matrices, (Tabla 1).

	Escenarios	CARISMÁTICAS			COMERCIALES						
Spp		M1	M2	М3	M4	M5	M6	M7	M8	M9	M10
1	Vaquita marina	Х								Х	
2	Ballena azul		Х							Х	
3	Tiburón blanco			Х						Х	
4	Lobo marino				Х					Х	
5	Sardina Monterrey					Х					Х
6	Corvina golfina						Х				Х
7	Calamar gigante							Х			Х
8	Camarón azul								Х		Х
9	Carismáticas										
10	Comerciales										

 Tabla 1. Matrices (M) para cada escenario propuesto. La "X" marca la especie excluida de la red en cada escenario

Posteriormente, para cada una de estas matrices se estimaron los valores de D, BC, CC, IIC, IIT, KPP-2 utilizando las metodologías ya descritas. Para determinar si la eliminación de las especies carismáticas o comerciales afectó la estructura de la red se aplicó una prueba de Kolmogorov-Smirnov a las distribuciones de frecuencia de los valores obtenidos para todos los índices en los diferentes escenarios. Se consideró que se presentó efecto de la pérdida de una especie si se encontraban diferencias significativas entre las distribuciones de frecuencia de la red original con cada uno de los escenarios analizados.

7. RESULTADOS

7.1. COMPOSICIÓN TAXONÓMICA DEL MODELO TRÓFICO

El primer listado taxonómico generado para construir el modelo trófico fue de 340 especies o nodos. Posterior al proceso de revisión y depuración de la lista que fue descrito en los métodos, el modelo final incluyó 317 nodos cuya clasificación taxonómica y códigos de identificación se presentan en el anexo 1. Como caso particular en esta depuración se consideraron cuatro especies endémicas del norte (*Phocaena sinus, Totoaba macdonaldi, Micropogonias megalops* y *Cynoscion othonopterus*) y la especie *Exocoetus monocirrhus* que, aunque solo presentó registros en el sur quedó confirmada como presa de algunos depredadores del Golfo de California. La distribución de los nodos por grupos en la red se presenta en la Figura 7.

7.2. GENERALIDADES DE LA RED

De los 317 nodos analizados, el grupo taxonómico mejor representado fueron los peces con casi el 50% de los nodos de la red. Los productores primarios aportaron el 10.1% de los componentes, siendo el fitoplancton el grupo mejor representado, seguido de las macro algas y los pastos marinos. Los tiburones y el zooplancton constituyeron entre el 8 y el 9%, las rayas el 5.36 %, los mamíferos el 4.42%, las aves el 3.15%, camarones, cangrejos y cefalópodos el 1.9% cada uno, equinodermos 1.26 % y finalmente los reptiles con dos representantes constituyeron el 0.63 % (Figura 8).

Figura 7. Red trófica del Golfo de California. En colores se muestran 20 grupos de especies. Los nodos están distribuidos por niveles tróficos aproximados, calculados a partir de las dietas de la red trófica y el eje x representa una aproximación a la zona de uso de las especies siendo la izquierda la costa y la derecha la zona más alejada a la costa.

Figura 8. Número de nodos por grupos que forman la red trófica. Pec (peces); Tib (tiburones); Zoo (zooplancton); Ray (rayas); Fito (fitoplancton); Inv (Invertebrados bentónicos); Mam (mamíferos); Macr (Macroalgas); Fane (fanerógamas marinas); Cam (camarones); Can (cangrejos y jaibas); Cef (cefalópodos); Equ (equinodermos) y Rep (reptiles)

Para la construcción de la base de datos de la red trófica del Golfo de California se consultó un total de 335 documentos para las dietas de las especies y 149 referencias (incluyendo webs específicas), entre artículos científicos, tesis e informes institucionales (Anexo II). Para verificar la distribución de las especies se mapearon los registros geoposicionados, separando al Golfo de California en tres zonas orientativas en norte, centro y sur. El 72% de los nodos se distribuyó por todo el Golfo de California, el 7.31 % se distribuyó sólo en el centro y sur, el 1.09 % habitaron entre el norte y el centro, 5 especies fueron endémicas del norte, 2 del centro y 1 especie se distribuyó sólo en el sur (Figura 9).

El 74 % de los nodos de la red trófica tuvieron resolución taxonómica a nivel de especie con 226 géneros representados. El resto de los taxones se dividieron en 148 familias, 86 órdenes, 37 clases y 22 filos (Figura 10a). Más de la mitad de las especies se encontraron dentro de los primeros 100 metros de profundidad, siendo el rango entre 10 y 50 metros el más frecuente. Entre los 100 y hasta los 500 metros de profundidad se situaron 58 nodos y el resto de nodos (91) se repartieron más allá de la plataforma continental y hasta la máxima profundidad del Golfo de California (Figura 10b). El 11% de la red trófica fueron especies endémicas (Figura 10c). El 93% de las especies se encuentran todo el año, mientras que un 4% lo hacen solo en invierno y un 3% sólo lo hace en verano (Figura 10e). Las especies microscópicas y hasta 1 cm de tamaño representaron un 10% aproximadamente. La mayor frecuencia de tallas (43%) se dio en las especies o nodos entre 1 y 50 cm (136 nodos), seguido de las especies entre 50 y 100 cm (58 nodos). 70 especies tuvieron tallas máximas superiores a un metro, siendo 13 de ellas especies que podrían alcanzar más de cinco metros y hasta 33,5 metros que mide el animal más grande del planeta, la ballena azul (Figura 10d).

Por el estilo de vida (Figura 10f), las mayores frecuencias se dieron en especies costeras (56,78%), dentro de las cuales, las bentónicas o de arrecife fueron más abundantes que las demersales o pelágicas. El 13% de las especies fueron bentopelágicas y el 30% lo constituyeron las especies batiales, abisales y/o las especies oceánicas. En la red se incluyeron 61 especies migratorias en latitud y longitud, así como algunas que realizan migraciones verticales (Figura 10h). En cuanto a la presión pesquera, el 47.32 % de las especies de la red trófica son explotadas (Figura 10g), 43 de ellas (13.56%) de forma intensiva.

Figura 10. Atributos de los componentes de la red trófica. a. Diversidad taxonómica, número por taxa representados. b. Frecuencia de nodos (columnas) por rango de profundidad acumulada. c. Porcentaje de especies endémicas vs nativas. d. Frecuencia de nodos por rangos de tallas máximas. e. Porcentaje de nodos por estación del año. f. Frecuencia de nodos según estilo de vida. g. Frecuencia de nodos según el nivel de presión pesquera. h. Frecuencia de nodos según el nivel de presión pesquera. h.

Treinta y un nodos presentaron canibalismo (10% de la red) y se identificaron 47 interacciones con ciclos cortos (depredación mutual) o ciclos de más de un paso. Estas interacciones fueron eliminadas de la red para realizar los análisis de los niveles tróficos y del índice de importancia topológica (limitaciones analíticas), pero fueron preservadas para el resto de los análisis.

Los nodos con mayor participación en este tipo de interacciones fueron los cefalópodos, especialmente los calamares y pulpos, seguidos del grupo de los estomatópodos (Anexo I). El nodo que más interacciones perdió fue *Lolliguncula* (spp.) con 11 interacciones, ocho como depredador, dos como presa y una por canibalismo. Los siguientes involucrados en más relaciones cíclicas fueron los estomatópodos. Los cefalópodos con un 74.5% son los grandes involucrados en relaciones cíclicas de alimentación, 49% por parte de los calamares y el 25.5% entre pulpos y sepias (Anexo 1.Tabla 9 y Figura 17).

En cuanto al uso de equivalentes ecológicos para complementar la base de datos de interacciones tróficas, este estudio incluyó un total de 24 dietas equivalentes, (Anexo I. Tabla 10) lo que correspondió a < del 1% del total de las interacciones utilizadas para el modelo trófico del Golfo de California.

7.3. ANÁLISIS TOPOLÓGICO DE LA RED TRÓFICA DEL GOLFO DE CALIFORNIA 7.3.1. ÍNDICES GLOBALES

La red se integró de 317 componentes (nodos) y 3971 interacciones tróficas. La densidad de interacciones fue de 12.53 por nodo, el valor de la conectancia directa fue 0.0395 y el de la conectancia interactiva 0.079. La distancia media entre cualquier par de nodos de la red fue de 3.24 y el grado del nodo promedio, es decir el promedio de interacciones por nodo fue de 25.053 (Figura 11 y Figura 12).

Las especies basales (especies que funcionan sólo como presa) fueron 32, un 10.1% de la red trófica, las especies intermedias (especies que funcionan como presas y depredadores) fueron 255 (80.44%) y los depredadores tope (especies que no son

presa de ninguna especie) constituyeron el 9.46% con 30 especies. La razón de consumidores / depredadores fue de 1.007 presas por depredador. El porcentaje de interacciones entre especies basales e intermedias fue de 7.30% (290 interacciones), el porcentaje recíproco entre especies intermedias fue de 81.14% (3222 interacciones), entre especies basales y depredadores tope fue de un 0.18% (7 interacciones) y finalmente, entre especies intermedias y depredadores tope fue de un 11.40% (452 interacciones).

7.3.2. ÍNDICES DE CENTRALIDAD

7.3.2.1. Grado del nodo

La distribución de frecuencias del grado del nodo no se ajustó a la distribución de potencia esperada sino a una distribución tipo campana de Gauss (AIC= 401.56). Esto se debió a unos pocos nodos poco conectados, con menos de 10 interacciones. La mayoría de los nodos presentaron valores intermedios o bajos, entre 10 y 30 interacciones. Las menores frecuencias se observaron a partir de 50 interacciones donde un 9.46% de la red se distribuyó hasta el valor máximo de 136 interacciones, el camarón café (Tabla 2).

Los nodos más importantes en cuanto al grado del nodo fueron los macrocrustáceos, encabezados por el camarón café (*Farfantopenaeus californiensis*), después, el camarón azul (*Litopenaeus stylirostris*), las jaibas verde y azul (*Callinectes bellicosus* y *Callinectes arcuatus*), los cangrejos bentónicos, los anfípodos y las jaibas del género *Portunus*. En octava posición junto con los portúnidos se situaron los calamares del género *Lolliguncula* que fue el nodo que más interacciones tuvo como depredador entre estos 8 nodos más importantes (Tabla 2). Las presas más conectadas de la red fueron el camarón café con 103 interacciones como presa y el nodo que representó a los cangrejos bentónicos (CRABS) con 101 interacciones como presa.

7.3.2.2. Intermediación

En la red trófica del Golfo de California se identificó participación importante de diferentes grupos taxonómicos en la dispersión de los efectos tróficos indirectos dentro de la red. Así, los nodos dominantes en la dispersión fueron el calamar *Lolliguncula* (spp.), la macarela *Scomber japonicus,* el lenguado *Syacium latifrons,* así como la barracuda *Sphyraena ensis* y los estomatópodos (Tabla 2). La cabrilla *Epinephelus labriformis,* el camarón café *Farfantopenaeus californiensis,* la serpiente marina *Pelamis platura* y los camarones de roca *Sicyonia* (spp.) fueron los siguientes nodos más influyentes en este proceso.

7.3.2.3. Cercanía

Al igual que con la dispersión de efectos, en la velocidad de dispersión de dichos efectos tróficos dentro de la red participaron numerosos grupos taxonómicos. En este caso se identificó a los camarones de roca del género *Sicyonia*, el pez roncador *Anisotremus interruptus*, la raya *Gymnura marmorata*, el pargo *Lutjanus argentiventris*, los peces lagarto *Synodus lucioceps* y *Synodus scituliceps*, los bivalvos y el gobio *Gobionellus microdon*. Aunque les siguieron de cerca los gasterópodos, cuatro especies de sciánidos, los calamares loligínidos, la barracuda mexicana (*Sphyraena ensis*) o los camarones carideos del género *Pasiphaea* (Tabla 2).

Tabla 2. Ranking de los 20 nodos más importantes para los tres índices de centralidad(grado del nodo, intermediación y cercanía) y para la importancia ponderada de centralidad.Los nodos sombreados en gris claro significan que se encuentran dentro de los 20 primerosvalores de *IIC*. Los nodos sombreados en gris oscuro, significa que no están entre los 20primeros valores de *DC*, *IC* o *CC*, para entender el objetivo del índice, la no subestimación
de nodos importantes.

#	Grado del nodo (<i>DC</i>)	Intermediación (<i>IC</i>)	Cercanía (CC)	Importancia de centralidad (<i>IIC</i>)
1	P. californiensis	Lolliguncula (spp.)	Sicyonia (spp.)	Lolliguncula (spp.)
2	P. stylirostris	S. japonicus	A. interruptus	S <i>icyonia</i> (spp.)
3	C. bellicosus	S. latifrons	G. marmorata	P. californiensis
4	Cangrejos	S. ensis	L. argentiventris	Pasiphaea (spp.)
5	C.arcuatus	Estomatópodos	S. lucioceps	Estomatópodos
6	Anfípodos	E. labriformis	S. scituliceps	Gasterópodos
7	Lolliguncula (spp.)	P. californiensis	G. mirabilis	C. bellicosus
8	Portunus (spp.)	P. platura	Bivalvos	S. japonicus
9	C. falciformis	Sicyonia (spp.)	G. microdon	C. arcuatus
10	Poliquetos	S. ovale	Gasterópodos	Poliquetos
11	Estomatópodos	Pasiphaea (spp.)	C. othonopterus	Anfípodos
12	Pasiphaea (spp.)	Pulpos	C. reticulatus	L. argentiventris
13	Gasterópodos	L. argentiventris	C. parvipinnis	S. lucioceps
14	Sicyonia (spp.)	C. bellicosus	C. xanthulus	G. mirabilis
15	Zooplancton	D. aureolus	Lolliguncula (spp.)	P. stylirostris
16	N. brevirostris	Anfípodos	S. ensis	E. mordax
17	Bivalvos	Poliquetos	Pasiphaea (spp.)	S. sagax
18	S. tiburo	Citharichthys (spp.)	S. zygaena	Pulpos
19	Copépodos	Portunus (spp.)	B. clarkae	B. clarkae
20	E. mordax	C. arcuatus	A. retrosella	Portunus (spp.)

7.3.2.4. Índice de importancia de centralidad

La composición de las especies más importantes para el índice de importancia de centralidad fue variada, pudiendo encontrar calamares, camarones, peces, cangrejos, gasterópodos o microcrustáceos. El resultado de los tres índices ponderados sugiere que las especies con mayor importancia en la centralidad de la estructura topológica de la red fueron los calamares loligínidos seguido de los camarones de roca del género

Sicyonia, el camarón café, los camarones del género *Pasiphaea*, los estomatópodos, los gasterópodos, la jaiba verde, la sierra *Scomber japonicus*, la jaiba azul, poliquetos y anfípodos, siendo los invertebrados el grupo más destacado.

7.3.3. ÍNDICE DE IMPORTANCIA TOPOLÓGICA (K)

El comportamiento del índice de importancia topológica sugirió un control ecosistémico de arriba hacia abajo dominado por depredadores tope, resaltando el tiburón blanco (*Carcarodon carcharias*) (*K*= 159.8), seguido del tiburón martillo (*Sphyrna lewini*) (*K*= 118.7). Sin embargo, el siguiente grupo de importancia topológica fue el plancton siendo el fitoplancton el más importante entre ellos (*K*= 73.08). A partir de aquí se generó una alternancia entre depredadores y productores o consumidores primarios. Entre los depredadores más importantes ejerciendo el control hacia abajo de la cadena trófica, el tiburón piloto (*Carcarhinus falciformis*) (Ktd = 69.86), el tiburón tigre (*Galeocerdo cuvier*) (*K*td = 43.82) y la orca (*Orcinus orca*) (*K*td= 32.73). El control opuesto estaría muy influenciado por las diatomeas (*K*_{bu}= 63.81) y moderadamente por los copépodos (*K*_{bu}= 38.65), el zooplancton (34.86), los dinoflagelados (*K*_{bu}= 34.26), las macro algas (*K*_{bu}= 26.82), los foraminíferos (*K*_{bu}= 25.3) o los anfípodos (*K*_{bu}= 25.3) (Tabla 3).

Tanto en la dispersión de los efectos tróficos directos como indirectos, los grandes depredadores fueron muy importantes. El tiburón blanco y el tiburón martillo fueron de nuevo los más importantes en la transmisión de los efectos tróficos indirectos con K_{indir} 146.9 y 113.4 respectivamente, seguidos por el fitoplancton (K_{indir} 65.5), las diatomeas (K_{indir} 57.65), *Carcarhinus falciformis* (K_{indir} 48.12), los dinoflagelados (K_{indir} 31.98), los copépodos (K_{indir} 30.04) o el *Galeocerdo cuvier* (K_{indir} 29.92). Los efectos tróficos directos estuvieron dominados por el tiburón piloto (*Carcarhinus falciformis*) (K_{dir} 21.8) siendo este el depredador con mayor número presas identificadas, seguido por los camarones *Farfantopenaeus californiensis* (K_{dir} 17.7) y *Litopenaeus stylirostris* (K_{dir} 16.4). Cerca de ellos se situaron los tiburones *Galeocerdo cuvier*, (K_{dir} 13.9), *Negaprion brevirostris* (K_{dir} 11.007) y *Carcharodon carcharias* (K_{dir} 12.82). En ambos casos, la dispersión tanto de efectos directos como

indirectos tuvo importancia en especies de todos los niveles tróficos alternativamente

(Tabla 3).

Tabla 3. Índices de importancia topológica (K) para los 20 nodos más importantes. Índice del
control de abajo hacia arriba (K_{bu}), de arriba hacia abajo (K_{td}), de los efectos directos (<i>Kdir</i>),
de los efectos indirectos (Kindir) y la suma (K) de los controles ecosistémicos (Kbu y Ktd) o de
los efectos (<i>k_{dir}</i> y <i>K_{indir}</i>). Sombreado en gris los nodos más valorados por índice.

Nodos	Kbu	Ktd	Kdir	Kindir	K
C. carcharias	0	159.80	12.82	146.99	159.80
S. Lewini	0.02	118.65	5.32	113.36	118.68
Fitoplancton	73.08	0	7.58	65.50	73.08
C. Falciformis	0.04	69.87	21.78	48.12	69.90
Diatomeas	63.81	0	6.16	57.65	63.81
G. Cuvier	0	43.82	13.90	29.92	43.89
Copépodos	38.65	0.20	8.81	30.04	38.85
Zooplancton	34.86	0.19	11.66	23.39	35.05
Dinoflagelados	34.27	0	2.29	31.98	34.267
O. orca	0	32.73	9.53	23.20	32.73
P. californiensis	16.15	11.38	17.69	9.83	27.52
Macro algas	26.82	0	3.56	23.26	26.82
Anfípodos	25.30	0.58	9.93	15.94	25.88
Foraminíferos	25.30	0.12	2.89	22.53	25.42
N. brevirostris	0.09	22.94	11.01	12.03	23.04
P. stylirostris	11.66	11.34	16.41	6.59	23
S. tiburo	0.12	22.54	10.67	11.99	22.66
N. cepedianus	0	22.23	5.67	16.56	22.23
Poliquetos	21.03	1.13	8.57	13.59	22.16
Protozoos	21.63	0.22	3.26	18.59	21.85

7.3.4. ÍNDICE DEL CONJUNTO DE JUGADORES CLAVE (KPP-2)

El análisis de dispersión de efectos (*KPP-2*) dio como conjunto de nodos óptimo para la transmisión de los efectos en la red trófica del Golfo de California a sólo dos nodos. El resultado indicó que los nodos *Lolliguncula* (spp.) y Anfípodos fueron los mayores dispersores de efectos a partir de los cuales sólo se necesitarían dos interacciones más para conectar el 100% de la red.

7.4. EFECTO DE LA ELIMINACIÓN DE ESPECIES CARISMÁTICAS Y COMERCIALES SOBRE LA RED TRÓFICA DEL GC

En cuanto a los índices de escala global de la red, no se presentaron diferencias importantes entre la red original y la mayoría de los escenarios analizados, donde tanto la conectancia directa como la densidad de links mantuvieron un comportamiento relativamente estable (Figura 11). Sin embargo, dicho patrón fue más notorio en los escenarios donde se eliminaron una sola especie, fuera carismática (escenarios 1,2,3 y 4) o una sola especie comercial (escenarios 5,6,7 y 8). Por el contrario, en los escenarios donde se eliminaron todas las especies carismáticas (9) y todas las comerciales (10) las variaciones en los índices fueron mayores. La conectancia directa y la densidad de interacciones mostraron tendencias similares ya que son dos medidas referidas a la conectividad de la red (Figura 11). El escenario que produjo mayores diferencias fue el de las especies de interés pesquero.

La variación en la conectividad promedio estuvo relacionada con la eliminación de las especies de mayor grado del nodo, siendo este cambio más alto en los escenarios sin camarón azul y sin sardina monterrey (especies comerciales) (Figura 11), siendo el escenario sin el camarón azul el que marcó un mayor descenso.

Los índices globales del grado del nodo promedio y distancia media tampoco sufrieron cambios significativos. La distancia media entre los nodos de la red situó los mayores cambios en el escenario de la corvina golfina y del calamar gigante, ocupando los valores mínimos y el máximo respectivamente, superando incluso por sí solos los cambios que producen los escenarios de las especies carismáticas y comerciales (Figura 12).

Figura 11. Índice de densidad de interacciones e índice de conectancia directa para la red original (primer punto de la izquierda), para los escenarios sin cada una de las especies carismáticas (de izquierda a derecha: vaquita, ballena azul, tiburón blanco y lobo marino) y comerciales (sardina monterrey, corvina golfina, calamar gigante y camarón azul), para el escenario sin las cuatro especies carismáticas elegidas (9) y para el escenario de las cuatro especies comerciales elegidas (10). El eje de la izquierda corresponde con el de la conectancia y el de la derecha con el de la densidad.

Figura 12. Promedio del grado del nodo (columnas) y de las distancias medias entre nodos (línea con marcadores) para la red original (primera columna), para la red sin las especies elegidas, una a una, para la red sin especies carismáticas (9) y para la red sin especies comerciales (10). El eje izquierdo refiere al grado del nodo promedio y el derecho a la distancia media.

7.4.1. ANÁLISIS DE LA CENTRALIDAD

No se encontraron diferencias significativas en el grado del nodo ni en la intermediación entre la red original y ninguno de los escenarios simulados (Tabla 4). La distribución de frecuencias de los grados del nodo de todos los escenarios se mantuvo ajustada a una distribución tipo campana de Gauss, situándose las mayores frecuencias en conectividades intermedias mientras que las frecuencias más bajas se observaron en los valores más altos (Figura 13). La comparación gráfica de la distribución entre los nueve escenarios (sin carismáticas) y 10 (sin comerciales), mostró una ligera reducción en la conectividad al eliminar las especies comerciales (Figura 13e).

Tabla 4. P valores del análisis de Kolmogorov-Smirnov para las diferencias en las distribuciones de frecuencias de las 9 propiedades calculadas con respecto a la red original. Las figuras muestran cada uno de los escenarios (vaquita, ballena azul, tiburón blanco, lobo marino, sardina monterrey, corvina golfina y calamar gigante). La barra negra simboliza el escenario de las 4 especies carismáticas y la gris el de las de interés pesquero. *DC*: grado del nodo; *IC*: Intermediación; *CC*: Cercanía; *IIC*: importancia de centralidad; *K_{bu}*: índice clave de abajo a arriba; *K_{td}*: índice clave de arriba abajo; *K_{dir}*: índice clave de efectos directos; *K_{indir}*: índice clave de efectos indirectos y *K*: índice de importancia topológica. Sombreados en gris los resultados significativos.

		ſ								
	4		12	2			• (>>=(
DC	1	1	1	1	1	1	1	0.99	∎ 0.99	0.92
IC	1	1	1	1	1	1	1	1	1	1
CC	0.98	0.00001	0.028	0.77	0.25	0.96	0.99	0.57	0.004	0.007
IIC	1	1	1	1	1	1	1	1	0.99	0.99
K _{bu}	0.93	0.96	0.93	0.93	0.85	0.93	0.98	0.93	0.77	0.79
Ktd	1	1	1	1	1	1	1	0.99	1	1
K _{dir}	1	1	1	1	0.99	1	1	0.99	1	0.99
Kindir	1	1	1	1	1	1	1	0.78	1	0.67
Κ	0.99	1	1	0.99	0.99	1	0.99	0.85	0.99	0.65

La conectividad, estuvo dominada por invertebrados en calidad de presas mientras que el tiburón sedoso destacó por ser la especie con mayor diversidad en la dieta de toda la red trófica y pese a sólo tener un depredador, aparece en octava posición en los escenarios sin carismáticas (9) y sin comerciales (10) (Figura 13c y Fig.12e).

La dispersión de los niveles tróficos no varió en ninguno de los escenarios propuestos, siendo en todos los casos los calamares loligínidos el nodo de mayor importancia en esta propiedad (Figura 13, derecha).

No hubo un grupo en particular que dominara la propiedad de intermediación, encontrando entre las especies más importantes calamares, peces (p.e. *Scomber japonicus; Syacium latifrons; Sphyranea ensis o Epinephelus labriformis),* estomatópodos (STOMA), camarones (*Farfantopeneus californiensis* y camarones del género *Sicyonia*) o serpientes marinas (*Pelamis platura*).

Las altas conectividades mostradas por el grado del nodo estuvieron repartidas entre distintos niveles tróficos y entre especies costeras y oceánicas con rangos de profundidad de hasta 1000 m. Aun así, la mayor proporción de especies con muchas interacciones fueron especies de niveles tróficos intermedios (entre 3 y 4) como camarones, jaibas y cangrejos y estomatópodos (Figura 14a).

En todos los casos Los consumidores primarios más conectados fueron los anfípodos, poliquetos, gasterópodos, la langostilla, la sardina monterrey, la anchoveta o el zooplancton. Los grandes depredadores con mayor cantidad de interacciones fueron el tiburón sedoso seguido del tiburón limón y el tiburón cornuda común. Entre los nodos más conectados de niveles tróficos intermedios estuvieron los calamares loligínidos (Figura 14a). Pese a la eliminación de uno de los nodos más conectados en el escenario de especies comerciales (el camarón azul) no se aprecian cambios en la (Figura 14(3a)) debido a que las pérdidas de unas decenas de interacciones no se aprecian en una red de casi 4000 interacciones.

Figura 13. Distribución de frecuencias para las propiedades del grado del nodo (izquierda) e intermediación (derecha). Arriba la red original, en el centro el escenario sin especies carismáticas y abajo el escenario sin especies comerciales. Se muestran las especies más importantes con su código y entre paréntesis la cantidad de presas y depredadores.

La intermediación tampoco se vio afectada por los escenarios. En la Figura 14b se puede apreciar que la mayoría de nodos tienen un valor de intermediación muy bajo. Los mayores intermediarios fueron consumidores de niveles tróficos entre 3.5 y 4.5 aproximadamente, como *Lolliguncula* (spp.), *Scomber japonicus,* el lenguado *Syacium latifrons* o la barracuda *Sphyraena ensis* (LOLLI, SCOJA, SYALA o SPHYE).

Figura 14. Red trófica original (1), escenario de especies carismáticas (2) y escenario de especies comerciales (3) para el grado del nodo (a) e intermediación (b). Distribución vertical por nivel trófico y horizontal por su lejanía a la costa. Rangos de profundidad a los que viven las especies en color. El tamaño de los círculos proporcional a los valores para cada propiedad. En rojo las especies escogidas para los escenarios y con texto en negro los nodos más importantes.

La única propiedad en la que se encontraron diferencias significativas entre la red original y algunos de los escenarios fue en la velocidad de dispersión de los efectos tróficos (índice de cercanía). Cuatro escenarios mostraron cambios en la centralidad de cercanía, estos fueron el escenario sin la ballena azul (2), sin el tiburón blanco (3), sin especies carismáticas (9) y sin especies comerciales (10) (Figura 15, Tabla 4).

La ausencia de la ballena azul acercó los nodos en el conjunto de la red, encontrándose a menos interacciones unos de otros y en consecuencia pudiendo producir un efecto de mayor rapidez en la dispersión de los efectos, al igual que el escenario sin carismáticas (Figura 15). Lo contrario pasó al excluir de la red al tiburón blanco o a las especies de interés pesquero, la dispersión de los efectos en la red se produciría de forma más lenta porque el resultado indica un alejamiento entre los nodos de la red (valores más bajos de cercanía). En todos los escenarios y en la red original se dibujó una curva bimodal en las frecuencias de los valores de cercanía (Figura 15).

La composición de las especies más importantes apenas varió entre la red original y el resto de escenarios. Los camarones del género *Sicyonia*, el pez *Anisotremus interruptus*, la raya *Gymnura marmorata*, el pargo *Lutjanus argentiventris*, los peces lagarto (*Synodus lucioceps y Synodus scituliceps*), los bivalvos o el gobio (*Gobionellus microdon*) fueron los nodos más importantes para la red original y la mayoría de escenarios. Esta composición cambió en algunos casos. En el escenario de la ballena azul (2), cambio de posición el gobio *Gobionellus microdon* por el gobio *Gillichthys mirabilis*. Los bivalvos fueron reemplazados por el gobio *Gillichthys mirabilis* en los escenario sin tiburón blanco (3) y sin especies comerciales (9). Finalmente, el escenario sin especies comerciales (10) fue el que más varió, apareciendo los gasterópodos entre los nodos más cercanos de la red (Figura 15). En la propiedad de cercanía se tuvieron valores similares en general, no mostrándose diferencias de tamaños entre los nodos, a diferencia con otras propiedades (Figura 16a).

Distribución de frecuencias de la cercanía para los escenarios con diferencias significativas y la red original

Figura 15. Distribución de frecuencias de la cercanía para la red original y los cuatro escenarios que dieron diferencias significativas en el test de Kolmogorov. La marca punteada gruesa sirve de referencia para observar los cambios en la distribución. La línea continua encierra la probabilidad de Kernel. Las imágenes muestran los nodos más importantes y en el caso de los escenarios, lo que cambió con respecto a la red original. Entre paréntesis, los p-valores del test de Kolmogorov.

Figura 16. Redes tróficas para la red original (1), escenario de carismáticas (2) y de comerciales (3) para la propiedad de cercanía (a) e importancia topológica (b). Nodos dispuestos por niveles tróficos en vertical y por su lejanía a la costa (eje x). En colores, los rangos de profundidad de las especies. El tamaño de los círculos es proporcional a los valores de cada propiedad. En rojo se señalan las especies escogidas para los escenarios y en negro los nodos más importantes.

7.4.2. IMPORTANCIA TOPOLÓGICA

Ninguno de los índices de importancia topológica mostró cambios significativos al comparar los diferentes escenarios. Se sugiere un control ecosistémico de arriba a abajo por parte de los grandes depredadores (Tabla 6 yTabla 4). Al igual que con la red original, hay una distribución heterogénea entre los nodos de importancia topológica más importantes, depredadores tope, especies basales y consumidores primarios (Tabla 5, Tabla 6 yTabla 7). El tiburón blanco tuvo la posición más importante en la red con excepción del escenario sin carismáticas donde, al eliminar al tiburón blanco de la red, le sucedió el tiburón martillo. Los siguientes nodos más importantes fueron el tiburón sedoso *C. falciformis*, el fitoplancton y las diatomeas. El tiburón tigre, los copépodos, la orca, el zooplancton, los dinoflagelados y el camarón café también fueron importantes en el control de los efectos tróficos.

Tabla 5. Índices de importancia topológica (K) para los 20 nodos más importantes de la red original. Índice del control de abajo hacia arriba (K_{bu}), de arriba hacia abajo (K_{td}), de los efectos directos (K_{dir}), de los efectos indirectos (K_{indir}) y la suma (K) de los controles ecosistémicos (K_{bu} y K_{td}) o de los efectos (k_{dir} y K_{indir}). Sombreado en gris los nodos más valorados por índice.

Nodos	Kbu	Ktd	Kdir	Kindir	К
C. carcharias	0	159.8	12.82	146.98	159.80
S. Lewini	0.026	118.65	5.32	113.36	118.68
Fitoplancton	73.08	0	7.58	65.5	73.08
C. Falciformis	0.04	69.87	21.78	48.12	69.90
Diatomeas	63.81	0	6.16	57.65	63.81
G. Cuvier	0	43.82	13.90	29.92	43.82
Copépodos	38.65	0.20	8.81	30.04	38.85
Zooplancton	34.86	0.19	11.66	23.39	35.05
Dinoflagelados	34.27	0	2.27	31.98	34.27
O. orca	0	32.73	9.53	23.2	32.73
P. californiensis	16.15	11.38	17.69	9.83	27.52
Macro algas	26.82	0	3.56	23.26	26.82
Anfípodos	25.30	0.58	9.93	15.94	25.88
Foraminíferos	25.30	0.12	2.89	22.53	25.42
N. brevirostris	0.09	22.94	11.01	12.03	23.04
P. stylirostris	11.66	11.34	16.41	6.59	23
S. tiburo	0.12	22.54	10.67	11.99	22.66
N. cepedianus	0	22.23	5.67	16.56	22.23
Poliquetos	21.03	1.13	8.57	13.59	22.16
Protozoos	21.63	0.22	3.26	18.59	21.85

La composición de las mayores importancias topológicas para el escenario de extinción de especies carismáticas varió con respecto a la red original y el escenario de las especies comerciales (Tabla 6). Al eliminar al tiburón blanco de la red, el tiburón *C. falciformis* (K= 74.92) cobró importancia superando al fitoplancton (K= 72.12) y conservando así a dos grandes depredadores en el control ecosistémico. Sin embargo, el fitoplancton y las diatomeas tuvieron valores muy similares dejando indefinida o menos clara la superioridad por parte de los depredadores en el control de la red trófica. El resto de la composición de las especies importantes para la estructura trófica mantuvo la alternancia mostrada en la red original, entre depredadores, productores primarios y consumidores primarios.

Tabla 6. Índices de importancia topológica (*K*) para los 20 nodos más importantes del escenario **sin especies carismáticas**. Índice del control de abajo hacia arriba (K_{bu}), de arriba hacia abajo (K_{td}), de los efectos directos (K_{dir}), de los efectos indirectos (K_{indir}) y la suma (*K*) de los controles ecosistémicos (K_{bu} y K_{td}) o de los efectos (k_{dir} y K_{indir}). Sombreado en gris los nodos más valorados por índice.

#	Nodos	Kbu	Ktd	Kdir	Kindir	K
1	S. Lewini	0	131.30	5.62	125.68	131.30
2	C. Falciformis	0.04	74.89	22.40	52.53	74.92
3	Fitoplancton	72.12	0	7.58	64.53	72.12
4	Diatomeas	62.75	0	6.16	56.58	62.75
5	G. Cuvier	0	47.34	14.50	32.84	47.34
6	Copépodos	37.94	0.20	8.82	29.32	38.14
7	O. orca	0	34.37	10.68	23.68	34.37
8	Zooplancton	33.97	0.19	11.16	22.99	34.16
9	Dinoflagelados	33.54	0	2.29	31.26	33.54
10	P. californiensis	15.93	11.38	17.69	9.61	27.30
11	Macro algas	26.53	0	3.56	22.97	26.53
12	Anfípodos	25	0.58	9.94	15.64	25.58
13	N. cepedianus	0	25.13	6.014	19.12	25.13
14	Foraminíferos	24.91	0.12	2.89	22.14	25.03
15	C. leucas	0.04	24.71	3.84	20.90	24.75
16	N. brevirostris	0.09	23.80	11.34	12.55	23.90
17	S. tiburo	0.09	23.22	10.81	12.50	23.31
18	P. stylirostris	11.51	11.34	16.41	6.44	22.85
19	Poliquetos	20.81	1.13	8.57	13.37	21.94
20	Protozoos	21.35	0.22	3.26	18.31	21.57

En el escenario de las especies comerciales se pudo apreciar un cambio en la transmisión de los efectos directos (Tabla 7). Mientras que en la red original (Tabla 5) y en el escenario de especies carismáticas (Tabla 6) el tiburón *C. falciformis* fue el más importante en la distribución de los efectos directos, en el escenario de especies comerciales este tiburón fue menos importante (K_{dir}= 21.64). Fue el camarón café (K_{dir}= 27.33) el que ascendió, en ausencia del camarón azul, obteniendo el mayor valor calculado para el control de los efectos directos. En todos los casos se observó que los efectos indirectos estuvieron relacionados con el índice de importancia topológica, es decir, que especies de mayor importancia topológica causaron los mayores efectos tróficos indirectos, más allá de sus presas y depredadores.

Tabla 7. Índices de importancia topológica (K) para los 20 nodos más importantes del escenario **sin especies comerciales**. Índice del control de abajo hacia arriba (K_{bu}), de arriba hacia abajo (K_{td}), de los efectos directos (K_{dir}), de los efectos indirectos (K_{indir}) y la suma (K) de los controles ecosistémicos (K_{bu} y K_{td}) o de los efectos (K_{dir} y K_{indir}). Sombreado en gris los nodos más valorados por índice.

#	Nodos	Kbu	Ktd	Kdir	Kindir	K
1	C. carcharias	0	157.76	12.78	144.98	157.76
2	S. lewini	0.03	117.13	5.32	111.84	117.16
3	Fitoplancton	73.49	0	7.59	65.90	73.49
4	C. falciformis	0.04	68.83	21.64	47.23	68.87
5	Diatomeas	62.94	0	6.06	56.88	62.94
6	G. cuvier	0	43.34	13.95	29.38	43.34
7	P. californiensis	18.31	22.19	27.33	13.18	40.50
8	Copépodos	38.58	0.20	8.79	29.99	38.78
9	Zooplancton	35.31	0.19	11.76	23.74	35.50
10	Dinoflagelados	34.49	0	2.29	32.20	34.49
11	O. orca	0	32.27	9.48	22.80	32.28
12	Macro algas	27.82	0	3.55	24.27	27.82
13	Anfípodos	26.21	0.59	10.09	16.71	26.80
14	Foraminíferos	26.04	0.12	2.89	23.28	26.17
15	Poliquetos	21.92	1.58	9.20	14.29	23.49
16	N. brevirostris	0.09	22.42	10.88	11.63	22.51
17	S. tiburo	0.12	22.02	10.55	11.59	22.14
18	N. cepedianus	0	21.72	5.53	16.20	21.72
19	Protozoos	21.03	0.23	3.30	18	21.26
20	C. leucas	0.04	20.90	3.48	17.42	20.90

En el índice de importancia topológica (*K*) tampoco se aprecian diferencias notables o relaciones entre los valores de importancia topológica y los atributos propuestos (Figura 16b). Esto fue debido a que la mayoría de nodos tuvieron valores muy bajos de K, pero sí que se observó que los mayores valores fueron para grandes depredadores (*Carcharodon carcharias* (CACA), *Sphyrna lewini* (SPHYL) y *Carcarhinus falciformis* (CALFA)) y los valores medios de importancia topológica fueron para productores primarios como el fitoplancton (PHYTO) y las diatomeas (DIATO). Al eliminar al tiburón blanco (especie carismática) que es la especie de mayor importancia topológica, cobraron más importancia el tiburón sedoso y sobre todo el tiburón martillo (Figura 16 (2b)). En el escenario sin comerciales (Figura 16 (3b)) se puede apreciar cómo al eliminar al camarón azul, ganó en importancia el camarón café.

7.4.3. ÍNDICE DEL CONJUNTO DE JUGADORES CLAVE

El conjunto óptimo para la transmisión de los efectos en la red fueron en todos los casos dos nodos, destacando *Lolliguncula* (spp.) y anfípodos. Los únicos cambios observados se produjeron en el escenario sin la ballena azul, sin el tiburón blanco o sin las especies carismáticas, donde uno de los nodos fue el camarón café que unido a la tortuga *Chelonia mydas* o al serránido *Mycteroperca rosácea* en el caso del escenario del tiburón blanco (3), conformaron los nuevos conjuntos de jugadores clave (Tabla 8).

Escenarios	Conjunto de es	pecies clav	ve	% y N° de nodos
Original	Lolliguncula Anfípodos	(spp.)	у	1. 99.4% (315); 2. 100% (317)
Vaquita	<i>Lolliguncula</i> Anfípodos	(spp.)	у	1. 99.4% (314); 2. 100% (316)
Ballena azul	P. californiensis	y C. mydas	;	1. 99.7% (315); 2. 100% (316)
Tiburón blanco	P. californiensis	y M. rosace	a	1. 99.4% (314); 2. 100% (316)
Lobo marino	Lolliguncula Anfípodos	(spp.)	у	1. 99.4% (314); 2. 100% (316)
Sardina monterrey	Lolliguncula Anfípodos	(spp.)	у	1. 99.1% (313); 2. 100% (316)
corvina golfina	<i>Lolliguncula</i> Anfípodos	(spp.)	у	1. 99.4% (314); 2. 100% (316)
Calamar gigante	<i>Lolliguncula</i> Anfípodos	(spp.)	у	1. 99.4% (314); 2. 100% (316)
Camarón azul	<i>Lolliguncula</i> Anfípodos	(spp.)	у	1. 99.4% (314); 2. 100% (316)
Carismáticas	P. californiensis	y C. mydas	;	1. 99.7% (312); 2. 100% (313)
Comerciales	<i>Lolliguncula</i> Anfípodos	(spp.)	у	1. 99.0% (310); 2. 100% (313)

Tabla 8. Resultados del conjunto de especies clave (*KPP-2*) para la red original y losescenarios propuestos. En gris los escenarios que produjeron cambios.

8. DISCUSIÓN

La estabilidad de un sistema ecológico no es fácil de definir y se aplica en este estudio como la robustez de la trama trófica ante perturbaciones externas, en forma del cambio de un estado inicial (Pascual & A. Dunne, 2006; Allesina *et al.*, 2009). El efecto de una perturbación se puede analizar mediante escenarios de extinción de especies (Dunne *et al.*, 2002; Pauly *et al.*, 2009; Curtsdotter *et al.*, 2011). La red trófica estudiada para el Golfo de California mostró una clara resistencia ante los escenarios de extinción propuestos, sólo afectada por cambios estructurales que influyen en la velocidad con que los efectos tróficos se dispersan en la red.

Uno de los patrones de las redes tróficas más estudiado es la distribución tipo potencial del grado del nodo, observado normalmente en redes tróficas con conectancias relativamente bajas, por debajo de 0.03 (Garlaschelli *et al.*, 2003). Sin embargo, esta distribución no se observó en la red construida para el Golfo de California y tanto la red original como los escenarios propuestos obtuvieron valores de conectancia superiores, entre 0.35 y 0.45. La red mostró una distribución tipo gaussiana donde la mayoría de los nodos tuvieron conectividades intermedias. Se pudo descartar una red al azar ya que éstas están vinculadas a distribuciones de Poisson (Erdos & Renyi, 1960).

Se debe de tener en cuenta que este tipo de patrones en la distribución del grado del nodo (Potencial, Gauss o Poisson entre otros), están influenciados por varios factores como el efecto de la diversidad (Rejmánek & Starý, 1979; Winemiller, 1989; Warren, 1990; Dunne *et al.*, 2002), de la alta agregación de las especies en nodos (Martinez, 1991, 1993; Sugihara *et al.*, 1997; Blondel, 2003), de la redundancia en la alimentación (Navia *et al.*, 2012, 2016, Bornatowski *et al.*, 2014, 2017) o incluso por el efecto del muestreo (Winemiller, 1990; Goldwasser & Roughgarden, 1997; Bersier *et al.*, 1999; Pascual & A. Dunne, 2006). En este sentido, la red caracterizada es una de las redes más diversas y de mayor resolución taxonómica a nivel general, pero más concretamente para el Golfo de California(hasta un 74% de nodos a nivel de especie), por lo que en principio debiera ser más robusta ante perturbaciones según las primeras

hipótesis de May (1972), ya que se incrementan los caminos por los que pueden distribuirse los efectos en la red. Este tipo de características son novedosas en las redes tróficas y la tendencia apunta a un aumento en la construcción de redes de este tipo, más resolutivas y diversas (Martinez, 1991; Polis, 1991; Kohen *et al.*, 2016).

Los patrones de escala libre se dan en redes con un grado del nodo promedio entre 3 y 4 (Pascual & Dunne, 2006; Navia *et al.*, 2012), nuestro grado del nodo promedio fue de 25 interacciones por nodo aproximadamente. Este resultado es producto del efecto de la alta resolución taxonómica en las dietas y de la inclusión de las interacciones débiles. La comprobación del efecto de la agregación sobre la distribución del grado del nodo se podría llevar a cabo eliminando las interacciones débiles de la red, por ejemplo, aquellas que formen parte de la dieta del depredador en menos de un 10 %, 5% o del 1% (presas raras). Este experimento reduciría la conectancia de la red y el grado del nodo promedio trasladando la moda de la distribución desde valores intermedios a valores más bajos del grado del nodo, acercándonos más a una distribución de escala libre o tipo potencial. Con un análisis de redundancia o de clasificación, se identificarían las especies con dietas similares, estas especies se podrían agregar en nodos que redujeran así la diversidad de la red.

La conectancia de la red construida para el Golfo de California (0.0395) tuvo un valor intermedio comparado con las generalidades de las redes tróficas (entre 0.01 y 0.07), aunque este valor es bajo si se considera para redes con patrones de ley de potencia (Opitz, 1996; Bodini *et al.*, 2009; Raymon *et al.*, 2011; Santana *et al.*, 2013; Irigoyen, 2013; Rocchi *et al.*, 2016, Maciel, 2016, Yen *et al.*, 2016). Esto se pudo deber al uso de algunos nodos en niveles de agregación taxonómica muy alta (e.g. estomatópodos, poliquetos, meiobentos o cangrejos), los cuales, al concentrar un alto número de interacciones, tanto de presas como de depreadores, afectaron la relación entre riqueza, interacciones observadas e interacciones posibles. Algunos investigadores encontraron que la conectancia disminuía con el aumento de la diversidad (Cohen & Briand, 1984; Schoener, 1989), mientras que otros han considerado que la conectancia se incrementaba con el aumento de diversidad (Warren, 1989; Winemiller, 1989). A

partir de los trabajos de Martinez (1991) y Polis (1991), con las primeras redes tróficas con un orden de complejidad superior, se dieron cuenta de que no aparecían los patrones esperados a causa de una mayor resolución taxonómica y de diversidades altas, ese pueda ser el caso de la red trófica construida en este trabajo.

Una de las características a tener en cuenta es la cantidad de presas por depredador o el esfuerzo de muestreo para la construcción de la red (Goldwasser & Roughgarden, 1997; Bersier *et al.*, 1999). En el presente trabajo se decidió incluir la mayoría de las presas que los estudios de alimentación proporcionaron excepto cuando se consideró casual la presa en el depredador, tanto por conocimientos biológicos, como por valores muy reducidos en la dieta, por debajo del 0.1 %.

Relacionado con el esfuerzo de muestreo está la resolución de las dietas. Una de las bondades de la red construida es que se trabajó con estudios de contenido estomacal aportando un alto nivel de resolución. No se consideró la reducción de nodos por medio de la agregación en gremios tróficos, trofoespecies o grupos funcionales como hicieron otros investigadores (Martinez, 1991; Navia *et al.*, 2010, 2012; Bornatowski *et al.*, 2014), pero se podrían construir subredes con menores niveles de resolución para comprobar este efecto. Estudios de este tipo se han llevado a cabo por muchos investigadores y ahora se pueden hacer para el Golfo de California y a una gran escala (Martinez, 1993; Hawkins *et al.*, 1997; Sugihara *et al.*, 1997; Martinez *et al.*, 1999; Blondel, 2003; Luczkovich *et al.*, 2003; Farias & Jaksic, 2006).

Es posible que este trabajo incluya una elevada redundancia por alimentación, ya que según Navia *et al.* (2012), valores muy altos de cercanía que indican una conexión global muy alta, pueden ser consecuencia de valores altos de redundancia al compartir los recursos en el conjunto del sistema trófico. Sin embargo, se quiso comprobar el comportamiento de la red trófica construida para el Golfo de California sin analizar la redundancia trófica para agrupar los nodos en gremios tróficos, por ejemplo.

Otra característica que llamó la atención fue la sobreestimación de los niveles tróficos para algunas especies (Tabla 11 en Anexo IV). Por ejemplo, algunos mamíferos marinos tuvieron niveles tróficos por encima de 5 (*Ziphius cavirostris, Physeter macrocephalus, Globicephala macrorhynchus, Grampus griseus, y Stenella longirostris*), mientras que depredadores tope como el tiburón blanco o la orca se mantuvieron por debajo de éstos y muy cerca de los calamares. El canibalismo y los ciclos alimentarios sobreestiman el cálculo de los niveles tróficos (Levine, 1980; Williams & Martinez, 2004) y es muy probable que queden ciclos de alimentación en la red.

Los calamares se encontraron como dieta principal de los niveles tróficos más altos y además participaron en la mayoría de ciclos que se pudieron identificar (Anexo I, Tabla 9). Los calamares son muy voraces y omnívoros, comiendo prácticamente especies del mismo nivel trófico que sus depredadores, causa probable de que se encuentren en tantos ciclos (Tabla 9). Siguiendo esta hipótesis, al depredar sobre los calamares se estaría sumando un eslabón a la cadena trófica, quedando dos posibles razones o la interacción entre ambas razones que explique la sobreestimación de los niveles tróficos, (1) la participación en ciclos y (2) el alargamiento de las cadenas tróficas por parte de los calamares. Otra razón que limita las conclusiones sobre la inexactitud de los niveles tróficos es que no se han distinguido estadios de madurez en las dietas, es decir, se asume la misma dieta para juveniles que para adultos, sin embargo, algunas especies tienen diferentes funciones tróficas, pero en la actualidad los estudios de alimentación ya distinguen entre sexos y estadíos de madurez pudiendo incorporar la información a las redes tróficas.

Adicionalmente, los calamares funcionan como presa principal de tres de las especies carismáticas consideradas (vaquita marina, ballena azul, tiburón blanco y lobo marino) (Anexo II, Tabla 12) por lo que para conservar estas especies habría que tener en cuenta la salud de las poblaciones de calamares. Sumado a lo anterior, las poblacionales de calamares dentro del Golfo de California son fluctuantes (Comisión

Nacional de Acuacultura y Pesca (CONAPESCA), 2013) y afectan a la economía local y nacional (Secretaría de agriculturra, ganadería, desarrollo rural, 2012a; Gobierno del Estado, 2015) por ser un recurso pesquero importante en México. Los calamares loligínidos fueron los más importantes en el estudio de la centralidad, destacando sobre todo como intermediarios de la expansión de los efectos en la red, demostrando su importancia ecológica también. Esta posición central en la trama trófica puede ser debida a las siguinetes razones: (1) Que su rango moderadamente amplio de profundidad, entre los 0 y los 200 metros, hace que sean presas y depredadores tanto de especies costeras como oceánicas; (2) Por tener un crecimiento muy rápido y en poco tiempo puedan comer y ser comidos por especies de diferentes tamaños; (3) Debido a su hábito de vida gregario hace que sean detectados más fácilmente por los depredadores, incluido el ser humano (Arizmendi-Rodríguez *et al.*, 2011; del Carmen Alejo-Plata *et al.*, 2015).

Los resultados de los escenarios solo mostraron cambios significativos en la propiedad de cercanía y en el conjunto de especies clave (*KPP-2*); sin embargo, ello podría ser un efecto de la alta resolución de las dietas. Debido a la gran conectividad, los caminos por los que fluye la energía desde los productores primarios a los depredadores tope son altamente variados, por lo que disminuye la importancia de la posición de las especies en la red. Esta característica indicó que la red se muestra robusta ante extinciones primarias, pero hay que considerar que las presas de un depredador no están igualmente disponibles en tiempo y en espacio, por lo tanto, la vulnerabilidad de la red podría estar subestimándose.

Las especies carismáticas suelen ser grandes depredadores que requieren de una red trófica saludable, pero paradójicamente suele ignorarse el efecto de la protección de la especie en la red trófica o viceversa. La protección de estas especies debería incluir un análisis de la comunidad donde vive y de los aspectos que hacen a su comunidad vulnerable. Según la definición, una especie carismática no necesariamente es vulnerable o está en peligro, bien puede ser una especie clave o una especie paraguas

lo que daría más sentido a su protección, por lo que el enfoque ecosistémico debería estar presente (Ducarme *et al.*, 2013).

Según los análisis de importancia topológica, el tiburón blanco es una especie carismática con atributos de especie clave en la presente red trófica (Jordán *et al.*, 2006). Además, según el cambio que produce su exclusión en la propiedad de cercanía, modificaría parte de la estructura de la red y los efectos en la comunidad se producirían más lentamente ante perturbaciones, apoyando la hipótesis de su gran importancia en el mantenimiento de la estructura trófica. El valor extremo de importancia topológica del tiburón blanco se debe a que depreda sobre especies con altos niveles tróficos, lo cual genera un proceso aditivo del control energético. Estas presas, por ser consumidores terciarios o incluso grandes depredadores ejercen a su vez fuertes controles del flujo energético hacia abajo. Esto le da al tiburón blanco la condición de especie topológicamente más importante controlando gran parte de los efectos verticales y horizontales de la red (Myers *et al.*, 2007; Hussey *et al.*, 2014).

El escenario sin especies comerciales produjo un efecto similar al del tiburón blanco, pero reduciendo la velocidad con la que se produce la expansión de los efectos en la red en caso de una perturbación. La explicación a este cambio debe ser por la alta conectividad de todas las especies comerciales escogidas en los escenarios. Las especies que son consumidas por el hombre también son depredadas por numerosos organismos en la red ya que tanto el calamar gigante, sardinas, camarones y en menor medida los peces sciánidos fueron presas muy conectadas en la red. Al desaparecer nodos muy conectados, disminuyen los caminos por donde fluye la energía hacia niveles tróficos más altos.

La ballena azul, por el contrario, fue de las especies menos determinantes en la mayoría de índices propuestos, pero su ausencia fue el escenario que más modificó la estructura de la red a través de la propiedad de cercanía, contrario a como lo hizo el tiburón blanco, ya que la ausencia del tiburón blanco alejó unos nodos de otros, mientras que la simulación de la extinción de la ballena azul produjo un acercamiento.

La ballena azul es un nodo escorado de la red que hace que el resto de nodos tengan que dar un paso más para llegar a ella y por tanto cuando la ballena no está desaparecen cadenas largas y la red se ve afectada a mayor velocidad por perturbaciones externas. A pesar de interactuar con dos de los nodos más conectados, el zooplancton y los eufásidos, las interacciones promedio que separaron a la ballena del resto de los nodos fue superior a la distancia media de la red que fue de 3.235 interacciones. Los efectos en la red sin la ballena azul se propagarían por tanto de forma más rápida e influyó en el escenario sin las cuatro especies carismáticas el cual también produjo diferencias significativas en la propiedad de cercanía.

Los escenarios sin la ballena azul, sin el tiburón blanco y sin las especies carismáticas no sólo afectaron la velocidad sino también la expansión de los efectos en la trama trófica. El conjunto de nodos óptimos para extender los efectos al resto de la red (*KPP-2*) fueron el camarón café *Farfantopeneus californiensis* y la tortuga verde *Chelonia mydas* o la cabrilla sardinera *Mycteroperca rosacea* en el caso de la ausencia del tiburón blanco, mientras que para el resto de los escenarios y la red original fueron los calamares loligínidos y los anfípodos (*KPP-2*). Sólo dos nodos fueron necesarios para una amplia expansión de los efectos debido a la alta conectividad de la red. Finalmente, el escenario sin especies comerciales que fue el que obtuvo menor conectancia, fue también el que menos expandiría los efectos en la red a partir del primer nodo (99%) (Anexo I. Tabla *KPP-2*). Por ello no es casual que estos cuatro escenarios fueran los mismos que dieron diferencias en la propiedad de cercanía ya que son propiedades muy ligadas a la conectividad de la red.

Un análisis de modularidad unido a un clúster de similaridad trófica podría arrojar algo de luz a la explicación de la distribución bimodal en la propiedad de cercanía. Esta distribución arroja varias hipótesis. Por un lado, podrían existir dos subredes (una más conectada que la otra) ligadas entre sí por unos pocos intermediarios indicando, por ejemplo, distintos tipos de hábitat, costa u océano, somero o profundo. Por otro lado, podría haber una estructura principal muy conectada y otra estructura menos conectada y dispersa alrededor de la estructura principal separando, por ejemplo, a

omnívoros de especialistas. Según la segunda propuesta, la estructura secundaria, o subred menos conectada, no dependería de los grandes intermediarios, los valores de cercanía serían muy distintos y los efectos en la red se producirían de forma diferente.

Los resultados de los índices de importancia topológica (*K*) indicaron que se presentó un mayor control ecosistémico de los depredadores, especialmente causado por el tiburón blanco. Sin embargo, aunque la presión que ejerce el tiburón blanco sobre la comunidad sea muy alta, hay que considerar que esta especie puede ser ocasional en la mayor parte del Golfo de California por lo que el escenario de extinción del tiburón blanco se vuelve muy probable en esta red. Aún en este escenario, los grandes depredadores, como Sphyrna lewini o Carcarhinus falcifomis siguen produciendo el mayor efecto, aunque más cercano al impacto del fitoplancton y las diatomeas.

En general y concretamente en el Golfo de California el enfoque ecosistémico se ha llevado a cabo a través de modelos de balance de masas (Arreguín-Sánchez *et al.*, 2002, 2007, Zetina-Rejón *et al.*, 2003, 2004; Arreguin-Sanchez *et al.*, 2004; Morales-Zárate *et al.*, 2004; Lercari-Bernier, 2006; Lozano, 2006; Díaz-Uribe *et al.*, 2007; Lercari *et al.*, 2007; Rosas-Luis *et al.*, 2008; Salcido-Guevara *et al.*, 2012; Díaz-Uribe *et al.*, 2012). Estos potentes modelos también evalúan la estructura, pero tienen unas limitaciones que no tienen los modelos topológicos en la construcción de la red trófica. La dificultad para encontrar todos los parámetros que exigen los conocidos modelos ECOPATH obliga al mayor uso de la agregación (mayor agregación = menor diversidad = modificación de propiedades). Por otro lado, por ser modelos balanceados en los que la biomasa que entra al sistema es igual a la que sale, requiere de ajustes del desfase de biomasa normalmente a través del compartimento del detrito (Zetina-Rejón *et al.*, 2004; Arreguín-Sánchez *et al.*, 2007). Estas son algunas diferencias con los modelos topológicos que suelen construirse con compartimentos vivos, sólo necesitan saber qué comen las especies y no necesitan ser balanceados.

En el Golfo de California existen pocos estudios desde la perspectiva exclusivamente topológica. En los comienzos de la topología aplicada a la ecología Paine (1966)

estudió una red trófica en el norte del Golfo de California y no fue hasta recientemente que se desarrollaron tres investigaciones en este tópico (Irigoyen-Arredondo, 2013; Salinas-Mayoral, 2014; Maciel-Zapata, 2016). Por lo que sin lugar a dudas conforme avancen las investigaciones sobre los hábitos tróficos de las especies, serán más relevantes y más fiables los estudios topológicos en redes tróficas (Martinez, 1991; Polis, 1991).

De la misma manera, la intensa búsqueda bibliográfica permite evaluar el estatus de conocimientos sobre los hábitos tróficos de las especies en la zona. Por ejemplo, se constató que faltan estudios de alimentación en familias de peces importantes en las redes tróficas como son las familias Mictofidae y Haemulidae entre otras. En general, la dieta de los invertebrados estuvo pobremente detallada y la incertidumbre crece con especies de menor tamaño, pero hay un filo olvidado, el de los equinodermos. Normalmente, el nivel de resolución en la dieta para los equinodermos es a nivel de clase, es decir, sólo se distingue entre estrellas, ofiuros, holoturias o erizos de mar. Por un lado, pueda extrañar la falta de resolución para definir los invertebrados encontrados en las dietas de las especies ya que muchos de ellos poseen estructuras duras que soportan más el proceso digestivo, pero, por otro lado, puede ser más complicado diferenciar entre especies de invertebrados por varios motivos, o porque no hay técnicas más precisas o porque no existen suficientes especialistas en el sector.

Una novedad del presente trabajo fue la aplicación de un índice que pondera todas las propiedades de centralidad en un solo valor. Lo que empezó como la curiosidad de hacer un listado (ranking) de las especies más importantes para la centralidad acabó teniendo una mayor repercusión de la esperada. Al calcular los índices, y más en redes tróficas grandes, lo normal es fijarse sobre todo en las 10 o 20 especies más importantes para cada índice o propiedad. Sin embargo, hay especies que quizás no resalten en ninguna de las propiedades pero que se sitúen en rangos moderadamente importantes de forma constante, es decir, que estén bien conectados y que intervengan de forma moderada en la dispersión y velocidad de los efectos. Por el contrario, puede que un nodo sea muy importante sólo para una de las tres

propiedades. Relativizando las importancias para cada propiedad se dejan de subestimar o sobrestimar algunos de los nodos. Un claro ejemplo fue el nodo *Pasiphaea* (spp.), estos camarones no estuvieron entre los primeros 20 puestos de importancia en los índices de centralidad, pero fueron cuartos en el índice de importancia de centralidad y al fijarse, *Pasiphaea* (spp.) está situado muy próximo al puesto 30 en importancia en todas las propiedades, algo parecido pasa con las jaibas.

9. CONCLUSIÓN

Lo primero que hay que tener en cuenta con los modelos topológicos es que existen limitaciones que tienen que ver con la calidad y la cantidad de la información incorporada en las dietas, no sólo por el esfuerzo sino por la posibilidad de obtenerla. Por ejemplo, hay dietas construidas con muestras representativas y otros estudios que cuentan con limitados estómagos analizados, tampoco se tiene la oportunidad de obtener muestras suficientes de todas las especies. Este tipo de factores limita a su vez la magnitud de las conclusiones, por lo que se sugiere cautela a la hora de interpretar los resultados, pensando siempre en las características de la información y en la posibilidad de mejorar este tipo de modelos.

Este estudio pone de manifiesto el importante papel de los invertebrados. En la suma relativizada de la centralidad destacaron los calamares loligínidos (*Lolliguncula* spp.), sobre todo en la intermediación. Los camarones (en especial el camarón café (*F. californiensis*) y azul (*P. stylirostris*), las jaibas y cangrejos, los gasterópodos o los estomatópodos fueron los nodos más conectados de la red, y entre los grandes depredadores, el tiburón piloto o sedoso (*C. falciformis*) fue la especie con mayor diversidad en la dieta. Aunque los calamares loligínidos serían los mayores dispersores de los efectos en la red, hay que tener en cuenta que al no distinguir entre estadios juvenil y adulto, se podría estar sobreestimando la importancia de la especie, ya que su papel trófico es diferente, comen y son comidos por especies diferentes. Los estomatópodos, camarones, pulpos, jaibas, anfípodos y poliquetos también resultaron intermediarios importantes, aunque algunas familias de peces destacaron al mismo nivel en esta propiedad, *Scombridae, Pleuronectidae, Serranidae*, o *Lutjanidae*. La

cercanía se caracterizó por una distribución bimodal, valores relativamente altos en general y una diversidad taxonómica alta de peces e invertebrados. Esta distribución bimodal plantea dos hipótesis, podría haber dos sub redes claramente identificadas o una estructura central más conectada a una periferia de nodos menos conectados, identificando tal vez la separación entre la costa y el océano o el bentos del pélagos.

Los calamares loligínidos fueron clave para la transmisión de los efectos. Se destacó el papel de los grandes depredadores en el control ecosistémico y en la transmisión de los efectos directos e indirectos, especialmente del tiburón blanco (*Carcarodon carcharias*), pero también del tiburón martillo (*Sphyrna lewini*) y el tiburón piloto (*Carcharhinus falciformis*). Pero el fitoplancton y las diatomeas también son nodos clave en la red y contrarestan el control de arriba hacia debajo de los depredadores, es decir, que las poblaciones de niveles tróficos intermedios, que son el grueso de la red, están siendo controladas o reguladas tanto por arriba como por abajo (productores o depredadores tope), por lo que se sugiere un control ecosistémico mixto ya que las poblaciones de depredadores son migratorias y se podrían estar alternando en el ecosistema.

La estructura de la red se mostró robusta ante perturbaciones notables como es la exclusión de algunas especies. Los escenarios de extinción de especies mostraron que algunas especies carismáticas como la ballena azul (*Balaenoptera musculus*) y el tiburón blanco o especies de interés pesquero como los camarones o los calamares son importantes no sólo desde el punto de vista conservacional por motivos económicos, alimentarios o emocionales (carisma) sino por motivos ecológicos, porque podrían influir en el mantenimiento de la estructura trófica de la comunidad.

La ausencia de la ballena azul y del tiburón blanco afectarían, según los resultados, a la velocidad de los efectos en la red trófica, y lo harían de forma inversa. La ballena es un nodo escorado y poco conectado de la red, esto hace que la red se abra y los efectos se puedan dispersar vertical y horizontalmente antes de alcanzar a la ballena

o al revés, ante un decaimento de la abundancia de ballena azul, se produciría una amortiguación del efecto antes de llegar al conjunto de la red.

Por el contrario, el tiburón blanco tiene presas muy conectadas en la red, produciendo efectos en varias direcciones por caminos que a su vez tienen nodos muy conectados, los resultados sugieren que la ausencia del tiburón blanco frenaría la dispersión de los procesos en el sistema. Aun así, las poblaciones de tiburón blanco no son muy frecuentes ni abundantes en el Golfo de California por lo que los dos escenarios propuestos, con y sin tiburón blanco, son coherentes con una realidad en la que no significa que tenga que extinguirse la especie para que no haya individuos de la especie en alguna parte del sistema.

Los resultados, sin embargo, no indicaron una fuerte dependencia de la comunidad ante alguna especie en concreto por lo que parece tratarse de un ecosistema saludable, idea apoyada por varios trabajos para el Golfo de California (Arreguín-Sánchez *et al.*, 2007; Díaz-Uribe *et al.*, 2007, 2012; Salinas-Mayoral, 2014; Maciel-Zapata, 2016). De estos trabajos se desprende una conclusión en común y es que la pesquería de camarón afecta masivamente a las especies de la trama alimentaria a través de la pesca incidental. Precisamente, los camarones café y azul que son las principales especies de importancia pesquera en México, se revelan en el presente estudio como unas de las especies más centrales, por lo que deberían ser objeto de profunda investigación.

Aunque no se alcanzó a hacer en el presente estudio de manera profunda, es importante vincular el estudio de las redes tróficas con la ecología, recogiendo en bases de datos paralelas atributos sobre las estrategias de vida de las especies, si migran vertical u horizontalmente, profundidad a la que viven, tallas, hábitos gregarios o incluso el estatus de protección (Figura 10).

9. RECOMENDACIONES

Como primera recomendación, habría que hacerse una serie de preguntas antes de comenzar a construir una red trófica. Estas preguntas definirán la magnitud y el alcance de la discusión y en segundo plano, permitirán ganar en eficiencia con validaciones a posteriori. ¿Qué nivel de resolución se pretende?, ¿Se mantiene siempre la máxima resolución o agrego los grupos "complicados" ?, ¿Hasta qué porcentaje de la presa en la dieta del depredador se tendrá en cuenta, sólo las interacciones por encima del 1%, del 5% o todas?, ¿Se incluirán como parte de la dieta las presas casuales que pudieron ser ingeridas circunstancialmente como por ejemplo los parásitos de alguna presa o los epífitos de las fanerógamas? Con respecto a las especies, ¿se incluirán también las especies raras o sólo las comunes, las que tengan distribuciones teóricas en la dieta de los juveniles y los adultos que ciertamente pueden funcionar como especies distintas y además afectar o incluso resolver el problema de los ciclos alimentarios?

Todas estas preguntas, además, son limitaciones y fuente de variabilidad que inciden en el estudio de las redes tróficas y que hay que tener en cuenta. Es por ello por lo que el campo de la topología de redes tróficas sigue en evolución y por estar en pleno crecimiento necesita de más materia prima, de más redes tróficas. Se necesitan más redes y más análisis que contemplen todas las fuentes de variación que se comentaron en el presente trabajo para que se puedan establecer patrones que ayuden a la predicción de cambios en la estructura de las comunidades y por ende al entendimiento de la estabilidad de las tramas tróficas. Conforme se aumenten las bases de datos con redes tróficas se podrán encontrar diferencias tanto por la escala de la red como por la zona geográfica estudiada.

Si no se pretende incorporar la información de la fuerza de interacción discriminando entre interacciones débiles/casuales o fuertes, sería más conveniente incorporar sólo las presas principales. Quizás esta sea la razón por la que la mayoría de los estudios topológicos construidos sin fuerza de interacción tengan menos interacciones promedio por nodo. Quizás un análisis de modularidad para comprobar las zonas más conectadas de la red ayudaría a comprender el tipo de comportamiento de la red, pero por el momento es lógico que los primeros nodos del *KPP-2* tengan en común una alta conectividad. Por lógica también, el segundo nodo debe de ser el nodo que más nodos desconectados conecte, pero la razón por la cual este nodo cambió hay que investigarla en mayor profundidad.

Como se ha visto, esta red deja abierta muchas preguntas sobre el conocimiento macro ecológico del Golfo de California. Por otro lado, este trabajo pone de manifiesto los huecos de conocimientos existentes en la zona en cuanto a los estudios de ecología trófica y da pistas sobre la importancia de seguir en la línea de los últimos años en los que se ha hecho un gran esfuerzo en detallar la dieta de las especies diferenciando entre estadios juveniles y adultos e intentando llegar al máximo nivel de resolución, al nivel de especie. No obstante, las dificultades para la identificación de los invertebrados en los contenidos estomacales todavía son un gran reto y para que los modelos topológicos tengan más sentido se necesita mucha más precisión y esfuerzo en la descripción de las dietas, además algunos de los estudios de dieta se quedaron en literatura gris que necesitaría ser publicada y revisada por pares.

10. BIBLIOGRAFÍA

- Aburto-Oropeza, O. & C. López-Sagástegui. 2006. Red de reservas marinas del Golfo de California: Una compilación de los esfuerzos de conservación.
- Ainsworth, C.H. 2011. Quantifying species abundance trends in the northern Gulf of California using local ecological knowledge. *Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science* 3: 190–218.
- Albert, R. & A.-L. Barabási. 2002. Statistical mechanics of complex networks. *Reviews* of *Modern Physics* 74: 47–97.
- Allesina, S., A. Bodini & C. Bondavalli. 2006. Secondary extinctions in ecological

networks: Bottlenecks unveiled. Ecological Modelling 194: 150–161.

- Allesina, S., A. Bodini & M. Pascual. 2009. Functional links and robustness in food webs. *Philosophical Transactions of the Royal Society B: Biological Sciences* 364: 1701–1709.
- Álvarez-Borrego, S. 2002. Physical oceanography, in Ted J. Case, Martin L. Cody y Exequiel Ezcurra (Eds.), Island Biogeography of the Sea of Cortés. *Oxford University Press, New York*41–59.
- De Angelis, D.L. 1975. Stability and connectance in food web models. *Ecology* 56: 238–243.
- De Angelis, D.L., W.M. Post & G. Sugihara. 1982. Current trends in food webs theory. Report on a food web workshop. Fontana Village Inn North Carolina.
- Arizmendi-Rodríguez, D.I., C. a Salinas-Zavala, C. Quiñonez-Velazquez & A. Mejia-Rebollo. 2011. Abundance and distribution of the Panama brief squid, Lolliguncula panamensis (Teuthida: Loliginidae), in the Gulf of California. *Ciencias Marinas* 38: 31–45.
- Arreguín-Sánchez, F. & E. Arcos-Huitrón. 2011. La pesca en México: estado de la explotación y uso de los ecosistemas. *Hidrobiológica* 21: 431–462.
- Arreguín-Sánchez, F., E. Arcos & E.A. Chávez. 2002. Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico. *Ecological Modelling* 156: 167–183.
- Arreguín-Sánchez, F., P. del Monte-Luna, J.G. Díaz-Uribe, M. Gorostieta, E.A. Chávez & R. Ronzón-Rodríguez. 2007. Trophic model for the ecosystem of La Paz bay, Southern Baja California peninsula, Mexico. *In* W. J. F. Le Quesne, F. Arreguín-Sánchez & S. J. J. Heymans [eds.], INCOFISH ecosystem models: transiting from Ecopath to Ecospace. Fisheries CEntre Research Reports, 134–160. Fisheries Centre, University of British Columbia.
- Arreguín-Sanchez, F., M. Zetina-Rejón, S. Manickchand-Heileman, M. Ramírez-Rodríguez & L. Vidal. 2004. Simulated response to harvesting strategies in an exploited ecosystem in the southwestern Gulf of Mexico. *Ecological Modelling* 172: 421–432.
- Ashby, R.W. 1961. An introduction to cybernetics. 4th ed. Chapman & Hall Ltd.,

London.

- Aurioles-Gamboa, D. & A. Zavala-González. 1994. Algunos factoes ecologicos que determinan la distribución y abundancia del lobo marino Zalophus californianus, en el Golfo de California. *Ciencias Marinas* 20: 535–553.
- Aurioles Gamboa, D., C. Godínez Reyes, C. Hernández Camacho, K. Santos del Prado Gasca & investigación y conservación de los pinnípedos en M. "Red de monitoreo.
 2011. Taller de análisis del estado de la población de lobo marino de California Zalophus californianus en México. La Paz, B.C.S.
- Avila-Forcada, S., A.L. Martínez-Cruz & C. Muñoz-Piña. 2012. Conservation of vaquita marina in the northern gulf of California. *Marine Policy* 36: 613–622.
- Baird, D. & R.E. Ulanowicz. 1989. The seasonal dynamics of the Chesapeake bay ecosystem. *Ecological monographs* 59: 329–364.
- Barnes, J.A. & F. Harary. 1983. Graph theory in network analysis. *Social Networks* 5: 235–244.
- Bascompte, J., C.J. Melián & E. Sala. 2005. Interaction strength combinations and the overfishing. *Proceedings of the National Academy of Sciences of the United States of America* 102: 5443–5447.
- Bateson, G. 1972. Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. University of Chicago Press.
- Bavelas, A. 1948. A mathematical model for group structures. *Human Organization* 7: 16–30.
- Beauchamp, M.A. 1965. An improved index of centrality. Systems Research and Behavioral Science 10: 161–163.
- Belgrano, A., U. M. Scharler, J. Dunne & R. E. Ulanowicz. 2005. Aquatic Food Webs an ecosystem approach. OXFORD Uni. A. Belgrano, U. M. Scharler, J. Dunne & R. E. Ulanowicz [eds.],. Oxford University Press Inc., New York, New York.
- Bellingeri, M. & S. Vincenzi. 2013. Robustness of empirical food webs with varying consumer's sensitivities to loss of resources. *Journal of Theoretical Biology* 333: 18–26.
- Berlow, E.L. 1999. Strong effects of weak interactions in ecological communities. *Nature* 398: 330–334.

- Berlow, E.L., A.M. Neutel, J.E. Cohen, P.C. De Ruiter, B. Ebenman, M. Emmerson, J.W. Fox, V.A.A. Jansen, J.I. Jones, G.D. Kokkoris, D.O. Logofet, A.J. Mckane, J.M. Montoya & O. Petchey. 2004. Interaction strengths in food webs: Issues and opportunities. *Journal of Animal Ecology* 73: 585–598.
- Bersier, L., P. Dixon & G. Sugihara. 1999. Scale-invariant or scale-dependent behavior of the link density property in food webs: a matter of sampling effort? *The American Naturalist* 153: 676–682.
- von Bertalanffy, L. 1940. Der organismus als physikalisches system betrachtet. *Naturwissenschaften* 28: 521–531.
- von Bertalanffy, L. 1950. The theory of open systems in physics and biology. *Science* 111: 23–29.
- Blondel, J. 2003. Guilds or functional groups: does it matter? Oikos 100: 223–231.
- Bogdanov, A. 1912. Tektologia: Vseobshchaya organkatsionnaya nauka (Tectology: The universal science of organization). 1922nd ed. Izdatelstvo Z. I. "Nauka," Moscow.
- Borer, E.T., K. Anderson, C.A. Blanchette, B. Broitman, S.D. Cooper & B.S. Halpern. 2002. Topological approaches to food web analyses: a few modifications may improve our insights. *Oikos* 99: 397–401.
- Borgatti, S.P. 2006. Identifying sets of key players in a social network. *Computational and Mathematical Organization Theory* 12: 21–34.
- Borgatti, S.P. 2003a. KeyPlayer. Analytic Technologies.
- Borgatti, S.P. 2003b. The Key Player Problem. *Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers*241–252.
- Borgatti, S.P., M. Everett & L.C. Freeman. 2002. UCINET 6.0 for windows: Software for social network analysis, user's guide. *Analytic Technologies, Inc.*47.
- Bornatowski, H., R. Barreto, A.F. Navia & A.F. de Amorim. 2017. Topological redundancy and "small-world" patterns in a food web in a subtropical ecosystem of Brazil. *Marine Ecology* 38: 1–7.
- Bornatowski, H., A.F. Navia, R. Rennó Braga, V. Abilhoa & M. Fábio Maia Corrêa. 2014. Ecological importance of sharks and rays in a structural foodweb analysis in southern Brazil. *ICES Lournal of Marine Science* 71: 1586–1592.

- Bornholdt, S. & H.G. Schuste (eds.) . 2003. Handbook of graphs and networks: From the genome to the internet. Wiley-VCH.
- Braga, R.R., H. Bornatowski & J.R.S. Vitule. 2012. Feeding ecology of fishes: An overview of worldwide publications. *Reviews in Fish Biology and Fisheries* 22: 915–929.
- Brandes, U. 2001. A faster algorithm for betweenness centrality. *Journal of Mathematical Sociology* 25: 1633–177.
- Briand, F. 1983. Environmental control of food web structure. *Ecology* 64: 253–263.
- Briand, F. & J.E. Cohen. 1984. Community food webs have scale-invariant structure. *Nature* 307: 264–267.
- Briand, F. & J.E. Cohen. 1987. Environmental correlates of food chain length. *Science* 238: 956–960.
- Burnham, K.P. & D.R. Anderson. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. *Sociological Methods & Research* 33: 261–304.
- Cabeza, M., A. Arponen & A. Van Teeffelen. 2008. Top predators: Hot or not? A call for systematic assessment of biodiversity surrogates. *Journal of Applied Ecology* 45: 976–980.
- Calmus, T. 2008. El Mar de Cortés: un océano incipiente. *Revista Universidad de Sonora*1–5.
- Camacho, J., R. Guimerà & L.A. Nunes Amaral. 2002. Robust patterns in food web structure. *Physical Review Letters* 88: 228102.
- Capra, F. 1996. The Web of life: A new scientific understanding of living systems. Anchor Books, New York.
- del Carmen Alejo-Plata, M., J.L. Gómez-Márquez & J.E. Herrera-Galindo. 2015. Tallas, sexos y madurez del calamar dardo *Lolliguncula diomedeae* (Cephalopoda: Loliginidae) en el Golfo de Tehuantepec, México. *Cuadernos de Investigación UNED* 7: 79–87.
- Caro, T.M. & G. O'Doherty. 1999. On the use of surrogate species in conservation biology. *Conservation Biology* 13: 805–814.
- Castillo-Geniz, J.L. & J. Tovar-Ávila. 2016. Tiburones mexicanos de importancia pesquera en la CITES. México.

- Christensen, V. & D. Pauly. 1993. Trophic models of aquatic ecosystems. ICLARM Con. Manila, Philippines.
- Christensen, V. & C.J. Walters. 2004. Ecopath with Ecosim: Methods, capabilities and limitations. *Ecological Modelling* 172: 109–139.
- Cohen, J. 1990. A stochastic theory of community food webs . VI . Heterogeneous alternatives to the cascade model. *Theoretical population biology* 90: 55–90.
- Cohen, J., C. Newman, F. Briand & Z. Palka. 1990. A stochastic theory of community food webs III. *In* Community food webs, 63–202. Springer-Verlag, Berlín Heidelberg.
- Cohen, J.E. 1977. Ratio of prey to predators in community food webs. *Nature* 270: 165–167.
- Cohen, J.E., A. Beaver, S.H. Cousins, D.L. DeAngelis, L. Goldwasser, K.L. Heong,
 R.D. Holt, A.J. Kohn, J.H. Lawton, N. Martinez, R.O. O'Malley, L.M. Page, S.L.
 Pimm, G.A. Polis, M. Rejmánek, T.W. Schoener, K. Schoenly, W.G. Sprules, M.
 Teal, R.E. Ulanowicz, P.H. Warren, H.M. Wilbur & P. Yodzis. 1993. Improving food
 webs. *Ecology* 74: 252–258.
- Cohen, J.E. & F. Briand. 1984. Trophic links of community food webs. *Proc. Natl. Acad. Sci.* 81: 4105–4109.
- Cohen, J.E., F. Briand & C.M. Newman. 1986. A stochastic theory of community food webs III. Predicted and observed lengths of food chains. *Proceedings of the Royal* society of London. Series B. Biological sciences 228: 317–353.
- Cohen, J.E. & C.M. Newman. 1985. A stochastic theory of community food webs: I. Models and aggregated data. *Proceedings of the Royal Society B: Biological Sciences* 224: 421–448.
- Cohen, J.E., C.M. Newman & F. Briand. 1985. A stochastic theory of community food webs II. Individual webs. *Proceedings of the Royal Society of London* 224: 449–461.
- Cohen, J.E. & Z.J. Palka. 1990. A stochastic theory of community food webs. V. Intervality and triangulation in the trophic-niche overlap graph. *American Naturalist* 135: 435–463.

Comisión Nacional de Acuacultura y Pesca (CONAPESCA). 2013. Anuario estadístico

de acuacultura y pesca 2013. Mazatlán.

- Comision Nacional de Areas Marinas Protegidas, C. 2012. Reserva de la Biosfera. Zona marina profunda Golfo de California. Estudio previo justificativo para el establecimiento del área natural protegida.
- CONANP. 2009. Programa de Manejo: Reserva de la Biosfera Isla Guadalupe.
- CONANP. 2017. Suspende CONANP temporalmente actividades de nado con lobo marino en balandra. *31 de julio*.
- CONANP-SEMARNAT. 2007. Manual de buenas practicas para el buceo en jaula para la observación del tiburón blanco en la Reserva de la Biosfera Isla Guadalupe.
- Cruz-Escalona, V.H., A.F. Navia, P.A. Mejia-Falla, M. V. Morales-Zárate & C.A. Salinas-Zavala. 2016. Topological and biomass balance approaches to analyzing food webs of Bahía Magdalena, Baja California Sur, Mexico. *Community Ecology* 17: 125–136.
- Csardi, G. & T. Nepusz. 2006. The igraph software package for complex network research.
- Cudney-Bueno, R., L. Bourillón, A. Sáenz-Arroyo, J. Torre-Cosío, P. Turk-Boyer & W.W. Shaw. 2009. Governance and effects of marine reserves in the Gulf of California, Mexico. *Ocean and Coastal Management* 52: 207–218.
- Curtis H., Barnes S., Schnek A. & Massarini A. 2008. Curtis. Biología. S. A. & Massarini A. [eds.],. Editorial Médica Panamericana.
- Curtsdotter, A., A. Binzer, U. Brose, F. de Castro, B. Ebenman, A. Eklöf, J.O. Riede, A. Thierry & B.C. Rall. 2011. Robustness to secondary extinctions: Comparing traitbased sequential deletions in static and dynamic food webs. *Basic and Applied Ecology* 12: 571–580.

Delgado-Argote, L.A. 2003. Geología: Primera parte. Aspectos físicos.

- Diario Oficial, M. 2010. Protección ambiental. Especies nativas de México de flora y fauna silvestres. Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de México, México.
- Díaz-Uribe, J.G., F. Arreguín-Sánchez & M.A. Cisneros-Mata. 2007. Multispecies perspective for small-scale fisheries management: A trophic analysis of La Paz Bay in the Gulf of California, Mexico. *Ecological Modelling* 201: 205–222.

- Díaz-Uribe, J.G., F. Arreguín-Sánchez, D. Lercari-Bernier, V.H. Cruz-Escalona, M.J. Zetina-Rejón, P. Del-Monte-Iuna & S. Martínez-Aguilar. 2012. An integrated ecosystem trophic model for the North and Central Gulf of California: An alternative view for endemic species conservation. *Ecological Modelling* 230: 73–91.
- Díaz-Uribe, J.G., V.M. Valdez-Ornelas, G.D. Danemann, E. Torreblanca-Ramírez, A. Castillo-López & M.Á. Cisneros-Mata. 2013. Regionalización de la pesca ribereña en el noroeste de México como base práctica para su manejo. *Ciencia Pesquera* 21: 41–54.
- Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. *Numerische mathematik* 1: 269–271.
- Ducarme, F., G.M. Luque & F. Courchamp. 2013. What are "charismatic species" for conservation biologists? *BioSciences Master Reviews* 1: 1–8.
- Dunne, J.A., R.J. Williams & N.D. Martinez. 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. *Ecology Letters* 5: 558–567.
- Durban. 2005. Convention concerning the protection of the world cultural and natural heritage: 19th session. Durban, South Africa.
- Elton, C. 1927. Animal Ecology. The Macmil. S. J. Huxley [ed.], New York.
- Erdos, P. & A. Renyi. 1960. Introduction Our aim is to study the probable structure of a random graph. 1–45.
- Essington, T.E., A.H. Beaudreau & J. Wiedenmann. 2006. Fishing through marine food webs. *Proceedings of the National Academy of Sciences of the United States of America* 103: 3171–3175.
- Estrada, E. 2007. Characterization of topological keystone species. Local, global and "meso-scale" centralities in food webs. *Ecological Complexity* 4: 48–57.
- Farias, A.A. & F.M. Jaksic. 2006. Assessing the relative contribution of functional divergence and guild aggregation to overall functional structure of species assemblages. *Ecological Informatics* 1: 367–375.

FONATUR. 2001. Proyecto Escalera Náutica del Mar de Cortés. Documento Básico.

Freeman, L.C. 1977. A set of measures of centrality based on betweenness. *Sociometry* 40: 35–41. Freeman, L.C. 1978. Centrality in Social Networks Conceptual Clarification. 1: 215–239.

- Gaichas, S.K. & R.C. Francis. 2008. Network models for ecosystem-based fishery analysis: a review of concepts and application to the Gulf of Alaska marine food web. Canadian Journal of Fisheries and Aquatic Sciences 65: 1965–1982.
- Galván-Magaña, F., E.M. Hoyos-Padilla, C.J. Navarro-Serment & F. Márquez-Farías.
 2010. Records of white shark, Carcharodon carcharias, in the Gulf of California, Mexico. *Marine Biodiversity Records* 3: e111.
- García-Rosello, E., C. Guisande, J. González-Dacosta, J. Heine, P. Pelayo-Villamil, A.
 Manjarrés-Hernández, A. Vaamonde & C. Granado-Lorencio. 2013. ModestR: a software tool for managing and analyzing species distribution map databases.
 Ecography 36: 1202–1207.
- Garlaschelli, D., G. Caldarelli & L. Pietronero. 2003. Universal scaling relations in food webs. *Nature* 423: 165–169.
- Gobierno del Estado, B.C. 2015. Carta Estatal Pesquera de Baja California 2000-2015.
- Goldwasser, L. & J. Roughgarden. 1997. Sampling effects and the estimation of foodweb properties. *Ecology* 78: 41–54.
- Guerrero Ruiz, M.M., J. Urbán Ramírez & L. Rojas Bracho. 2006. Las ballenas del Golfo de California. México.
- Gutiérrez, O.Q., S.G. Marinone & A. Parés-Sierra. 2004. Lagrangian surface circulation in the Gulf of California from a 3D numerical model. *Deep-Sea Research II* 51: 659–672.
- Hall, S. & D. Raffaelli. 1993. Food webs: theory and reality.
- Hall, S.J. & D. Raffaelli. 1991. Food-Web Patterns : lessons from a species-rich web. *Journal of Animal Ecology* 60: 823–842.
- Harary, F., R.Z. Norman & D. Cartwright. 1965. Structural models: an introduction to the theory of directed graphs. New York.
- Hawkins, B.A., N.D. Martinez & F. Gilbert. 1997. Source food webs as estimators of community web structure. 18: 575–586.
- Heredia-Doval, D. 2013. Redes, sistemas y evolución. Hacia una nueva Biología. Universidad Autónoma de Madrid.

- Hudson, L., D. Reuman & R. Emerson. 2016. Cheddar: analysis and visualisation of ecological communities. R package version 0.1-631.
- Hudson, L.N., R. Emerson, G.B. Jenkins, K. Layer, M.E. Ledger, D.E. Pichler, M.S.A.
 Thompson, E.J. O'Gorman, G. Woodward & D.C. Reuman. 2013. Cheddar:
 Analysis and visualisation of ecological communities in R. *Methods in Ecology and Evolution* 4: 99–104.
- Hussey, N.E., M.A. Macneil, B.C. Mcmeans, J.A. Olin, S.F.J. Dudley, G. Cliff, S.P. Wintner, S.T. Fennessy & A.T. Fisk. 2014. Rescaling the trophic structure of marine food webs. *Ecology Letters* 17: 239–250.
- Hutchinson, G.E. 1959. Homage to Santa Rosalía or Why are there so many kinds of animals? *The American Naturalist* XCIII: 145–159.
- Intergovernmental Oceanographic Commission of UNESCO, I. 2017. Ocean biogeographic information system (OBIS).
- Irigoyen-Arredondo, M.S. 2013. Estructura comunitaria y trófica de la ictiofauna capturada con redes agalleras en isla San José, B.C.S., México. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional (CICIMAR-IPN).
- Ispecies. 2017. iSpecies (A simple mashup of species information).
- Jeffries, M.J. & J.H. Lawton. 1985. Predatory-prey rations in communities of freshwater invertebrates: The role of enemy-free space. *Freshwater Biology* 15: 105–112.
- Jordán, F. 2005. Topological key players in communities: the network perspective. *Ecosystems and Sustainable Development V* 81: 87–96.
- Jordán, F., W.C. Liu & A.J. Davis. 2006. Topological keystone species: Measures of positional importance in food webs. *Oikos* 112: 535–546.
- Jordán, F. & I. Scheuring. 2002. Searching for keystones in ecological networks. *Oikos* 67: 607–612.
- Jordán, F., I. Scheuring & G. Vida. 2002. Species positions and extinction dynamics in simple food webs. *Journal of Theoretical Biology* 215: 441–448.
- Jordán, F., Takács-Santa András & I. Molnár. 1999. A reliability Theoretical Quest for Keystones. *Oikos* 86: 453–462.

Kondoh, M. 2003. Foraging adaptation and the relationship between food-web

complexity and stability. Science 299: 1388–1391.

- Krakow. 2017. Convention concerning the protection of the world cultural and natural heritage: 41st Session. Krakov, Poland.
- Krebs, C.J. 1986. Ecología: Análisis experimental de la distribución y la abundancia. Pirámide. Madrid.
- Lambeck, R. 1997. Focal species: a multiple-species umbrella for nature conservation. *Conservation biology* 11: 849–856.
- Landres, P.B., J. Verner & J.W. Thomas. 1988. Ecological uses of vertebrate indicator species : A critique. *Conservation Biology* 2: 316–328.
- Lavín, M.F. & S.G. Marinone. 2003. An overview of the physical oceanography of the Gulf of California. *In* Nonlinear processes in geophysical fluid dynamics, 173–204.
- Lawton, J.H. & P.H. Warren. 1988. Static and dynamic explanations for patterns in food webs. *Trends in ecology & evolution* 3: 242–5.
- Legendre, P. & L. Legendre. 1998. Numerical Ecology. *In* P. Legendre & L. Legendre [eds.], Developments in Environmental Modelling, 870. Elsevier Science B. V., Amsterdam.
- Lercari-Bernier, D. 2006. Manejo de los recursos del ecosistema del norte del Golfo de California: Integrando explotación y conservación. Centro Interdisciplinario de Ciencias Marinas del Instituto Politéncico Nacioinal (CICIMAR-IPN).
- Lercari, D., F. Arreguín-Sánchez & W. Le Quesne. 2007. An ecosystem simulation model of the northern Gulf of California. *In* W. J. F. Le Quesne, F. Arreguín-Sánchez & S. J. J. Heymans [eds.], INCOFISH ecosystem models: transiting from Ecopath to Ecospace. Fisheries Centre Research Reports 15 (6), 100–113. Fisheries Centre, University of British Columbia.
- Levine, S. 1980. Several measures of trophic structure applied to complex food webs. *Journal of Theoretical Biology* 83: 195–207.

Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. *Ecology* 23: 399–417.

Link, J.S., W.T. Stockhausen & E.T. Methratta. 2005. Food-web theory in marine ecosystems. *In* A. Belgrano, M. U. Scharler, J. Dunne & E. R. Ulanowicz [eds.], Aquatic Food Webs: An ecosystem approach, 109–124.

Lluch-Cota, S.E., E.A. Aragón-Noriega, F. Arreguín-Sánchez, D. Aurioles-Gamboa, J.

Jesús Bautista-Romero, R.C. Brusca, R. Cervantes-Duarte, R. Cortés-Altamirano, P. Del-Monte-Luna, A. Esquivel-Herrera, G. Fernández, M.E. Hendrickx, S. Hernández-Vázquez, H. Herrera-Cervantes, M. Kahru, M. Lavín, D. Lluch-Belda, D.B. Lluch-Cota, J. López-Martínez, S.G. Marinone, M.O. Nevárez-Martínez, S. Ortega-García, E. Palacios-Castro, A. Parés-Sierra, G. Ponce-Díaz, M. Ramírez-Rodríguez, C.A. Salinas-Zavala, R.A. Schwartzlose & A.P. Sierra-Beltrán. 2007. The Gulf of California: Review of ecosystem status and sustainability challenges. *Progress in Oceanography* 73: 1–26.

- López-Martínez, J. & F. Arreguín-Sánchez. 2000. Dinámica de la pesqueria de camarón café (Penaeus californiensis) en el litoral sonoronse y su relación con algunos parámetros océano-atmosféricos.
- Lovelock, J. & J.E. Lovelock. 2000. Gaia: A new look at life on earth. Oxford Paperbacks.
- Lovelock, J.E. 2016. A new look at life on earth. Oxford landmark science.
- Lovelock, J.E. 1979. Gaia: a new look at life on earth. Oxford University Press.
- Lovelock, J.E. & L. Margulis. 1996. The Gaia Hypothesis. Mountain Man Graphics.
- Lozano, H. 2006. Historical ecosystem modelling of the upper Gulf of California (Mexico): Following 50 Years of Change. University of British Columbia.
- Luczkovich, J.J., S.P. Borgatti, J.C. Johnson & M.G. Everett. 2003. Defining and measuring trophic role similarity in food webs using regular equivalence. *Journal of Theoretical Biology* 220: 303–321.
- MacArthur, R. 1955. Fluctutations of animal populations, and a measure of community stability. *Ecology* 36: 533–536.
- Maciel-Zapata, S.R. 2016. Estructura topológica de la trama alimentaria de la Bahía de la Paz, Baja California Sur, México. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional (CICIMAR-IPN).
- Margalef, R. 1974. Ecología. Omega. Barcelona.
- Margulis, L. & K. Sagan. 1997. Microcosmos: Four billion years of evolution from our microbial ancestors. University of California Press, New York.
- Markaida, U. 2006. Food and feeding of jumbo squid Dosidicus gigas in the Gulf of California and adjacent waters after the 1997-98 El Niño event. *Fisheries Research*

79: 16–27.

- Martinez, N.D. 1991. Artifacts or attributes? Effects of resolution on the Little Rock lake food web. *Ecological monographs* 61: 367–392.
- Martinez, N.D. 1992. Constant connectance in community food webs. *The American Naturalist* 139: 1208–1218.
- Martinez, N.D. 1993. Effects of resolution on food web structure. *Oikos* 66: 403–412.
- Martinez, N.D., B.A. Hawkins, H.A. Dawah & B.P. Feifarek. 1999. Effects of sampling effort on characterization of food-web structure. *Ecology* 80: 1044–1055.
- Maturana, H.R. & F.J. Varela. 1984. El árbol del conocimiento: Las bases biológicas del entendimiento humano. Editorial Universitaria, Santiago.
- May, R.M. 1973. Qualitative stability in model ecosystems. *Ecology* 54: 638–641.
- May, R.M. 1972. Will a large complex system be stable? *Nature* 238: 413–414.
- McCann, K. & A. Hastings. 1997. Re-evaluating the omnivory–stability relationship in food webs. *Proceedings of the Royal Society B: Biological Sciences* 264: 1249– 1254.
- McCann, K., A. Hastings & G.R. Huxel. 1998. Weak trophic interactions and the balance of nature. *Nature* 395: 794–798.
- McCann, K.S. 2000. The diversity-stability debate. *Nature* 405: 228–233.
- McCulloch, W.S. & W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. *The Bulletin of Mathematical Biophysics* 5: 115–133.
- McDonald-Madden, E., R. Sabbadin, E.T. Game, P.W.J. Baxter, I. Chadès & H.P. Possingham. 2016. Using food-web theory to conserve ecosystems. *Nature Communications* 7: 10245.
- Menge, B.A. 1995. Indirect effects in marine rocky intertidal interaction webs: Patterns and importance. *Ecological Monographs* 65: 21–74.
- Montoya, J.M., S.L. Pimm & R. V Solé. 2006. Ecological networks and their fragility. *Nature* 442: 259–264.
- Montoya, J.M. & R. V. Sole. 2002. Small world patterns in food webs. *Journal of Theoretical Biology* 214: 405–12.
- Montoya, J.M., R. V. Solé & M.A. Rodríguez. 2001. La arquitectura de la naturaleza: complejidad y fragilidad en redes ecológicas. *Ecosistemas* 10: 14.

- Morales-Zárate, M. V., F. Arreguín-Sánchez, J. López-Martínez & S.E. Lluch-Cota. 2004. Ecosystem trophic structure and energy flux in the Northern Gulf of California, México. *Ecological Modelling* 174: 331–345.
- Morgan, L., S. Maxwell, F. Tsao, T.A.C. Wilkinson & P. Etnoyer. 2005. Áreas prioritarias marinas para la conservación: Baja california al mar de Béring.
- Morin, P.J. & S.P. Lawler. 1995. Food web architecture and population dynamics: Theory and empirical evidence. *Annual review of ecology and systematics* 26: 505–529.
- Myers, R.A., J.K. Baum, T.D. Shepherd, S.P. Powers & C.H. Peterson. 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. *Science* 315: 1846–1850.
- Navia, A.F. 2013. Función ecológica de tiburones y rayas en un ecosistema costero tropical del Pacífico colombiano. 189.
- Navia, A.F., E. Cortés, F. Jordán, V.H. Cruz-Escalona & P.A. Mejía-Falla. 2012. Changes to Marine Trophic Networks Caused by Fishing. *In* Diversity of Ecosystems, 417–452. INTECH.
- Navia, A.F., E. Cortés & P. a. Mejía-Falla. 2010. Topological analysis of the ecological importance of elasmobranch fishes: A food web study on the Gulf of Tortugas, Colombia. *Ecological Modelling* 221: 2918–2926.
- Navia, A.F., V.H. Cruz-Escalona, A. Giraldo & A. Barausse. 2016. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. *Ecological Modelling* 328: 23–33.
- Navia López, A.F. 2009. Hábitos alimentarios, relaciones tróficas e importancia ecológica de. Universidad del Valle, Santiago de Cali.
- Von Neumann, J. 1951. The general and logical theory of automata. *Cerebral mechanisms in behavior* 1: 1–2.
- Neutel, A.-M. 2002. Stability in real food webs: weak links in long loops. *Science* 296: 1120–1123.
- Newman, M.E.J. & M. Girvan. 2004. Finding and evaluating community structure in networks. *Physical review E* 69: 26113.
- Nix, R. 2007. The Gulf of California. A physical, geological and biological study. Dallas.

NOAA. 2016. Vaquita Overview. Southwest Fisheries Science Center.

Odum, P.E. 1953. Fundamentals of Ecology. P. S. Philadelphia [ed.],.

- Páez-Osuna, F., A. Gracia, F. Flores-Verdugo, L.P. Lyle-Fritch, R. Alonso-Rodríguez,
 A. Roque & A.C. Ruiz-Fernández. 2003. Shrimp aquaculture development and the environment in the Gulf of California ecoregion. *Marine Pollution Bulletin* 46: 806–815.
- Paine, R.T. 1992. Food-web analysis through field measurement of per capita interaction strength. *Nature* 355: 73–75.
- Paine, R.T. 1966. Food web complexity and species diversity. *The American Naturalist* 100: 65–75.
- Paine, R.T. 1980. Food webs: linkage, interaction strength and community infraestructure. *Journal of Animal Ecology* 49: 667–685.
- Paine, T.R. 1988. Food Webs: road maps of interactions or grist for theoretical development? *Ecology* 69: 1648–1654.
- Pascual, M. & J. A. Dunne. 2006. Ecological networks: linking structure to dynamics in food webs. M. Pascual & J. A. Dunne [eds.],. Oxford University Press Inc, United States, Santa Fe Institute Studies on the Sciences of Complexity.
- Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F.T. Jr. 1998. Fishing down marine food webs. *Science* 279: 860–863.
- Pauly, D., V. Christensen & C. Walters. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. *ICES Journal of Marine Science* 57: 697–706.
- Pauly, D., W. Graham, S. Libralato, L. Morissette & M.L. Deng Palomares. 2009. Jellyfish in ecosystems, online databases, and ecosystem models. *Hydrobiologia* 616: 67–85.
- Pauly, D. & G. Weingartner. 1998. Use of Ecopath with Ecosim to evaluate strategies for sustainable explotation of multi-species resources. *Fisheries Centre Research Reports* 6: 51.
- Pimm, S.L. 2002. Food Webs. R. A. Meyers [ed.], University of Chicago Press.

Pimm, S.L. 1980. Properties of food webs. *Ecology* 61: 219–225.

Pimm, S.L. 1982. What and Why? In Food Webs,

- Pimm, S.L., J.H. Lawton & J.E. Cohen. 1991. Food web patterns and their consequences. *Nature* 350: 669–674.
- Pitcher, T. & K. Cochrane. 2002. The use of ecosystem models to investigate multispecies management strategies for capture fisheries. Vancouver.
- Polis, A.G. 1991. Complex trophic interactions in deserts: an empirical critique of foodweb theory. 138: 123–155.
- Polovina, J.J. 1984. Model of a coral reef ecosystem. *Coral Reefs* 3: 1–11.
- Prigogine, I. 1978. Time, structure, and fluctuations. *Science* 201: 777–785.
- Prigogine, I. & G. Nicolis. 1961. Biological order, structure and instabilities. *In* Fast reactions and primary processes in Chemical kinetics, Interscience, New York.
- Prigogine, I. & I. Stengers. 1984. Order out of chaos: Man's new dialogue with nature. Bantam new age books, New York.
- Le Quesne, W.J.F., F. Arreguín-Sánchez & S.J.J. Heymans. 2007. Incofish. Ecosystem models: Transiting from Ecopath to Ecospace.
- R. McClanahan, T. & G. M. Branch. 2008. Food webs and the dynamics of marine reefs. T. R. McClanahan & G. M. Branch [eds.],. Oxford University Press Inc.
- Ramirez-Llodra, E., A. Brandt, R. Danovaro, B. De Mol, E. Escobar, C.R. German, L.A. Levin, P. Martinez Arbizu, L. Menot, P. Buhl-Mortensen, B.E. Narayanaswamy, C.R. Smith, D.P. Tittensor, P.A. Tyler, A. Vanreusel & M. Vecchione. 2010. Deep, diverse and definitely different: Unique attributes of the world's largest ecosystem. *Biogeosciences* 7: 2851–2899.
- Rejmánek, M. & P. Starý. 1979. Connectance in real biotic communities and critical values for stability of model ecosystems. *Nature* 280: 311–313.
- Rocchi, M., M. Scotti, F. Micheli & A. Bodini. 2017. Key species and impact of fishery through food web analysis: A case study from Baja California Sur, Mexico. *Journal* of Marine Systems 165: 92–102.
- Rodríguez-Quiroz, G., E.A. Aragón-Noriega, W. Valenzuela-Quiñónez & H.M. Esparza-Leal. 2010. Artisanal fisheries in the conservation zones of the Upper Gulf of California. *Revista de biología marina y oceanografía* 45: 89–98.
- Rojas-Bracho, L., R.R. Reeves, A. Jaramillo-Legorreta & B.L. Taylor. 2008. Phocoena sinus, Vaquita. *The IUCN Red List of Threatened Species*.
- Rosas-Luis, R., C.A. Salinas-Zavala, V. Koch, P.D.M. Luna & M. V. Morales-Zárate.
 2008. Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California. *Ecological Modelling* 218: 149–161.
- Rossberg, A.G. 2013. Food webs and biodiversity: foundations, models, data. Wiley. L. John Wiley & Sons [ed.],.
- de Ruiter, P., V. Wolters & J. C. Moore. 2005. Dynamic food webs: multispecies assemblages, ecosystem development, and environmental change. Melville-S. P. de Ruiter, V. Wolters & J. C. Moore [eds.],. Academic Press (Elsevier). Theoretical Ecology Series.
- SAGARPA. 2010. Segunda Seccion Secretaria De Agricultura, Ganaderia, Desarrollo Rural, Pesca Y Alimentacion. México.
- Sala, E., O. Aburto-Oropeza, M. Reza, G. Paredes & L.G. López-Lemus. 2004. Fishing down coastal food webs in the Gulf of California. *Fisheries* 29: 19–25.
- Salcido-Guevara, L.A., P. Del Monte Luna, F. Arreguín-Sánchez & V.H. Cruz-Escalona.
 2012. Potential ecosystem level effects of a shrimp trawling fishery in La Paz bay,
 Mexico. Open Journal of Marine Science 2: 85–89.
- Salinas-Mayoral, C.A. 2014. Análisis topológico de la red trófica del sistema marino costero del área de Cabo Pulmo, Los Cabos, B. C. S. Universidad Autónoma de Baja California Sur (UABCS).
- Salomón-Aguilar, C.A., C.J. Villavicencio-Garayzar & H. Reyes Bonilla. 2009. Shark breeding grounds and seasons in the Gulf of California: Fishery management and conservation strategy. *Ciencias Marinas* 35: 369–388.
- Sanders, H.L. 1960. Benthic studies in buzzards bay III. The structure of the soft-bottom community. *Limnology and Oceanography* 5: 138–153.
- Sathik, M.M. & A.A. Rasheed. 2009. A centrality approach to identify sets of key players in an online weblog. *International Journal of Recent Trends in Engineering* 2: 85– 87.
- Schoener, T. 1989. Food webs from the small to the large: the Robert H. MacArthur award lecture. *Ecology* 70: 1889–1589.
- Schoenly, K. & J.E. Cohen. 1991. Temporal variation in food web structure: 16 empirical cases. *Ecological monographs* 61: 267–298.

- Schulze, E.-D. & H.A. Mooney. 1994. Ecosystem function of biodiversity: A summary. *In* (Eds.) Ernst-Detlef Schulze & Harold A. Mooney [ed.], Biodiversity and ecosystem function, 497–510.
- Scotti, M., C. Bondavalli & A. Bodini. 2009. Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect? *Ecological Modelling* 220: 3070–3080.
- Secretaría de agriculturra, ganadería, desarrollo rural, pesca y alimentación (SAGARPA). 2012a. Actualización de la Carta Nacional Pesquera.
- Secretaría de agriculturra, ganadería, desarrollo rural, pesca y alimentación (SAGARPA). 2012b. Plan de manejo pesquero para la pesquería de pelágicos menores (sardinas, anchovetas, macarela y afines) del noroeste de México. México, D.F.
- SEMARNAT, M. & U. NOAA. 2015. Expedición Internacional Vaquita Marina 2015.
- Sergio, F., T. Caro, D. Brown, B. Clucas, J. Hunter, J. Ketchum, K. McHugh & F. Hiraldo. 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. *Annual Review of Ecology, Evolution, and Systematics* 39: 1–19.
- Sergio, F., I. Newton, L. Marchesi & P. Pedrini. 2006. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. *Journal of Applied Ecology* 43: 1049–1055.
- Shannon, C.E. 1948. A mathematical theory of communication. *Bell System Technical Journal* 5: 3.
- Shaw, M.E. 1954. Group structure and the behavior of individuals in small groups. *The Journal of Psychology* 38: 139–149.
- Simberloff, D. 1998. Flagships, umbrellas, and keystones: is single species management passi in the landscape era? *Biological Conservation* 83: 247–257.
- Solé, R. V & J.M. Montoya. 2001. Complexity and fragility in ecological networks. *Proceedings. Biological sciences / The Royal Society* 268: 2039–2045.
- Strogatz, S.H. 2001. Exploring complex networks. *Nature* 410: 268–276.
- Sugihara, G., L.F. Bersier & K. Schoenly. 1997. Effects of taxonomic and trophic aggregation on food web properties. *Oecologia* 112: 272–284.

- Sugihara, G., K.G. Schoenly & A. Trombla. 1989. Scale invariance in food web properties. *Science, New Series* 245: 48–52.
- Thompson, R.M., U. Brose, J.A. Dunne, R.O. Hall, S. Hladyz, R.L. Kitching, N.D. Martinez, H. Rantala, T.N. Romanuk, D.B. Stouffer & J.M. Tylianakis. 2012. Food webs: Reconciling the structure and function of biodiversity. *Trends in Ecology and Evolution* 27: 689–697.
- Ulanowicz, R.E. 1989. A phenomenology of evolving networks. *Systems Research* 6: 209–217.
- Valenzuela-Quiñonez, F., F. Arreguín-Sánchez, S. Salas-Márquez, F.J. García-De León, J.C. Garza, M.J. Román-Rodríguez & J.A. De-Anda-Montañez. 2016. Critically Endangered totoaba. Totoaba macdonaldi: signs of recovery and potential threats after a population collapse. *Endangered Species Research* 29: 1–11.
- Varela, F.G., H.R. Maturana & R. Uribe. 1974. Autopoiesis: The organization of living systems, its characterization and a model. *BioSystems* 5: 187–196.
- Walters, C., V. Christensen & D. Pauly. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. *Reviews in Fish Biology and Fisheries* 7: 139–172.
- Warren, P.H. 1989. Spatial and temporal variation in the structure of a freshwater food web. *Nordic Society Oikos* 55: 299–311.
- Warren, P.H. 1990. Variation in food-web structure: the determinants of connectance. *The American Naturalist* 136: 689.

Wasserman, S. & K. Faust. 1994. Social Network Analysis: Methods and Applications.

West, D.B. 2008. Introduction To Graph Theory. 3rd ed.

- Wiener, N. 1948. Cybernetics: Or control and communication in the animal and the machine. The Mit Press, Cambridge, Massachusetts.
- Wiens, J., G.D. Hayward, R.S. Holthausen & M.J. Wisdom. 2008. Using surrogate species and groups for conservation planning and management. *Bioscience* 58: 241–252.
- Williams, R.J. & N.D. Martinez. 2004. Limits to trophic levels and omnivory in complex food webs: theory and data. *The American Naturalist* 163: 458–468.

- Wilson, D. 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. *Ecology* 73: 1984–2000.
- Winemiller, K.O. 1983. An introduction to the freshwater fish communities of Corcovado National Park, Costa Rica. *Brenesia, San José* 21: 47–66.
- Winemiller, K.O. 1987. Feeding and reproductive biology of the currito, Hoplosternum littorale, in the Venezuelan llanos with comments on the possible function of the enlarged male pectoral spines. *Environmental Biology of Fishes* 20: 219–227.
- Winemiller, K.O. 1989. Must connectance decrease with species richness? *American Naturalist* 134: 960–968.
- Winemiller, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. *Ecological monographs* 60: 331–367.
- Yodzis, P. 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. 69: 508–515.
- Yodzis, P. 1981. The stability of real ecosystems. *Nature* 289: 674–676.
- Zetina-Rejón, M.J., F. Arreguín-Sánchez & E.A. Chávez. 2004. Exploration of harvesting strategies for the management of a Mexican coastal lagoon fishery. *Ecological Modelling* 172: 361–372.
- Zetina-Rejón, M.J., F. Arreguín-Sánchez & E.A. Chávez. 2003. Trophic structure and flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of Mexico. *Estuarine, Coastal and Shelf Science* 57: 803–815.

ANEXO I

Interacciones eliminadas por canibalismo y ciclos

Figura 17. Especies involucradas en relaciones cíclicas de alimentación y la cantidad (eje x) y tipo de interacciones (de canibalismo, como presa o como depredador) que fueron eliminadas de cada uno de los nodos. Las escalas de grises de la leyenda indican el tipo de función que ejercía la especie. No se muestran todas las interacciones de canibalismo sino las especies involucradas en ciclos.

Canibalismo y ciclos de alimentación

Tabla 9. Canibalismo y ciclos. Especies dentro del Golfo de California para las que no se encontró la dieta (especie) y sus equivalentes ecológicos (especie sustituta); el taxón que comparte con la/s especie/s que se eligieron para construir su dieta (taxón común: fam.= familia y gen.= género); la talla máxima y profundidad máximas de las especies y la zona más cercana donde se distribuye la especie sustituta (C= centro, S= sur; E= este; W= oeste)

Canibalismo	Presa>	Depredador	Presa>	Depredador
Zooplancton	Radiolarios	Copépodos	Estomatópodos	Lolliguncula (spp.)
Radiolarios	Radiolarios	Zooplancton	Pulpos	Lolliguncula (spp.)
Protozoos	Macro algas	Zooplancton	Citharichthys (spp.)	Lolliguncula (spp.)
Meiobentos	Protozoos	Rotíferos	S. japonicus	Lolliguncula (spp.)
Anfípodos	Pterópodos	Poliquetos	S. ovale	Lolliguncula (spp.)
Quetognatos	C. bellicosus	C. arcuatus	S. cortezi	Lolliguncula (spp.)
Gasterópodos	D. aureolus	C. arcuatus	B. clarkae	Lolliguncula (spp.)
Ofiuros	D.aureolus	C. bellicosus	L. prorates	Lolliguncula (spp.)
C. arcuatus	S. oualaniensis	Pasiphaea (spp.)	D. gigas	O. banksii
C. bellicosus	Lolliguncula (spp.)	Pasiphaea (spp.)	S. oualaniensis	O. banksii
Cangrejos	B. panamense	Pasiphaea (spp.)	Pulpos	O. banksii
Estomatópodos	Mullidae (spp.)	Estomatópodos	D. gigas	S. oualaniensis
Pulpos	Pulpos	Estomatópodos	Pulpos	S. oualaniensis
Dosidicus gigas	Sepia	Estomatópodos	G. panamensis	S. ovale
S. oualaniensis	Lolliguncula (spp.)	Estomatópodos	B. clarkae	S. ovale
O. banskii	Citharichtys (spp.)	Estomatópodos	L. prorates	S. ovale
Lolliguncula (spp.)	S. latifrons	Estomatópodos	Sphyraena ensis	S. japonicus
Hydrozoos	A. dendritica	Estomatópodos	S. ovale	Citharichthys (spp.)
P. glauca	Citharichthys (spp.)	Sepia	B. clarkae	D. labarum
T. semifasciata	S. latifrons	Sepia	L. prorates	S. latifrons
T. albacares	S. ovale	Sepia	L. prorates	A. dendritica
C. reticulatus	P. guttulatus	Sepia	P. mimeticus	P. analis
T. lepturus	P. woolmani	Sepia	P. analis	P. mimeticus
A. retrosella Citharichthys (spp.) Sebastes cortezi	A. dendritica	Sepia		
G. panamensis				
Brotula clarkae				
L. prorates				
P. mimeticus				
P. analis				

Equivalentes ecológicos

Tabla 10. Equivalentes ecológicos. Especies dentro del Golfo de California para las que no se encontró la dieta (especie) y sus equivalentes ecológicos (especie sustituta); el taxón que comparte con la/s especie/s que se eligieron para construir su dieta (taxón común: fam.= familia y gen.= género); la talla máxima y profundidad máximas de las especies y la zona más cercana donde se distribuye la especie sustituta (C= centro, S= sur; E= este; W= oeste)

Especie	Taxón	Talla	Prof.	Especie	Talla	Prof.	Zona
	comun	max.	max.	SUSTITUTA	max.	max.	Índian Esta
Apogon retrosella	ram.	10	60	rueppellii	12	10	Indico Este
Atractoscion nobilis	gen.	166	125	A. aequidens	130	200	Pacífico CW
Auxis thazard thazard	gen.	65	200	A. rochei	50	200	G. California
Cheilopogon californicus	gen.	48	10	C. xenopterus	22	5	Pacífico CE
Cynoscion reticulatus	gen.	90	107	C. guatucupa	50	194	Atlántico SW
Gillichthys mirabilis	fam.	21	5	Gobiidae (spp.)			
Gobionellus microdon	gen.	15.6	5	G. belosoma	6.2	5	Golfo México
Gymnothorax panamensis	gen.	75	20	G. ocellatus	90	160	Golfo México
	gen.			G. ecuatorialis	75	125	G. California
	gen.			G. moringa	200	200	Golfo México
	gen.			G. vicinus	122	145	Golfo México
Gymnura marmorata	gen.	125	94	G. micrura	120	55	Atlántico C
	gen.			G. australis	73	50	Pacífico SW
Haemulon maculicauda	gen.	30	51	H. carbonarium	36	25	Golfo México
Haemulopsis nitidus	gen.	30	50	Haemulopsis (spp.)			
Harengula thrissina	gen.	18.4	50	H. jaguana	21.2	22	Golfo México
Hydrobates microsoma	gen.	20	1	H. markhami	16	1	Pacífico CW
Mycteroperca jordani	gen.	198	50	M. bonaci	150	75	Golfo México
Orthopristis reddingi	fam.	30	120	Haemulon plumieri	53	40	Golfo México
Paralichthys aestuarius	fam.	58.3	44	Pleuronichthys californicus	152	183	G. California
Paralichthys woolmani	fam.	80	83	Pleuronichthys guttulatus	46	50	G. California
Platyrhinoidis triseriata	fam.	91	137	Platyrhina tangi	68	60	Pacífico W

Polydactylus	gen.	36	60	P. sexfilis	61	50	Pacífico CW	
approximans								
Porichthys analis	gen.	28.2	224	P. notatus	38	366	G. California	
Pronotogrammus multifasciatus	gen.	26	300	P. martinicensis	20	230	Golfo México	
Synodus lucioceps	gen.	64	229	S.saurus	40	400	Mediterráneo	
Zanclus cornutus	gen.	30	182	Z. canescens	23	152	G. California	

ANEXO II. LISTA DE ESPECIES Y REFERENCIAS DE DIETAS Y ATRIBUTOS

 Tabla 11. Lista de especies o componentes de la red trófica del Golfo de California y los códigos que las representan.

NODO	Nombre	Dieta	Atrib	NODO	Nombre	Dieta	Atrib
Praderas n	narinas			Carangid	ae		
SEAG	Praderas (general)		336	ALECI	Alectis ciliaris	198	30, 357-361
Ruppi	Ruppia maritima		337,338	CAROT	Carangoides otrynter	198	30, 357-361
AVICE	Avicennia germinans		337,338,342	CHORQ	Chloroscombrus orqueta	198	30, 357-361
MANGL	Rhizophora mangle		337, 338, 342	EBI	Elagatis bipinnulata	199	354,358-365
PHMLL	Phyllospadix torreyi		338, 339, 341	olial	Oligoplites altus	200	30, 357-361
SALIC	Salicornia		338	OLRE	Oligoplites refulgens	197, 201	30, 357
ZOSTE	Zostera		337, 338, 339, 340, 341	SEBRE	Selar crumenophthalmus	198	30, 357-361
Macroalga	S				Selene brevoortii	198, 202	30,357-361,366
ALGAE	Macroalgas (general)		344	SEPER	Selene peruviana	198, 203, 204	30, 357-361
CALCA	Calcareous algae		343	SERLA	Seriola lalandi	114, 205	30,357-361, 367,368
CHLOR	Chlorophyta		343	TRASY	Trachurus symmetricus	206, 207	30, 358-361
CLAPH	Cladophora		343,354	Centropo	midae		
ENTER	Enteromorpha		343,354	CENIG	Centropomus nigrescens	208, 209	30, 357- 261 260 270
MACPI	Sargassum sinicola		343	Chaetodo	ontidae		301,309,370
PHAEO	Phaeophyceae		343	FOFLA	Forcipiger flavissimus	185	30, 357-361,370
Rhodo	Rhodophyta		343	JON	Johnrandallia nigrirostris	185	30, 357- 361 369 370
SARGA	Sargassum			Clupeidae	e		001,000,010
ULVAL	Ulvales		343	SASA	Harengula thrissina	210, 211	30, 357- 361 370 371
Fitoplancto	on				Lile stolifera	204, 212, 213	30, 357- 361,369,370
Phyto	Firoplancton (general)		345	Hart	Opisthonema libertate	214, 215	30, 357- 361,366,369,37
CIANO	Cianobacterias		346,347	LISTO	Sardinops sagax	216, 217, 218	30, 354, 358- 361
Diat1	Bidulphia		345,347,348	Coryphae	enidae		501
DIAT2	Chaetoceros		345,347	CORHY	Coryphaena hyppurus	203, 219, 220	30, 357-361
DIAT3	Cocinodiscus		345,347	Diodontic	lae		
DIAT4	Ditylum		345,347	DHOL	Diodon holocanthus	185, 221, 222	30,357-361, 369.370
DIAT5	Melosira		345,347,349	DHY	Diodon hystrix	185, 221, 222	30, 357-361, 369 370
DIAT6	Navicula		345,347,349, 350	Elopidae			500,010
Diat7	Rhizosolenia		345,347	ELAF	Elops affinis	208, 223	30,357-361,370
DIAT8	Skeletonema		345,347	Embiotoc	idae		

Diato	Diatomeas		347,351	ZARO	Zalembius rosaceus	224, 225	354, 358-361, 370 373
DINO1	Ceratium		346,347,350, 352	Engraulio	lae		570-575
DINO2	Triposolenia		342,347,353	ENMOR	Anchoa helleri	226, 227, 228, 229	30,357- 361,367,370,37
DINO3	Peridinium		347,355	CEMYS	Cetengraulis mysticetus	212, 214, 230	1 30,357- 261 267 270
DNOF	Dinofalgelados		346,347,350, 356	ANCHE	Engraulis mordax	214, 231	301,307,370
Zooplanc	ton		550				
ZOOPL	Zooplancton (general)	1,2,3,4,5,6	374	CHAZO	Chaetodipterus zonatus	185	30,357-361,
ACAN1	Acanthochiasma	7,5,8	375	Epinephe	lidae		307,370
ACAN2	Acantholithium	7,5,8	375	EPIAC	Epinephelus acanthistius	185, 232	30, 357-361,376
ACAN3	Acanthometra	7,5,8	375	EPLA	Epinephelus labriformis	185	30, 357-361,
ACAN4	Astrolithium	7,5,8	375	eppa	Epinephelus panamensis	185	30, 358-361,376
ACAN5	Gigartacon	7,5,8	375	Myjo	Mycteroperca jordani	197, 232, 233, 234, 235, 236, 237	30, 357-361, 368,370,371,37 6
ACAN6	Phylostaurus	7,5,8	375	MYRO	Mycteroperca rosacea	185, 238	30,357-361,
amphi	Amphipoda	9,10,	377,378	MYXE	Mycteroperca xenarcha	185	30,357-361, 370,376
CLADO	Cladocera	13	379	PACOL	Paranthias colonus	185	30,357- 361,368,370,37
COPEP	Copepoda	7,13 14,15	377,380	Epineph	elidae		0
CTENO	Ctenophora	16,17	377	Exocoeti	dae		
EUPHA	Euphausiacea	18,19	374,381	CHECA	Cheilopogon californicus	239	30,354,358-361,
Foram	Foraminifera	5	382	EXOMO	Exocoetus monocirrhus	239	354,358-361,
HYDRO	Hydrozoa	16	377,383	Fistularii	dae		570
ISOPO	Isopoda	20	378	FICOM	Fistularia commersonii	197, 185	30, 357-361, 366 360 370
OSTRA	Ostracoda	21	384,385	Gerreida	e		500,505,570
PROTO	Protozoo	5,7,8	386	Diapa	Diapterus aureolus	198	30, 357-361, 369 370
RAD11	Sphaerozoum	4,22,23,24	353	DIAPE	Diapterus peruvianus	198, 204	30,357-361,370
RAD12	Tetraplagia	4,22,23,24	386-389	EUCEN	Eucinostomus currani	240, 241	30, 357-361, 369.370
Radio	Thalassoxantium	4, 22,23,24	386-389	EUCUR	Eucinostomus dowi	204, 241	30, 357-361,370
RAD14	Triplagiacantha	4,22,23,24	386-389	EUDO	Eucinostomus entomelas	241	30, 357-361,370
radio	Radiolaria	4,22,23,24	386-389	EUGRA	Eucinostomus gracilis	198, 241	30, 357-361, 369.370
ROTE	Rotifera	2,7	367	GECIN	Gerres cinereus	154, 204	30, 357-361,369
SCYPH	Scyphozoa	16,25	354,367	Gobieso	cidae		
MACROIN	NVERTEBRADOS				Tomicodon boehlkei		30,357-361,366, 369,370.372
ASCI	Tunicata/Ascidians	4,13,26	390	TOZE	Tomicodon zebra	185, 242	30, 357-361,370
BNAL	Bivalve	27,28,29	367,391,392	Gobiidae			

BRYOZ	Bryozoa	30	393,394	GMI	Gillichthys mirabilis	191, 243, 244	30,354,358-361
CHAET	Chaetognata	31,32	367,395,396	GOMIC	Gobionellus microdon	245, 246	30, 357-361,370
CHITO	Chiton	33,34	367,392	Haemulid	ae		
CIRRI	Cirripeda	35,36,37	367,392	ANIN	Anisotremus interruptus	185, 247	30,357-361, 366,370
GASTR	Gastropoda	5,38,39,40	392,396,397	anita	Anisotremus taeniatus	185	30,357-361, 369,370
MEIO	Meiobentos	28,41	398	COSER	Conodon serrifer	248, 249	30, 357-361,370
oligo	Oligochaeta	42	399	HAEAX	Haemulon flaviguttatum	197, 203, 250	30, 357-361,370
POLYC	Polychaeta	43,44	367,400	HAEFL	Haemulon maculicauda	197, 251, 252	30,357-361, 260,270
Porif	Porifera	45	401	HAELE	Haemulon sexfasciatum	203, 204, 253, 254	30, 357-361,37
PTERO	Pteropoda	46, 47	375,402	HAEMA	Haemulon steindachneri	197, 222, 250, 255	30,357-361, 369.370
STOMA	Stomatopoda	28,48,49	403-405	HAENI	Haemulopsis axillaris	197, 203, 250	30, 357-361,37
WORM	Gusanos	5	367	HASEX	Haemulopsis leuciscus	185	30,357-361, 369,370
Echinode	ermata				Haemulopsis nitidus	250, 251	30,357-361, 369,370
ophi	Ophiuroidea	50	354,359,403, 406-408	ORCHA	Orthopristis chalceus	130, 203, 241	30,357-361, 369, 370
SEACU	Holothuroidea	16, 25		ORED	Orthopristis reddingi	197, 241, 250	30,357- 361,369,372
SEAST	Asteroidea	40,51,52, 53	359,397,403, 407-410	XECA	Xenistius californiensis	250	30, 357-361,37
SEAUR	Euechinoidea	54,55,56, 57	354,357,403, 408	Holocenti	ridae		
Camaron	es			MMLE	Myripristis leiognathos	185, 256	30,357-361, 370.410
Facad	Farfantepenaeus californiensis	28,49,58,59	359,397,403, 411-413	SARGO	Sargocentron (spp.)	257, 258	30, 357-361,37
LITOA	Litopenaeus stylirostris	28,49,58,61, 61	412,414	Kyphosid	dae		
PASIP	Pasiphaea (spp.)	62,63	354,359,403, 415-417	GISIM	Girella simplicidens	185	357,359-361
SERGE	Sergestes (spp.)	64,65,66	354,359,403, 415-417	Kypan	Kyphosus analogus	185, 259	30, 357-361,37
SERPH	Sergia phorca	64,65,66	354,359,403, 415,416	KYPEL	Kyphosus elegans	185	30, 357-361,37
SICYO	Sicyonia (spp.)	28,49,67	359,397,411, 412,418,419	Labridae			
Cangrejo	s/Jaibas		,,		Halichoeres dispilus	260, 261	30,354,357-361 366 370
Plepl	Pleuroncodes planipes	5,41, 68	359,417,420, 423-425	HALSE	Halichoeres semicinctus	262, 263, 264, 265, 266	30,357-361, 371, 372,423
CALAR	Callinectes arcuatus	69,70	354,359,367, 424	Lutjanida	e		
Calbe	Callinectes belliculosus	70	424-427	HOGUN	Hoplopagrus guntherii	185, 192 198,	30, 357-361
CRABS	Benthic crabs	5,28, 49,71	359-361,367	LUTAR	Lutjanus argentiventris	185, 246, 267	30,357-361, 366, 368
Panin	Panulirus inflatus	72,73	359-361,367, 397	LUTCO	Lutjanus colorado	185, 198	30, 357-361
Portu	Portunus (spp.)	28,49,70,74, 75,76	359,361,428	lutgu	Lutjanus guttatus	185, 198, 203, 268	30, 357-361
Cephalop	ooda	-, -			Lutjanus jordani	41, 198, 204, 243, 260	30, 357-361
DOGIG	Dosidicus gigas	77,78,79	359-361,367,	LUTNO	Lutjanus novemfasciatus	209 185	30, 357-361,36
юш	Lolliguncula (spp.)	80	359-361, 436-438	LUTPE	Lutjanus peru	269, 270	30,354, 357-36
octo	Pulpo	28,41,49,81, 82	367,439	Malacanti	hidae		

ONBAN	Unychoteuthis banksii	83,84	359-361,397, 440-442	Capri	Caulolatilus affinis	2/1	30, 357-361,370
SEPIA	Sepia	10,85	30,443	Cauaf	Caulolatilus princeps	272	30, 357-361,370
STHEO	Sthenoteuthis oualaniensis	86	359-361,367, 397,434,435, 441	Merlucci	idae		
Reptilia					Merluccius productus	273	30, 357-361,370
CHEMY	Chelonia mydas	3, 87	359-361, 367 444 445	Mugilida	e		
Pepla	Pelamis platura	88,89	30,359-361, 446	MUCE	Mugil cephalus	204, 223 274,	30, 354, 358 361,369,447
Aves mar	rinas						,,
hyca	Hydroprogne caspia	90,91,92	359-361, 448 449	MULLI	Mullidae (spp.)	185, 205, 204, 275	30,357- 361 369 370
LARA	Larus atricilla	93,94	359-361,	Muraenio	lae	215	301,303,370
LARDE	Larus delawarensis	95,96	440,449 359-361, 448,449	GYMPA	Gymnomuraena zebra	276, 277, 278	358-361,451
OCMIC	Oceanodroma	97	359-361, 448 450	GYZE	Gymnothorax panamensis	279	358-361,369- 371
Panha	Pandion haliaetus	98	359-361,448	Myctoph	idae		U 11
PELOC	Pelecanus	99,100	359-36, 448 450	BENPA	Benthosema panamense	280	354,357-361, 453 454
Phala	Phalacrocorax auritus	101,102	359-361, 448 450 452	HYGOP	Hygophum (spp.)	281, 282, 283	30,357- 361 453 454
Rynig	Rynchops niger	103, 104 105	359-361, 448 450	TRIME	Triphoturus mexicanus	280, 284, 285, 286	354,357- 361 453 454
STERA	Sternula antillarum	99, 106,107, 108,109,110	359-361,448	Nematist	liidae	200	JU1,-100,-10-1
SULEU	Sula leucogaster	111,112	359-361, 448,455,456	NEPEC	Nematistius pectoralis	253, 254	30,357-361,370
MAMÍFEF	ROS		,,				
ZACAL	Zalophus californianus	113,114	30,357,359- 361 367 397	BROCL	Brotula clarkae	287	357-361,457
Cetáceos	misticetos		001,001,001		Lepophidium prorates	203, 288	30,357-361,370
BALED	Balaenoptera edeni	115,116,117	354,357,367, 458-460	Paralicht	thydae		
BAMUS	Balaenoptera musculus	115,116,118	354,357,367, 458-460	ANDEN	Citharichthys (spp.)	198, 289	30,357- 361 369 370
BAPHY	Balaenoptera	115,116,117, 118,119	354,357,367, 458-460	CITHA	Etropus crossotus	290, 291	461,462
ESROB	Eschrichtius robustus	115	30,357,359- 361.397	ETCRO	Paralichthys aestuarius	291, 292, 293	30, 358-361,46
Cetáceos	odontocetos		20.,001		Paralichthys woolmani	198	30,357- 361,369.370
DELCA	Delphinus capensis	116,120, 121	30,357,359- 361,367	PAES	Syacium latifrons	294, 295	30,358- 361,371,372,46
GLOMA	Globicephala	115	30,357, 359- 361 367 307	PAWO	Ancylopssetta dendritica	265, 296	3 30,357-361, 463.464
GRAGR	Grampus griseus	115	30,357, 359- 361 367 397	SYALA	Hippoglossina tetrophthalma	198, 221	30,354,357,359 361,370
ORCOR	Orcinus orca	115,123	30,357, 359- 361 367 397	SYOV	Syacium ovale	297	30,357-361,370
PHOSI	Phocaena sinus	124,125	30,357, 359- 361 367 397	Phosicht	hyidae		
PHYMA	Physeter macrocephalus	115,118,126, 127	30,357, 359- 361,397,433,	VINLU	Vinciguerria lucetia	242, 284	357-361,466
STELO	Stenella longirostris	115	465 30,357,359- 261,267,207	Pleurone	ectidae		
TUTRU	Tursiops truncatus	115,128	30,357,359- 361,267,207	PLEGU	Pleuronichthys guttulatus	296	357-361,
	Zinhiyo ooyirootrio	115	301,301,391	Dehmen	:dee		310,312

CONDRIC	TIOS				Polydactylus approximans	198,203,298	30, 357-361,370
Rayas (Ba	toideos)						
PSEPR	Pseudobatos	129,130,	30,358-361,	HOLPA	Holacanthus passer	185, 299	30, 357-361,370
AENAR	Aetobatis narinari	133	30,358-361	POZON	Pomacanthus zonipectus	185, 299	30,357-361, 369 370
DASDI	Dasyatis dipterura	132,134,135	30,358-361	Pomacer	tridae		009,570
DIPOM	Diplobatis ommata	136	30,357-361	ABTRO	Abudefduf troschelii	185	30,357-361, 366.369.370
GYMAR	Gymnura marmorata	132	30,357- 361,372	STERE	Stegastes rectifraenum	185, 300	30,357-361, 370,372
MABIR	Manta birostris	137,138,139	30,358-361, 372	Scaridae			
MMLCA	Myliobatis californica	129	30,358-361, 367	SCACO	Scarus compressus	301, 302	30,354,358-361
NAREN	Narcine entemedor	132,136,140	30,357-361, 372	SCAPE	Scarus perrico	185	30,354,358-361
PLATR	Platyrhinoidis triseriata	141,142	30,357-361, 371,372	SCARU	Scarus rubroviolaceus	301, 302	30,354,357-361, 371
PSEGL	Pseudobatos glaucostigma	135,136	30,358-361	Sciaenida	ae		
PSELE	Pseudobatos leucorhynchus	143	30,358-361	ATNOB	Atractoscion nobilis	303, 304	30,357-361,370- 372,467
rajin	Raja inornata	144	354,358-361, 370,371,373, 468	CYNOR	Cynoscion Othonopterus	221, 305	30,357-361,370
RHIST	Rhinoptera steindachneri	135, 145	30,357-361, 372	CYNOT	Cynoscion parvipinnis	306, 307	30,357-361,370- 372
URAS	Urotrygon aspidura	135	30,357	CYNPA	Cynoscion xanthulus	130, 160, 308	30,357-361, 370.371
urha	Urulophus Halleri	136,146	30	CYNXA	Cynoscion reticulatus	208	30,357-361,370
URORO	Urotrygon rogersi	135,136	30,358-361	LAPAC	Larimus pacificus	198, 204	30,357- 359,361,369,37 0,469
ZAPEX	Zapteryx exasperata	147	30,358-361	MENAS	Menticirrhus nasus	241, 254	30,357-361,370
Tiburones	5				Menticirrhus panamensis	241	30,357-361, 369,370
ALOSU	Alopias superciliosus	148	30,357-361	MIMEG	Micropogonias megalops	240, 306	30,357-361, 370,372
alovu	Alopias vulpinus	149,150	30,357-361, 371	TOTOA	Totoaba macdonaldi (adult)	124	30,357-361,370- 372
CACA	Carcharodon carcharias	151,152,153	30,357-361, 367,470,471	UMBRI	Umbrina (spp.)	30, 309, 310	472
CARFA	Carcharhinus falciformis	154, 155	30,357-361, 367,471,472	Scombrid	lae		
CARLE	Carcharhinus leucas	154	30,357-361, 367,471,472	autha	Auxis thazard thazard	311, 312	30, 358-361
CARLI	Carcharhinus limbatus	154	30,357-361, 367,471,472	SCOJA	Scomber Japonicus	254, 313, 314,	30,354,358-361
CAROB	Carcharhinus obscurus	156,157	30,357-361, 367,471,472	SCOSI	Scomberomorus sierra	198, 268 300	30, 357-361
GALCU	Galeocerdo cuvier	133,158	30,357-361	Thuna	Thunnus albacares	315, 316	30, 357-361,474
	cirratum	100	30,357-361, 367	Scorpaer	iluae	405	00.057.004
HEHRA	Heterodontus francisci	159,160	30,357-361, 367	SCOMY	Scorpaena mystes	185	30,357-361, 369,370
ISURO	Isurus oxyrinchus	161,162	30,357-361, 367,473	SCOSO	Scorpaena sonorae	222	30,357-361,370- 372
MUCAL	Mustelus californicus	129	30, 357-361, 371	SCOXY	Scorpaenodes xyris	185, 317	30,357-361, 369,370
MUHEN	Mustelus henlei	129	30,357-361, 371	Sebastid	ae		
MULUN	Mustelus lunulatus	163	30, 357-361, 473	SECOR	Sebastes cortezi	318	30,357-361, 370- 372,475.476

NOCE performance p	NEBRE	Negaprion brevirostris	133, 154	30,357-361	Serranida	e		
PARKA Parmaturus 167,168 30,377 OFA Diplechum labanum 203,320 30,377 361,373 FRG Prionace glauca 169,170 337,371,47 357,371,47 367,371,47 374,371,47 374,371,47 374,371,47 374,371,47 374,371,47 374,371,376 374,371,376 374,371,376 374,371,376 374,371,376 374,371,376 374,371,376 374,377,376 374,377,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 374,376 3743	NOCEP	Notorynchus	164,165,166	30,358-361, 367 371	DLAB	Diplectrum eumelum	202, 319	30,357-361, 370 376
FRG Priorace glauca 169,170 50,357,361, 37,377,473 DFB Diplectrum pacificum 168, 203, 232, 30, 373,376 30,357,361, 370,376 RHD Rhizoprionodon 171, 172 30,357,361, 30,357,361, 361,371,376 PAUA Paralabrax 200, 254 370,376 RHT Rhirocodon typus 173,174 30,357,361, 303,57,361, 361,367 PAUA Paralabrax 221 370,376, 370,376 SHM Sphyma tewini 154,175,176 30,357, 361,367 RFCM Prionogrammus 114,322,323 370,376, 370,376 SHM Sphyma tewini 154,175,177 30,357,361, 361,373 SPS Semanus psittacinus 185 370,376 SSUCA Squatina californica 179,180 30,357,361, 371 SPH Sphyme numbris blacinus 185, 192, 198 30,357,361, 399,376 FREE Triakis semilesciata 129,181,182 30,357,361, 371 Sphyme numbris secisus 249,324 30,357,361,370 FREE Triakis semilesciata 185,186,187 30,357,361,473 Sphyme num onsigens 325,326,327 30,357,361,370 RHPD<	Parxa	Parmaturus xaniurus	167,168	30,357-361, 371	dipa	Diplectrum labarum	203, 320	30,357-361, 369,370,376
RHLO longunio longunio Rhitsprionodon iongunio 171, 172 30, 357. 361, 371, 372 PAWA 361, 371, 372 Paralabrax auroguttatus 200, 254 30, 357, 361, 370, 372, 376, 370, 372, 376, 370, 377, 376, 370	Prig	Prionace glauca	169,170	30,357-361, 367,371,473	DIPEU	Diplectrum pacificum	198, 203, 232, 319	30,357-361, 370,376
RHT Rhincodon typus 173,174 30,357-361, 367, 367, 367, 361,367, 361,367, 361,367, 361,367, 361,367, 361,367, 361,367, 361,367, 361,367,361, 370,376,371, 380,357,361, 380,357,361, 386,370,377, 380,357,361, 39	rhlo	Rhizoprionodon Iongurio	171, 172	30,357- 361 371 372	Pama	Paralabrax auroguttatus	200, 254	30,357-361, 370 372 376
SHM Sphyma lewini 154, 175, 176 30, 357, 361, 361, 367, 361, 367, 361, 367, 361, 367, 361, 366, 370, 376, 376, 376, 376, 376, 370, 376, 370, 376, 376, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 370, 376, 376, 376, 376, 376, 376, 376, 376	rhity	Rhincodon typus	173,174	30,357-361, 367	Paur	Paralabrax maculatofasciatus	321	30,357-361, 370,371,376
Sphyrn Sphyrna ibiuro 154 30,357-361, 367 RMB Rypticus bicolor 266 30,357-361, 30,357-361, 30,357-361, 30,357-361, 30,357-361, 30,357-361, 370,376 SBLCA Squatina californica 179,180 30,357-361, 473 Sphyraenidae Sparidae SBLCA Squatina californica 179,180 30,357-361, 371 Sphyraenidae Sparidae Sphyraenidae 30,357-361, 366,370 Sphyraenidae 30,357-361, 366,370 Sphyraenidae 30,357-361, 366,370 Sphyraenidae 30,357-361, 366,370 Sphyraenidae Sphyraenidae 30,357-361, 366,370 30,357-361, 366,370 Sphyraenidae Sphyraenidae Sphyraenidae 30,357-361, 366,370 30,357-361, 366,370 Sphyraenidae 30,357-361, 366,370 Sphyraenidae Sphyraenidae 30,357-361, 366,370 30,357-361, 366,370 30,357-361, 366,370 Sphyraenidae 30,357-361, 366,370 30,357-361, 366,370 Sphyraenidae 30,357-361,	SPHYL	Sphyrna lewini	154,175, 176	30,357- 361.367	PROMU	Pronotogrammus multifasciatus	114, 322, 323	30,357-361, 370.376
SPHZ Sphyma zygaena 156,177,178 30,357-361, 473 Serranus psitacinus 185 30,357-361, 370,376 SQUCA Squatina califomica 179,180 30,357- 361,473 Spariae Spariae 30,357-361, 370,376 TRRE Triakis semifasciata 129,181,182 30,357-361, 30,357-361, 371 Spariae CABRA Calamus brachysomus 185, 192, 198 30,357-361, 369,376 FFRE Prionurus punctatus 183,184,185 30,357-361, 366,369,370 Syrgatite Spariae Spariae 30,357-361, 366,370 30,357-361, 366,370 Spariae Sparia <thsparia< th=""> Spariae<td>SPHYT</td><td>Sphyrna tiburo</td><td>154</td><td>30,357-361, 367</td><td>RYBI</td><td>Rypticus bicolor</td><td>256</td><td>30,357-361,366 370,376,477</td></thsparia<>	SPHYT	Sphyrna tiburo	154	30,357-361, 367	RYBI	Rypticus bicolor	256	30,357-361,366 370,376,477
SQLCA Squatina californica 179, 180 30, 357- 361, 473 Sparidae TRRE Triakis semifasciata 129, 181, 182 371 CABRA Calamus brachysomus 185, 192, 198 30, 357-361, 369, 376 FECES Acanthuridae Sphyraenidae Sphyraenidae 268 30, 357-361, 366, 369, 370 Apogonidae Prionurus punctatus 183, 184, 185 30, 357-361, 366, 369, 370 Spryraenidae 249, 324 30, 357-361, 366, 370 APORE Apogon retrosella 185, 196, 187 30, 357-361, 366, 369, 370 MPN Hippocampus ingens 325, 326, 327 30, 357-361, 366, 370 Atherinops idae 185, 192, 191 354, 358- 31, 370, 372 Srubu Synodus lucioceps 203, 221, 257, 30, 358-361, 478 30, 357-361, 480 Balistidae 185, 192 30, 357- 361, 366, 369, 370 Srubu Synodus lucioceps 203, 221, 257, 30, 358-361, 478 30, 357- 480 BAIPO Balistes polylepis 185, 192, 30, 357- 361, 366, 369, 370 Sphoeroides annulatus 185, 300, 357-361, 366, 370 SUMER Suffarmen verres 185, 30, 357-361, 481 Trichurus lepturus	SPHYZ	Sphyrna zygaena	156,177,178	30,357-361, 473	SEPSI	Serranus psittacinus	185	30,357-361, 370.376
Trakis semifasciata 129,181,182 30,357-361, 371 CABRA Sphyraenida Calamus brachysomus 185,192,198 30,357-361, 369,376 PECES Sphyraenida Sphyraenida Sphyraenida Sphyraenida 30,357-361, 369,376 30,357-361, 369,376 30,357-361, 369,376 30,357-361, 366,369,370 30,357-361, 366,369,370 30,357-361, 366,369,370 30,357-361, 366,370 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,370 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,478 480 30,357-361,370 30,357-361,370 30,357-361,370 30,357-361,370 30,357	Squca	Squatina californica	179, 180	30,357- 361.473	Sparidae			
PECES Sphyraenidae	TRISE	Triakis semifasciata	129,181,182	30,357-361, 371	CABRA	Calamus brachysomus	185, 192, 198	30,357-361, 369,376
Acanthurida Sphyraena ensis 268 30,357-361,370 PRPU Prionurus punctatus 183,184,185 30,357-361, 366,369,370 Sprgenitize Doryrhamphus excisus 249, 324 30,357-361, 366,370 30,357-361, 366,370 APOR Apogon retrosella 185,186,187 30,357-361, 366,369,370 HPN Hippocampus ingens 253,26,327 30,357-361, 366,370 Atherinops affinis 188,189, 190, 191 354,358- 361,360,369, 370 SfLU Synodus lucioceps 203, 221, 257, 328, 329 30,358-361,478 Balistidae Balistes polylepis 185,192 30,357- 361,366,369, 370 SfLU Synodus lucioceps 203, 237, 237, 480 480 BALPO Balistes polylepis 185,192 30,357- 361,366,369, 370 Tetradontidae 185, 300, 357-361,370 480 BALPO Balistes polylepis 185,192 30,357-361,370 Tetradontidae 185, 300, 30,377-361,370 30,357-361,370 BATR Leuroglossus stillbius 193 357-361,481 Trichuridae 30,357-361,370 361,482,483 PORAN Porichthys analis 194 30	PECES				Sphyraeni	idae		, -
PRPU Prionurus punctatus 183,184,185 30,357-361, 366,369,370 Sprgatitize Apogonida Apogon retrosella 185,186,187 30,357-361, 366,369,370 Doryrhamphus excisus 249, 324 30,357-361, 366,370 APOR Apogon retrosella 185,186,187 30,357-361, 366,369,370 HPN Hippocampus ingens 325, 326, 327 30,357-361, 366,370 Atherinopsida 185,188,189, 190, 191 361,367,372 SMU Synodus lucioceps 203, 221, 257, 30,358-361,478 30,357-361, 366,370 Balistidae 190, 191 361,366,369,370 SMU Synodus lucioceps 203, 221, 257, 30,358-361,478 30,357-361, 480 BALPO Balistes polylepis 185,192 30,357- 361,366,369,370 Tetradontidae 30,357-361, 369,370 SUMR Sufflamen verres 185 30,357-361,481 Trichurus leptunus 185, 330 30,357-361, 369,370 LELST Leuroglossus stilbius 193 357-361,366 Triglidae Trichurus leptunus 203, 331, 332 30,357-361, 369,370 PORM Porichthys analis 194 30,354, 358- 361, 370,484,485 <	Acanthuri	dae				Sphyraena ensis	268	30,357-361,370
Apogonidae Doryrhamphus excisus 249, 324 30,357-361, 366,370 366,370 APORE Apogon retrosella 185,186,187 30,357-361, 366,370 366,370 366,370 366,370 Atherinopsidae Image: Second	Pripu	Prionurus punctatus	183,184,185	30,357-361, 366,369.370	Syngnathidae	•		
APORE Apogon retrosella 185,186,187 30,357-361, 366,369,370 HPN Hippocampus ingens 325, 326, 327 30,357-361, 366,370 Atherinopsidae Atherinops affinis 188,189, 190, 191 354,358- 361,370,372 SMU Synodus lucioceps 203, 221, 257, 328, 329 30,358-361,478 Balistidae 303,357- 361,366,369, 370 185,192 30,357- 361,366,369, 370 Tetradontidae 185 30,357-361, 369,370 480 SMER Sufflamen verres 185 30,357- 361,366,369, 370 Tetradontidae 185 30,357-361, 369,370 Bathylagidae 185 30,357- 361,366,369, 370 Trichurus lepturus 185, 330 30,357-361, 369,370 Batrachoididae 193 357-361,481 Trichurus lepturus 203, 331, 332 30,358- 361,482,483 PORM Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae 333 30,357-361, 369,370 Belonidae 195 30,354,358- 361,370 Triglidae 333, 334 30,357-361, 369,370 STREX Strongylura exilis 196 358-361,370 FRST <t< td=""><td>Apogonid</td><td>ae</td><td></td><td>,,. <i>.</i></td><td></td><td>Doryrhamphus excisus</td><td>249, 324</td><td>30,357-361, 366,370</td></t<>	Apogonid	ae		,,. <i>.</i>		Doryrhamphus excisus	249, 324	30,357-361, 366,370
Atherinopsidae Atherinops affinis 188,189, 190, 191 354,358, 361,370,372 SYLU Synodus lucioceps Synodus scituliceps 203, 221, 257, 328, 329 30,358-361,478 Balistidae 190, 191 361,370,372 SYLU Synodus lucioceps 203 203 203, 328-381,478 BALPO Balistes polylepis 185,192 30,357- 361,366,369, 370 Tetradontidae Tetradontidae 30,357- 369,370 30,357- 361,369,370 30,357- 361,481 30,357- 361,481 30,357- 361,482 30,357- 361,482 30,358- 361,482,483 30,357- 361,482,483 30,357- 361,369,370 333,334	APORE	Apogon retrosella	185,186,187	30,357-361, 366,369,370	HPN	Hippocampus ingens	325, 326, 327	30,357-361, 366,370
ATAF Atherinops affinis 188, 189, 190, 191 354, 358- 361, 370, 372 SYLU Synodus lucioceps 203, 221, 257, 30, 358-361, 478 480 30, 357-361, 366, 369, 370 30, 358-361, 478 480 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 358-361, 370 Strongylura exilis 194 30, 354, 358-361, 370 Strongylura exilis 196 358-361, 370 Strongylura exilis 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370 30, 357-361, 369, 370	Atherinop	sidae						
Balistidae Synodus scituliceps 203 30,358-361,478 480 BALPO Balistes polylepis 185,192 30,357- 361,366,369, 370 Tetradontidae 480 SUMER Sufflamen verres 185 30,357- 361,366,369, 370 Tetradontidae 185 30,357-361,366 369,370 Bathylagidae 185 30,357-361,481 CAPUN Canthigaster punctatissima 369,370 185, 330 30,357-361,366 369,370 LEUST Leuroglossus stilbius 193 357-361,481 Trichiuridae 185, 330 30,358- 361,482,483 PORAN Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae 17iglidae 30,357-361, 369,370 Belonidae 195 30,354, 358- 361, 370,485 BELGY Bellator gymnostethus 333 30,357-361, 369,370 Belonidae 196 358-361, 370 PRST Prionotus albirostris 333, 334 30,357-361, 370 STREX Strongylura exilis 196 358-361, 370 ZACOR Zancluas comutus 185 30,357-361, 369-371	ataf	Atherinops affinis	188,189, 190, 191	354,358- 361,370.372	SYLU	Synodus lucioceps	203, 221, 257, 328, 329	30,358-361,478 480
BALPO Balistes polylepis 185,192 30,357- 361,366,369, 370 Tetradontidae SUMER Sufflamen verres 185 30,357- 361,369,370 CAPUN Canthigaster punctatissima 185 30,357- 369,370 Bathylagidae	Balistidae		,	,		Synodus scituliceps	203	30,358-361,478 480
SUMER Sufflamen verres 185 30,357- 361,369,370 CAPUN Canthigaster punctatissima 185 30,357- 369,370 Bathylagidae Leuroglossus stilbius 193 357-361,481 Trichiuridae 185, 330 30,357- 369,370 Batrachoididae 193 357-361,481 Trichiuridae 203, 331, 332 30,358- 361,482,483 PORM Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae Triglidae Triglidae PORM Porichthys mimeticus 195 30,354, 358- 361, 370,484,485 BellGY Bellator gymnostethus 333 30,357-361, 370 PORM Porichthys mimeticus 195 358-361, 370 PRST Prionotus albirostris 333, 334 30,357-361, 370 Belonidae 196 358-361, 370 PRST Prionotus stephanophrys 333, 335 30,357-361, 370 STREX Strongylura exilis 196 358-361, 370 ZACOR Zanclus cornutus 185 30,357-361, 369-371	Balpo	Balistes polylepis	185,192	30,357- 361,366,369, 370	Tetradont	idae		
Bathylagidae Sphoeroides annulatus 185, 330 30,357-361, 369,370 LELST Leuroglossus stilbius 193 357-361,481 Trichiuridae 203, 331, 332 30,358-361,482,483 Batrachoididae Trichurus lepturus 203, 331, 332 30,358-361,482,483 30,354, 358-361,370,484,485 Triglidae Strongylura exilis 194 30,354, 358-361,370,484,485 Bellori 333 30,357-361,369,370 PORMI Porichthys mimeticus 195 30,354,358-361,370,865 BellogY Bellator gymnostethus 333 30,357-361,369,370 Belonidae Triglidae Prionotus albirostris 333, 334 30,357-361,370 STREX Strongylura exilis 196 358-361,370 PRST Prionotus stephanophrys 333, 335 30,357-361,370 TYCRO Tylosurus crocodilus 186, 197 358-361,370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371	SUMER	Sufflamen verres	185	30,357- 361,369,370	CAPUN	Canthigaster punctatissima	185	30,357-361,366 369.370
LEUST Leuroglossus stilbius 193 357-361,481 Trichiuridae Batrachoididae Trichurus lepturus 203, 331, 332 30,358- 361,482,483 PORAN Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae PORMI Porichthys mimeticus 195 30,354,358- 361,370,485,485 Triglidae Belonidae Trichurus lepturus 333 30,357-361, 369,370 STREX Strongylura exilis 196 358-361,370 PRST Prionotus albirostris 333, 334 30,357-361,370 TYCRO Tylosurus crocodilus 186, 197 358-361,370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371	Bathylagio	dae				Sphoeroides annulatus	185, 330	30,357-361, 369,370
Batrachoididae Trichurus lepturus 203, 331, 332 30,358- 361, 361, 482,483 PORAN Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae Triglidae 333 30,357-361, 369,370 PORM Porichthys mimeticus 195 30,354,358- 361, 370,485 BellGY Bellator gymnostethus 333 30,357-361, 369,370 Belonidae Trichurus lepturus 333, 334 30,357-361, 369,370 PRST Prionotus albirostris 333, 334 30,357-361, 370 STREX Strongylura exilis 196 358-361, 370 PRST Prionotus stephanophrys 333, 335 30,357-361, 370 YCRO Tylosurus crocodilus 186, 197 358-361, 370 Zacci Zacci Zanclidae Zacci Strong yuna stephanophrys 30,357-361, 369, 370	LEUST	Leuroglossus stilbius	193	357-361,481	Trichiurid	ae		
PORAN Porichthys analis 194 30,354, 358- 361, 370,484,485 Triglidae PORM Porichthys mimeticus 195 30,354, 358- 361, 370,485 BELGY Bellator gymnostethus 333 30,357-361, 369,370 Belonidae Prionotus albirostris 333, 334 30,357-361,370 STREX Strongylura exilis 196 358-361,370 PRST Prionotus albirostris 333, 335 30,357-361,370 TYCRO Tylosurus crocodilus 186, 197 358-361, 370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371	Batrachoi	didae				Trichurus lepturus	203, 331, 332	30,358- 361,482,483
PORM Porichthys mimeticus 195 30,354,358- 361,370,485 BELGY Bellator gymnostethus 333 30,357-361, 369,370 Belonidae 310 354,358- 361,370,485 BELGY Bellator gymnostethus 333 30,357-361, 369,370 STREX Strongylura exilis 196 358-361, 370 PRST Prionotus stephanophrys 333, 335 30, 357-361,370 TYCRO Tylosurus crocodilus 186, 197 358-361, 370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371 <td>Poran</td> <td>Porichthys analis</td> <td>194</td> <td>30,354, 358- 361,</td> <td>Triglidae</td> <td></td> <td></td> <td></td>	Poran	Porichthys analis	194	30,354, 358- 361,	Triglidae			
Belonidae 209,370 209,371 209,370 209,370 209,370 209,370 209,371	PORMI	Porichthys mimeticus	195	370,484,485 30,354,358- 361,370,495	BELGY	Bellator gymnostethus	333	30,357-361,
STREX Strongylura exilis 196 358-361, 370 PRST Prionotus stephanophrys 333, 335 30, 357-361, 370 TYCRO Tylosurus crocodilus 186, 197 358-361, 370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371	Belonidae			JU, J/U,485		Prionotus albirostris	333, 334	309,370 30, 357-361,370
TYCRO Tylosurus crocodilus 186, 197 358-361, 370 Zanclidae ZACOR Zanclus cornutus 185 30,357-361, 369-371	STREX	Strongylura exilis	196	358-361, 370	PRIST	Prionotus stephanophrys	333, 335	30, 357-361,370
ZACOR Zanclus comutus 185 30,357-361, 369-371	TYCRO	Tylosurus crocodilus	186, 197	358-361, 370	Zanclidae			
					ZACOR	Zanclus cornutus	185	30,357-361, 369-371

Referencias de las dietas

- 1. Zeldis, J. 2001. Mesozooplankton community composition, feeding, and export production during SOIREE. *Deep-Seaa Research* II., 48: 2615-2634.
- 2. Calbet, A. 2008. The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science., 65(3): 325-331.
- 3. Polovina, J.J. 1984. Model of a Coral Reef Ecosystem. I. The ECOPATH Model and Its Application to French Frigate Shoals. *Coral Reefs.*, 3:1-11.
- 4. Gowing, M.M. 1989. Abundance and feeding ecology of Antartic phaeodarian radiolarians. *Marine Biology*, 103: 107-118.
- 5. Lipps J. H., & J. W. Valentine, 1970. The role of Foraminifera in the trophic structure of marine communities. *Lethaia*, 3: 279-286.
- 6. Mallin, M.A. & H.W. Paerl. 1994. Planktonic trophic transfer in an estuary: Seasonal, Diel, and Community structure effects. *Ecology*, 75: 2168-2184.
- 7. Han, B.P., T. Wang, L. Xu, Q.Q. Lin, Z. Jinyu & H.J. Dumont. 2011. Carnivorous planktonic *Difflugia* (Protista, *Amoebina Testacea*) and their predators. *European Journal of Protistology*, 47: 214-223.
- Mitra, A., K.J. Flynn, U. Tillmann, J.A. Raven, D. Caron, D.K. Stoecker, F. Not, P.J. Hansen, G. Hallegraeff, R. Sanders, S. Wilken, G. McManus, M. Johnson, P. Pitta, S. Váge, T. Berge, A. Calbet, F. Thingstad, H.J. Jeong, J. Burkholder, P.M. Gilbert, E. Granéli, & V. Lundgren. 2016. Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. *Protist*, 167: 106-120.
- Alarcon-Ortega L.C., J.M. Guerra-García, J.E. Sánchez-Moyano & F.G. Cupul-Magaña. 2012. Feeding habits of caprellids (Crustacea: Amphipoda) from the west coast of Mexico. Do they feed on their hosting bustrates? Alimentación de los caprélidos (Crustacea: Amphypoda) de la costa oeste de Méjico ¿Se alimentan de los sustratos en los que viven? *Zool. baetica*, 23: 11-20.
- 10. Guerra-García J.M. & J.M. Tierno de Figueroa. 2009. What do caprellids (Crustacea: Amphipoda) feed on? *Mar Biol*, 156: 1881-1890.
- 11. Machado G., S. Gomes Leite Siqueira & F.P. Pereira Leite. 2017. Abundance, performance, and feeding preference of herbivorous amphipods with a host alga-epiphyte system. *Journal of Experimental Marine Biology and Ecology*, 486: 328:335.
- 12. Navarro-Barranco C., J.M. Tierno-de-Figueroa, J.M. Guerra-García, L. Sánchez-Tocino & J.C. García-Gómez. 2013. Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: Comparison between marine caves and open habitats. *Journal of Sea Research*, 78: 1-7.
- 13. Sommer, U. & H. Stibor. 2002. Copepoda-Cladocera-Tunicata: The role of three major mesozooplankton groups in pelagic food webs. Ecological Research, 17: 161-174.
- Jagadeesan I, R. Jyothibabu, N. Arunpandi & S. Parthasarathi. 2017. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons. *Environ Monit Assess*, 189 (105): 1-21.
- 15. Wu Ch.H, J.S Hwang & J.S. Yang. 2004. Diets of Three Copepods (Poecilostomatoida) in the Southern Taiwan Strait. *Zoological Studies*, 43 (2): 388-392.
- 16. Mills, C.E. 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J. mar. Sci., 52: 575-581.
- 17. Reeve, M.R. & M.A. Warter. 1978. Nutritional ecology of Ctenophores-A review of recent research. Adv. Mar. Biol., 15: 249-287.
- 18. Simmard Y., G. Lacroix & L. Legendre. 1986. Diel vertical migrations and nocturnal feeding of a dense coastal krill scattering layer (*Thysanoessa raschi* and *Meganyctiphanes norvegica*) in stratified surface waters. *Marine Biology*, 91: 93-105.
- 19. Dilling L., J. Wilson, D. Steinberg & A. Alldredge. 1998. Feeding by the euphasiid *Euphausia pacifica* and the copepod *Calanus pacificus* on marine snow. *Mar. Ecol. Prog. Ser.*, 170: 189-201.
- 20. Paz-García D.A., A. Aldana-Moreno, R.A. Cabral-Tena & E.F. Balart. 2012. High predation by the corallivove sea snail *Jenneria pustulata* in a high-latitude reef in the Gulf of California. *Marine Biodiversity Records*, 5: 1-2.
- 21. Lancaster, J. & A.L. Robertson. 1995. Microcrustacean prey and macroinvertebrate predators in a stream food web. *Freshwater Biology*, 34: 123-134.
- 22. Matsuoka, A. 2007. Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss j. geosci., 100: 273-279.
- 23. Lazarus, D. 2005. A brief review of radiolarian research. Paläontologische Zeitschrift., 79(1): 183-200.
- 24. Suamberg, N.R. & O. R. Anderson. 1985. The nutrition of radiolarians: Thophic activity of some solitary Spumellaria. *Limnol. Oceanogr.*, 30(3): 646-652.
- 25. Larson R.J. 1991. Diet, Prey Selection and Daiily Ration of *Stomolophus meleagris*, a Filter-feeding Scyphomedusa from the NE Gulf of Mexico. *Estuarine, Coastal and Shel Science*, 32: 511-525.
- 26. Holland, L.Z. 2016. Primer Tunicates. Current Biology, 26: R141-R156.
- 27. Lora-Vilchis M.C. & N. Doktor. 2001. Evaluation of Seven Algal Diets for Spat of the Pacific Scallop *Argopecten ventricosus*. Journal of the world aquaculture society, 32 (2): 228-235.
- 28. Lozano H. 2006. Historical ecosystem modelling of the upper Gulf of California (Mexico): Following 50 years of change. Thesis of Philosophy Doctor, Faculty of Zoology, University of British Columbia, 276 pp.
- 29. Dahthoff E.P. & B.A. Menge. 1996. Influence of phytoplankton concentration and wave exposure on the ecophysiology of *Mytilus californianus. Mar. Ecol. Prog. Ser.*, 144: 97-107.
- 30. Global Invasive Species Database (2017). Disponible en: http://www.invasivespecies.net/ (Acceso: 1st October 2017)
- 31. Tönnesson K. & P. Tiselius. 2005. Diet of the chaetognaths Sagitta setosa and S. elegans in relation to prey abundance and vertical distribution. Mar Ecol Prog Ser, 289: 177–190.

- 32. Pearre S.Jr. 1981. Feeding by Chaetognatha: Energy Balance and Importance of Various Components of the Diet of Sagitta elegans. Mar. Ecol. Prog. Ser., 5: 45-5.
- 33. Kangas M. & S.A. Shepherd. 1984. Distribution and feeding of chitons in a boulder habitat at West Island, South Australia, *Journal of the Malacological Society of Australia*, 6:101-111.
- 34. Snails Odissey (2017). Chiton. Disponible en: http://www.asnailsodyssey.com/LEARNABOUT/CHITON/chitDiet.php (Acceso: 1st October 2017)
- 35. Barnes H. 1959. Canadian Journal of Zoology, 37: 231-236.
- Bieri R. 1966. Feeding preferences and rates of the snail, *lanthina prolongata*, the barnacle, *Lepas anserifera*, the nudibranchs, *Glaucus atlanticus* and *Fiona pinnata*, and the food Web in the marine neuston. *Publ. Seto Mar. Biol. Lab.*, XIV (2): 161-170.
- 37. Newman W.A. & Abbott D.P. 1980. Cirripedia: The Barnacles. 504-535.
- 38. Siqueiros Beltrones D.A & G. Valenzuela Romero. 2004. Benthic Diatom Assemblages in an Abalone (*Haliotis spp.*) Habitat in the Baja California Peninsula. *Pacific Science*, 58 (3): 435-446.
- 39. Guzman del Proo S.A, E. Serviere-Zaragoza & D. Siqueiros-Beltrones. 2003. Natural Diet of Juvenile Abalone *Haliotis fulgens* and *H. corrugate* (Mollusca: Gastropoda) in Bahia Tortugas, Mexico. *Pacific Science*, 57 (3): 319-324.
- 40. Paine R.T. 1966. Food web complexity and species diversity. The American Naturalist, 100 (910): 65-75.
- 41. Arreguín-Sánchez F, E. Arcos & Chávez E.A. 2002. Flows of biomass and structure in an exploited benthic ecosystem in the gulf of California, Mexico. Ecological Modelling, 156: 167-183.
- 42. Barnes & Barnes. 1982. Oceanography&Marine Biology. 456 p.
- 43. Checon H.H., E.V. Pardo & A.C. Zacagnini Amaral. 2016. Breadth and composition of polychaete diets and the importance of diatoms to species and trophic guilds. *Helgol. Mar. Res.*, 70:19.
- 44. Fauchald K. & P.A. Jumars. 1979. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev., 17: 193-284.
- 45. Vacelet, J. & E. Duport. 2004. Prey capture and digestion in the carnivorous sponge *Asbestopluma hypogea* (Porifera: Demospongiae). Zoomorphology, 123: 179-190.
- 46. Gilmer R.W. 1974. Some aspects of feeding in the cosomatous pteropod molluscs. J. exp. Mar. Biol. Ecol., 15: 127-144.
- 47. Lalli C.M. & R.W. Gilmer, 1989. Pelagic snail: The biology of holoplanktonic gastropod mollusks. Stanford Univ. Press, Stanford, California, 259 p.
- 48. Mili S., N. Bouriga, R. Ennouri, O. Jarboui & H. Missaour. 2013. Food and biochemical composition of the spot-tail mantis shrimp *Squilla mantis* caught in three Tunisian Gulfs: Tunis, Hammamet and Gabes. *Cah. Biol. Mar.* 54: 271-280.
- Lercari Bernier D. 2006. Manejo de los recursos del ecosistema del norte del Golfo de Califoria: Integrando explotación y conservación. Tesis de Doctorado. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz, B.C.S. México. 198 p.
- 50. Yokoyama L.Q. & A.C.Z. Amaral. 2008. The diet of *Ophionereis reticulata* (Echinodermata: Ophiuroidea) in southeastern Brazil. *Revista Brasileira de Zoologia* 25 (3): 576-578.
- 51. Luna Salguero B.M. & H. Reyes Bonilla. 2010. Estructura comunitaria y trófica de las estrellas de mar (Echinodermata: Asteroidea) en arrecifes rocosos de Loreto, Golfo de California, México. Community and trophic structure of sea stars (Echinodermata: Asteroidea) in rocky reefs of Loreto, Gulf of California, Mexico. *Hidrobiológica*, 20 (2): 127-134.
- 52. Mauzey K.P, C. Birkeland & P.K. Dayton. 1968. Feeding Behavior of Asteroids and Escape Responses of their Prey in the Puget Sound Region. *Ecology*, 49 (4): 603-619.
- 53. Feder H.M. 1959. The Food of the Starfish, Pisaster Ochraceus Along the California Coast. Ecology, 40 (4): 721-724.
- Prince J.S. & W.G. LeBlance. 1992. Comparative feeding preference of Strongylocentrotus droebachiensis (Echinoidea) for the invasive seaweed Codium fragile ssp. Tomentosoides (Chlorophyceae) and four other seaweeds. Marine Biology, 113: 159-163.
- 55. Scheibling R.E. & S.X. Anthony. 2001. Feeding, growth and reproduction of sea urchins (*Strongylocentrotus droebachiensis*) on single and mixed diets of kelp (*Laminaria* spp.) and the invasive alga *Codium fragile* ssp. *tomentosoides*. *Marine Biology*, 139: 139-146.
- 56. Hollertz K. 2002. Feeding biology and carbon budget of the sediment-burrowing heart urchin *Brissopsis lyrifera* (Echinoidea: Spatangoida). *Marine Biology*, 140: 959-969.
- 57. James D.W. 2000. Diet, movement, and covering behavior of the sea urchin *Toxopneustes roseus* in rhodolith bebs in the Gulf of California, México. *Marine Biology*, 137: 913:923.
- 58. Navia A.F., V.H. Cruz-Escalona, A. Giraldo & A. Barausse. 2016. Th estructure of a marine tropical food web, and its implications for ecosystem-based fisheries management. *Ecological Modelling*, 328: 23-33.
- 59. Albertoni E.F., C. Palma-Silva & F. de A. Esteves. 2003. Natural Diet of Three Species of Shrimp in a Tropical Coastal Lagoon. *Brazilian archives of Biology and Technology*, 43 (3): 395-403.
- 60. Martínez-Córdova L.R., A. Campaña Torres & M.A. Porchas-Cornejo. 2003. Dietary protein level and natural food management in the culture of blue (*Litopenaeus vannamei*) in microcosms. *Aquaculture Nutrition*, 9: 155-160.
- Martínez-Córdova L.R. & E. Peña-Messina. 2005. Biotic communities and feeding habits of *Litopenaeus vannamei* (Boone 1931) and *Litopenaeus stylirostris* (Stimpson 1974) in monoculture and polyculture semi-intensive ponds. *Aquaculture Research*, 36: 1075-1084.
- 62. Cartes J.E. 1993. Feeding habits of pasiphaeid shrimps close to the bottom on the Western Mediterranean slope. *Marine Biology*, 117: 459-468.
- 63. Omori M. 1976. The glass Shrimp, *Pasiphaea japonica* sp. Nov. (Caridea, Pasiphaeidae), a Sibling Species of *Pasiphaea sivado*, with Notes on its Biology and Fishery in Toyama Bay, Japan. *Bull. Natn. Sci. Mus. Ser. A (Zool.)*, 2 (4): 249-266.

- 64. Foxton P. & H.S.J. Roe. 1974. Observations on the Nocturnal Feeding of Some Mesopelagic Decapod Crustacea. *Marine Biology*, 28: 37-49.
- 65. Donaldson H.A. 1975. Vertical Distribution and Feeding of Sergestid Shrimps (Decapoda: Natantia) Collected near Bermuda. *Marine Biology*, 31: 37-50.
- 66. Omori M. 1974. The biology of pelagic shrimps in the ocean. Adv. Mar. Biol. 12: 233-324.
- 67. Cobb S.P., C.R. Futch & D.K. Camp. 1973. The rock shrimp, *Sicyonia Brevirostris* Stimpson, 1871 (Decapoda, Penaeidae). Published by Florida Department of Natural Resources Marine Research Laboratory. St. Petersburgo. Florida. 1-38 p.
- Longhurst A.R., C.J. Lorenzen & W.H. Thomas. 1967. The Role of Pelagic Crags in the Grazing of Phytoplankton Off Baja California. *Ecology*, 48 (2): 190-200.
- 69. Paul R.K.G. 1981. Natural Diet, Feeding and Predatory Activity of the Crabs *Callinectes arcuatus* and *C. toxotes* (Decapoda, Brachyura, Portunidae). *Mar. Ecol. Prog. Ser.*, 6: 91-99.
- Rodríguez-Rojero A. 2004. Hábitos alimenticios de las jaibas Callinectes bellicosus Stimpson y C. arcuatus ORDWAY (Brachyura: Portunidae) en Bahía Magdalena, Baja California Sur, México. Tesis de Maestría. Centro Interdisciplinario de Ciencias MARINAS- Instituto Politécnico Nacional. La Paz, B.C.S., México. 114 p.
- 71. Stevens G.B., D.A. Armstrong & R. Cusimano. 1982. Feeding Habits of the Dungeness Crab *Cancer magister* as Determined by the Index of Relative Importance. *Marine Biology*, 72: 135-145.
- 72. Brione-Fourzán P. 2014. Differences in life-history and ecological traits between co-occurring *Panulirus spiny* lobsters (Decapoda, Palinuridae). *ZooKeys*, 457: 289-311.
- 73. Lozano-Alvarez E. & G. Aramoni-Serrano. 1997. Alimentación y estado nutricional de las langostas *Panulirus inflatus* y *Panulirus gracilis* (Decapoda: Palinuridae) en Guerrero, México. *Rev. Biol. Trop.*, 44 (3): 453-461.
- 74. Williams M.J. 1982. Natural food and feeding in the commercial sand Crab *Portunus Pelagicus* Linnaeus, 1766. (Crustacea: Decapoda: Portunidae) In Moreton Bay, Queensland. *J. Exp. Mar. Biol. Ecol.*, 59: 165-176.
- 75. Edgar G.J. 1990. Predator-prey interactions in seagrass beds. II. Distribution and diet of the blue manna crab *Portunus pelagicus* Linnaeus at Cliff Head, Western Australia. *J. Exp. Biol. Ecol.*, 139: 23-32.
- 76. Josileen J. 2011. Food and feeding of the blue swimmer Crab, *Portunus pelagicus* (Linnaeus, 1758) (Decapoda, Brachyura) along the coast of Mandapam, Tamil Nadu, India. *Crustaceana*, 84 (10): 1169-1180.
- 77. Rosas-Luis R. 2007. Descripción de la alimentación del calamar gigante *Dosidicus gigas* D'Orbigny, 1835 en la costa occidental de la Península de Baja California. Tesis de Maestría. Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz. B.C.S., México. 84 p.
- Rosas-Luis R., R. Tafur-Jimenez, A.R. Alegre-Norza, P.R. Castillo-Valderrama, R.M. Cornejo-Urbina, C.A. Salinas-Zavala & P. Sánchez. 2011. Trophic relationships between the jumbo squid (*Dosidicus gigas*) and the lightfish (*Vinciguerria lucetia*) in the Humboldt Current System off Peru. *Scientia Marina*, 75 (3): 549-557.
- Markaida-Aburto Dona Unai. 2001. Biología del calamar gigante *Dosidicus gigas* Orbigny, 1935 (Cephalopoda: Ommastrephidae) en el Golfo de California, México. Tesis de Doctorado. Centro de Investigación Científica y de Educación superior de Ensenada. 387 p.
- 80. Pierce G.J., P.R. Boyle, L.C. Hastie & M.B. Santos. 1994. Diets of squid *Loligo forbesi* and *Loligo vulgaris* in the northeast Atlantic. *Fisheries Research* 21: 149-163.
- Armendaráriz Villegas E.J., B.P. Ceballos-Vázquez, U. Markaida, A. Abitia-Cárdenas, M.A. Medina-López & M. Arellano-Martínez. 2014. Diet of *Octupus bimaculatus* Verril, 1883 (Cephalopoda: Octopodidae) in Bahía De Los Ángeles, Gulf of California. *Journal of Shellfish Research*, 33 (1): 305-314.
- Rosa R., A.M. Marques, M.L. Nunes, N. Bandarra & C.S. Reis. 2004. Spatial-temporal changes in dimethyl acetal (octadecanal) levels of *Octopus vulgaris* (Mollusca: Cephalopoda): relation to feeding ecology*. *Scientia Marina*, 68 (2): 227-236.
- 83. Santos R.A. & M. Haimovici. 1997. Food and feeding of the short-finned squid *Illex argentines* (Cephalopoda: Ommastrephidae) off southern Brazil. *Fisheries Research*, 33: 139-147.
- 84. Arkhipkin A.I. & C.M. Nigmatullin. 1997. Ecology of the oceanic squid *Onychoteuthis banksi* and the relationship between the genera Onychoteuthis and Chaunoteuthis (Cephalopoda: Onychoteuthidae). *J. mar. biol. Ass. U.K*, 77: 839-869.
- 85. Neves A., V. Sequeira, A.R. Vieira, R. Paiva & L. Serrano-Gordo. 2009. Feeding habits of the cuttlefish Sepia officinalis during its life cycle in the Sado estuary (Portugal). *Hidrobiologia*, 636: 479-488.
- 86. Shchetinnikov A.S. 1992. Feeding spectrum of squid *Sthenoteuthis oualaniensis* (Oegopsida) in the Eastern Pacific. *J. mar. biol. Ass. U.K.*, 72: 849-860.
- 87. Carrión-Cortez J.A., P. Zárate & J.A. Seminoff. 2010. Feeding ecology of the green sea turtle (*Chelonia midas*) in the Galapagos Islands. *Journal of the Marine Biological Association of the United Kingdom*, 90 (5): 1005-1013.
- 88. Glodek G.S. & H.K. Voris. 1982. Marine Snake Diets: Prey Composition, Diversity and Overlap. Copeia, 3: 661-666.
- 89. Voris H.K. & H.H. Voris. 1983. Feeding Strategies in Marine Snakes: An Analysis of Evolutionary, Morphological, Behavioral and Ecological Relationships. *Amer. Zool.*, 23: 411-425.
- 90. Fasola M., G. Bogliani, N. Saino & L. Canova. 1989. Foraging, feeding and time-activity niches of eight species of breeding seabirds in the coastal wetlands of the Adriatic Sea. *Bolletino di zoologia*, 56 (1): 61-72.
- 91. AUDUBON (2017). Guide to North American Birds. Disponible en: <u>http://www.audubon.org/es/guia-de-aves/ave/charran-del-</u> caspio (Acceso: 1st October 2017)
- Bird web (2017). Seattle Audubon Society. Disponible en: <u>http://www.birdweb.org/BIRDWEB/bird/caspian_tern</u> (Acceso: 1st October 2017)
- 93. Knoff A.J., S.A. Macko & R.M. Erwing. 2001. Diets of Nesting Laughing Gulls (*Larus atricilla*) at the Virginia Coast Reserve: Observations from Stable Isotope Analysis. *Isotope in Environmental and Health Studies*, 37: 67-88.

- 94. Knoff A.J., S.A. Macko, R.M. Erwin & K.M. Brown. 2002. Stable Isotope Analysis of Temporal Variation in the Diets of Pre-Fledged Laughing Gulls. *Waterbirbs*, 25 (2): 142-148.
- 95. Kirkham I.R. & R.D. Morris. 1979. Feeding ecology of ring-billed gull (*Larus delawarensis*) chicks. Can. J. Zool. 57: 1086-1090.
- 96. Pierotti R. & C.A. Annett. 1990. Diet and Reproductive Output in Seabirds. BioScience, 40 (8): 568-574.
- 97. Bedolla-Guzmán Y., J.F. Masello, A. Aguirre-Muñoz, B.E. Lavaniegos & P. Quillfeldt. 2017. Breeding Biology, chick growth,
- and diet of the Least Storm-Petrel Oceanodroma microsoma on Islas San Benito, Mexico. Marine Ornithology, 45: 129-138.
 98. Cartron J-L.E. & M.C. Molles. 2002. Osprey diet along the Eastern side of the Gulf of California, Mexico. Western North American Naturalist, 62 (2): 249-252.
- 99. Velarde E., E. Ezcurra & D.W. Anderson. 2013. Seabird diets provide early warning of sardine fishery declines in the Gulf of California. *Scientific Reports*, 3: 1332.
- Jiménez-Castro C.M. 1988. Hábitos alimenticios, requerimiento energético y consume alimenticio del pelicano café en La Bahía de La Paz, B.C.S., México. Tesis de licenciatura. Universidad Autónoma de Baja California Sur. La Paz. B.C.S., México. 62 p.
- 101. Ainley D.G., D.W. Anderson & P.R. Kelly. 1981. Feeding Ecology of Marine Cormorants in Southwestern North America. *The Condor*, 83 (2): 120-131.
- Johnson J.H. R.M. Ross & D.R. Smith. 1997. Evidence of Secondary Consumption of Invertebrate Prey by Double-Crested Cormorants. *Colonial Waterbirbs*, 20 (3): 547-551.
- Favero M., R. Mariano-Jelicich, M.P. Silva, M.S. Bó & C. García-Mata. 2001. Food and Feeding Biology of the Black Skimmer in Argentia: Evidence Supporting Offshore Feeding in Nonbreeding Areas. *The International Journal of Waterbird Biology*, 24 (3): 413-418.
- 104. Mariano-Jelicich R., M. Favero & M.P. Silva. 2003. Fish Prey of the Black Skimmer Rynchops niger at Mar Chiquita, Buenos Aires Privince, Argentina. Marine Ornithology, 31: 199-202.
- 105. AUDUBON (2017). Disponible en: http://www.audubon.org/field-guide/bird/black-skimmer (Acceso: 1st October 2017).
- Catry T., J.A. Ramos, V.H. Paiva, J. Martins, A. Almeida, J. Palma, P.J. Andrade, F. Peste, S. TRIGO & A. LUÍS. 2006. Intercolony and annual differences in the diet and feeding ecology of Little tern adults and chicks in Portugal. *The Condor*, 108 (2): 366-376.
- 107. Mauco L., M. Favero & M.S. Bó. 2001. Food and Feeding Biology of the Common Tern during the Nonbreeding Season in Samborombon Bay, Buenos Aires, Argentina. *The International Journal of Waterbird Biology*, 24 (1): 89-96.
- Atwood J.L. & P.R. Kelly. 1984. Fish Dropped on Breeding Colonies as Indicators of Least Tern Food Habits. Wilson Bull., 96 (1): 34-47.
- 109. AUDUBON. 2017. Disponible en: http://www.audubon.org/es (Acceso: 1st October 2017).
- 110. BIRDS (2017). Disponible en: http://www.birds.cornell.edu/Page.aspx?pid=1478 (Acceso: 1st October 2017).
- Mellink E., J. Domínguez & J. Luévano. 2000. Diet of eastern pacific brown boobies sula *Leucogaster brewsteri* on Isla San Jorge, north-eastern Gulf of California, and an April comparison with diets in the middle Gulf of California. *Marine Ornithology*, 29: 23-28.
- 112. Guevara-Medina M.A., J.A. Castillo-Guerrero & M.A. González-Bernal. 2008. Presencia y abundancia de aves de la isla Farallón de San Ignacio, Sinaloa. *Huitzil*, 9 (2): 20-28.
- 113. García-Rodríguez F.J. & D. Aurioles-Gamboa. 2004. Spatial and temporal variation in the diet of the California sea lion (*Zalophus californianus*) in the Gulf of California, Mexico. *Fish. Bull.* 102: 47-62.
- Anderson Jr. W.D. & P.C. Heemstra. 2012. Review of Atlantic and Eastern Pacific Anthiine Fishes (Teleostei: Perciformes: Serranidae), with Descriptions of Two New Genera. *Transactions of the American Philosophical Society*, New Seris, 102 (2): 1-167.
- 115. Pauly D., A.W. Trites, E. Capuli & V. Christensen. 1998. Diet composition and trophic levels of marine mammals. *ICES Journal of Marine Science*, 55: 467-481.
- 116. Tershy B.R. 1992. Body Size, Diet, Habitat Use, and Social Behavior of Balaenoptera Whales in the Gulf of California. Journal of Mammalogy, 73 (3): 477-486.
- 117. Tershy B.R., A. Acevedo-G., D. Breese & C.S. Strong. 1993. Diet and feeding behavior of fin and bride's Whales in the Central Gulf of California, Mexico. Rev. Inv. Cient., 1: 31-38.
- 118. Christensen I., T. Haug & N. ØIEN. 1992. A review of feeding and reproduction in large baleen whales (Mysticeti) and Sperm whales *Physeter macrocephalus* in Norwegian and adjacent waters. *Fauna norv., Ser. A*, 13: 39-48.
- De Guevara P.L. B.E. Lavaniegos & G. Heckel. 2008. Fin whales (*Balaenoptera physalus*) foraging on daytime surface swarms of the Euphausiid *Nyctiphanes simplex* in Ballenas Channel, Gulf of California, Mexico. *Journal of Mammalogy*, 89 (3): 559-566.
- 120. Pusineri C. & V. Gagnin. 2007. Food and Feeding ecology of the common dolphin (*Delphinus delphis*) in the oceanic Northeast Atlantic and comparison with its diet in Neritic areas. *Marine Mammal Science*, 23 (1): 30-47.
- 121. Young D.D. & V.G. Cockcroft. 1994. Diet of common dolphins (*Delphinus delphis*) off the south-east coast of southern Africa: opportunism or specialization? *J. Zool. Long.* 234: 41-53.
- 122. López-Peralta & C.A.T. Arcila. 2002. Diet composition of Fish Species from the southern continental shelf of Colombia. Naga, WoldFish Center Quarterly, 25: 23-29.
- 123. SEAWORLD. 2017. DIsponible en: <u>https://seaworld.org/en/animal-info/animal-infobooks/killer-whale/diet-and-eating-habits</u> (Acceso: 1st October 2017).
- 124. Pérez-Cortés M.H., G.K Silber, B. Villa Ramírez. 1996. Contribución al conocimiento de la alimentación de la vaquita, *Phocoena sinus. Ciencias Pesqueras*, 13: 66-72.
- 125. Hohn A.A. & C. D'Agrosa. 1997. Vaquita conservation: Current Science and Management. IBI Reports, 7: 45-56.

- 126. Ruiz-Castro R. 2002. Relación trófica entre el cachalote (*Physeter macrocephalus*) y el calamar gigante (*Dosidicus gigas*) en el Golfo de California mediante el análisis de isótopos estables de carbono y nitrógeno. Tesis de Maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S. México. 48 p.
- 127. Jaquet N. & D. Gendron. 2002. Distribution and relative abundance of sperm whales in relation to key environmental features, squid landings and the distribution of other cetacean species in the Gulf of California, Mexico. *Marine Biology*, 141: 591-601.
- 128. Barros N.B. & R.S. Wells. 1998. Prey and Feeding Patterns of Resident Bottlenose Dolphins (*Tursiops truncates*) in Sarasota Bay, Florida. *Journal of Mammalogy*, 79 (3): 1045-1059.
- 129. Talent L.G. 1982. Food habits of the Gray Smoothound, *Mustelus californicus*, the brown smoothhound, *Mustelus henlei*, the shovelnose Guitarfish, *Rhinobatos productus*, and the bat Ray, *Rhinobatos californica*, in Elkhorn Slough, California. *Calif. Fish. And Game*, 68 (4): 224-234.
- Cruz-Escalona V.H. Interdependencia ecotrófica entre lagua de Alvarado, Veracruz y la plataforma continental adyacente.
 2005. Tesis doctoral. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz, B.C.S., México.
 134 p.
- Downton Hoffmann C.A. 2007. Biología del pez guitarra *Rhinobatos productos* (Ayres, 1856), en Baja California Sur, México. Tesis de doctorado. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz, B.C.S., México. 194 p.
- 132. Bizarro J.J. 2005. Fishery biology and feeding ecology of rays in Bahía Almejas, Mexico. Master of Science thesis. The faculty of San Francisco State University. 468 p.
- 133. Randall J. 1967. Food habit of reef fishes of the West Indies. Stud. Trop. Oceanogr. Miami, 5: 665-847.
- Restrepo-Gómez D.C. 2016. Aspectos tróficos de la raya lático Dasyatis dipterura en la Bahía de La Paz, BCS, México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 63 p.
- 135. Navarro-González J.A., J. Bohórquez-Herrera, A.F. Navia & V.H. Cruz-Escalona. 2012. Diet composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico. Composición trófica de batoideos en la plataforma continental frente a Nayarit y Sinaloa, México. *Ciencias Marinas*, 38 (2): 347-362.
- 136. Valadez-González C. 2007. Distribución, abundancia y alimentación de las rayas bentónicas de la costa de Jalisco y Colima, México. Tesis de doctorado. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. La Paz, B.C.S., México. 119 p.
- 137. Bennett M.B., FF. Coman, K.A. Townsend, L.I.E. Couturies, F.R.A. Jaine, A.J. Richardson. 2016. A historical and contemporary consideration of the diet of the reef manta ray (*Manta alfredi*) from the Great Barrier Reef, Australia. *Marine and Freshwater Research*, 68(5) 993-997.
- 138. Gadig O.B.F. & D.G. Neto. 2014. Notes on the feeding behaviour and swimming pattern of *Manta alfredi* (Chondrichthyes, Mobulidae) in the Red Sea. *Acta ethol*, 17: 119-122.
- 139. Graham R.T. J.W. Matthew, D.W. Castellanos, F. Remolina, S. Maxwell, B.J. Godley, L.A. Hawkes. 2012. Satellite tracking of Manta Rays Highlights challenges to their conservation. *PLoS One*. 2012; 7 (5): e36834.
- 140. Cabrera-Meléndez P. 2017. Hábitos alimentarios de *Narcine entemedor*, en la Bahía de La Paz, México. Tesis de Maestría. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. La Paz. B.C.S., México. 69.
- 141. Yamaguchi A., K. Furumitsu, S Tanaka, & G. Kume. 2012. Dietary habits of the fanray *Platyrhina tangi* (Batoidea: Platyrhinidae) in Ariake Bay, Japan. *Environ Biol Fish*, 95: 147-154.
- 142. Smithsonian Tropical Research Institute (2017). Disponible en: <u>http://biogeodb.stri.si.edu/sftep/en/thefishes/species/184</u> (Acceso: 1st October 2017).
- 143. Payán L.F., A.F. Navia, E.A. Rubio & P.A. Mejía-Falla. 2011. Biología de la raya guitarra *Rhinobatos leucorhynchus* (Günther, 1867) (Rajiformes: Rhinobatidae) en el Pacífico colombiano. *Lat. Am. J. Aquat. Res.*, 39 (2): 286-296.
- 144. Ebert D.A. & J.J. Bizzarro. 2007. Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). *Environ. Biol. Fish*, 80: 221-237.
- 145. Navarro-González J.A. 2011. Ecomorfología del aparato mandibular de peces Batoideos. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 128 p.
- 146. Babel J.S. 1967. Reproduction, Life History, and Ecology of the Round Stingray, *Urolophus halleri* Cooper. *Fish Bull. Calif. Dep.* Fish Game 137: 104 p.
- 147. Blanco-Parra M del P. 2009. Biología Pesquera de la Guitarra Pinta, *Zapteryx esasperata* (Jordan & Gilbert 1880), en la costa central de Sonora, México. Tesis de doctorado. Universidad Nacional Autónoma de México. México D.F. 89 p.
- 148. Polo-Silva C., A. Baigorrí-Santacruz, F. Galván-Magaña, M. Grijalba-Bendeck & A. Sanjuan-Muñoz. 2007. Hábitos alimentarios del tiburón zorro *Alopias superciliosus* (Lowe, 1839), en el Pacífico ecuatoriano. *Revista de Biología Marinas y Oceanografía*, 42 (1): 59-69.
- 149. Preti A., S.E. Smith & D.A. Ramon. 2001. Feeding habits of the common thresher shark (*Alopias vulpinus*) sampled from the California-Based drift gill net fishery, 1998-1999. *CalCOFI Rep.*, 42: 145-152.
- 150. Preti A., S.E. Smith & D.A. Ramon. 2004. Diet differences in the thresher shark (*Alopias vulpinus*) during transition from a warm-water regime to a cool-water regime off California-Oregon, 1998-2000. *CalCOFI Rep.*, 45: 118-125.
- 151. Jaime-Rivera M., J. Caraveo-Patiño, M. Hoyos-Padilla & F. Galván-Magaña. 2013. Feeding and migration habits of White shark *Carcharodon carcharias* (Lamniformes: Lamnidae) from Isla Guadalupe inferred by analysis of stable isotopes δ¹⁵N and δ¹³C.
- 152. Fischer W., F. Krupp, W. Schneider, C. Sommer, K.E. Carpenter & V.H. Niem. 1995. Guía FAO para la identificación de especies para los fines de la pesca. Vol 1. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma. 646 p.

- 153. Sanatana-Morales O., O. Sosa-Nishizaki, M.A. Escobedo-Olvera, E.C. Oñate-González, J.B. O'Sullivan & D. Cartamil. 2012. Incidental Catch and Ecological Observations of Juvenile White Sharks, *Carcharodon carcharias*, in Western Baja California, Mexico. Conservation Implications. 187-198. *In:* M. Domeier (eds). Global perspectives on the biology and life history of the white shark. 567 p.
- 154. Rezender E.L., E.M. Albert, M.A. Fortura & J. Bascompte. 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. *Ecology Letters*, 12: 779-788.
- 155. Cabrera-Chávez-Costa A.A., F. Galván-Magaña & O. Escobar-Sánchez. 2010. Food habits of the silky shark *Carcharhinus falciformis* (Müller & Henle, 1839) off the western coast of Baja California Sur, Mexico. J. Appl. Ichthyology, 26: 499-503.
- 156. Smale M.J. 1991. Occurrence and feeding of three shark species, *Carcharhinus brachyurus, C. obscurus* and *Sphyrna zygaena*, on the Eastern Cape coast of South Africa, *South African Journal of Marine Science*, 11 (1): 31-42.
- 157. Gelsleichter J., J.A. Musick & S. Nichols. 1999. Food habits of the smooth dogfish, *Mustelus canis*, dusky shark, *Carcharhinus obscurus*, Atlantic sharpnose shark, *Rhizoprionodon terranovae*, and the sand tiger, *Carcharias taurus*, from the northwest Atlantic Ocean. *Environmental Biology of Fishes*, 54: 205-217.
- 158. Simpfendorfer C.A., A.B. Goodreid, & R.B. McAuley. 2001. Size, sex and geographic variation in the diet of the tiger shark, *Galeocerdo cuvier*, from Western Australian waters. *Enviromental Biology of Fishes*, 61: 37-46.
- 159. Segura-Zarzosa J.C., L.A. Abitia-Cárdenas & F. Galván-Magaña. 1997. Observaciones sobre la alimentación del tiburón *Heterodontus francisci* Girald 1854 (Chondrichthyes: Heterodontidae), en Laguna San Ignacio, Baja California Sur, México. Observations on the feeding habits of the shark *Heterodontus francisi* Girald 1854 (Chondrichthyes: Heterodontidae), in San Ignacio Lagoon, Baja California Sur, México. *Ciencias Marinas*, 23 (1): 111-128.
- Cruz-Escalona V.H., L. Campos-Dávila, L.A. Abitia-Cárdenas & M.J. Zetina-Rejón. 2010. Repartición de recursos alimentarios entre la ictiofauna dominante de una lagura templada de Baja California Sur, México. CICIMAR Oceánides, 25 (1): 1-15.
- 161. Velasco-Talero P.A. 2005. Hábitos alimenticios e isótopos de ¹³C y ¹⁵N del tiburón mako *Isurus oxyrinchus* (RAFINESQUE, 1810) en la costa occidental de Baja California Sur. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 97 p.
- 162. Lions K., A. Preti, D.J. Madigan, R.J.D. Wells, M.E. Blasius, O.E. Snodgrass, D. Kacev, J.D. Harris, H. Dewar, S. Kohin, K. MacKenzie & C.G. Lowe. 2015. Insights into the life history and ecology of a large shortfin make shark *Isurus oxyrinchus* captured in southern California. *Journal of Fish Biology*, 87: 200-211.
- Moreno-Sánchez X.G., O. Escobar-Sánchez, L.A. Abitia-Cárdenas & V.H. Cruz-Escalona. 2012. Diet composition of the sicklefin smooth-hound shark *Mustelus lunulatus* caught off El Pardito Island, Baja California Sur, México. *Marine Biodiversity Records*, 5: e67.
- 164. Ebert, D. A. (1989). Life history of the sevengill shark, *Notorynchus cepedinaus* (Peron, 1807), in two northern California bays. *California Fish and Game* 75 (2): 102–12.
- 165. Ebert D.A. 2002. Ontogenetic changes in the diet of the sevengill shark (Notorynchus cepedianus). Mar. Freshwater Res., 53: 517-523.
- 166. Lucifora L.O., R.C. Menni & A.H. Escalante. 2005. Reproduction, abundance and feeding habits of the broadnose sevengill shark *Notorynchus cepedianus* in north Patagonia, Argentina. *Mar. Ecol. Prog. Ser.*, 289: 237-244.
- 167. Cortés E. 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56: 707-717.
- Ebert D. A., P. D. Cowley & L. J. V. Compagno. 1996. A preliminary investigation of the feeding ecology of catsharks (Scyliorhinidae) off the west coast of southern Africa, South African. *Journal of Marine Science*, 17 (1): 233-240.
- 169. Hernández-Aguilar S.B. 2008. Espectro trófico del tiburón azul *Prionace glauca* (Linnaeus, 1758) en la costa occidental de Baja California Sur, México. Tesis de Maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 79 p.
- 170. Hernández-Aguilar S.B., O. Escobar-Sánchez, F. Galván-Magaña & L.A. Abitia-Cárdenas. 2016. Trophic ecology of the blue shark (*Prionace glauca*) based on stable isotopes (δ¹³C and δ¹⁵N) and stomach content. *Journal of the Marine Biological Association of the* United Kingdom, 96 (7): 1403-1410.
- 171. Osuna-Peralta Y.R., D. Voltolina, R.E. Morán-Angulo & J.F. Márquez-Farías. 2014. Stomach contents of the Pacific sharpnose shark, *Rhizoprionodon longurio* (Carcharhiniformes, Carcharhinidae) in the southeastern Gulf of California. *Lat. Am. J. Aquat. Res.*, 42 (3): 438-444.
- 172. Conde-Moreno M. 2009. Ecología trófica del tiburón bironche, *Rhizoprionodon longurio* (Jordan y Gilbert, 1882), en dos áreas del pacífico mexicano. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 80 p.
- 173. Rohner C.A., L.I.E. Couturier, A.J. Richardson, S.J. Pierce, C.E. Prebble, M.J. Gibbons & P.D. Nichols. 2013. Diet of whale sharks *Rhincodon typus* inferred from stomach content and signature fatty acid analyses. *Mar. Ecol. Prog. Ser.*, 493: 219-235.
- 174. Hernández-Nava M.F. & S. Álvarez-Borrego. 2013. Zooplankton in a whale shark (*Rhincodon typus*) feeding area of Bahía de Los Ángeles (Gulf of California). Zooplancton en un área de alimentación del tiburón ballena (*Rhincodon typus*) en la Bahía de los Ángeles (Golfo de California). *Hidrobiología*, 23 (2): 198-208).
- 175. Aguilar-Castro N.A. 2003. Ecología trófica de juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) en el Golfo de California. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 113 p.
- Torres-Rojas Y.E., F. Páez-Osura, J. Camalich & F. Galván Magaña. 2014. Diet and trophic level of scalloped hammerhead shark (Sphyrna lewini) from the Gulf of California and Gulf of Tehuantepec, Mexico. Iranian Journal of Fisheries Sciencies, 14 (3): 767-785.
- 177. Loor-Andrade P.J. 2013. Ecología trófica de los tuburones martillo Sphyrna lewini y Sphyrna zygaena en el pacífico ecuatoriano, basada en isótopos estables. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 70 p.
- 178. Ochoa-Díaz R. 2009. Espectro trófico del tiburón martillo Sphyrna zygaena (Linnaeus, 1758) en Baja California Sur: Aplicación del δ¹³C Y δ¹⁵N. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 82 p.

- 179. Escobar-Sánchez O. 2004. Hábitos alimentarios del tiburón ángel Squatina califórnica (Ayres, 1859) en el suroeste del Golfo de California, México. Tesis de Maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz B.C.S., México. 99 p.
- Escobar-Sánchez O., L.A. Abitia-Cárdenas & F. Galván-Magaña. 2006. Food habits of the Pacific angel shark Squatina california in the southern Gulf of California, Mexico. Cybium, 30 (4): 91-97.
- 181. Ackerman L.T. 1967. Contributions to the Biology of the Leopard Shark, *Triakis semifasciata* (Girard) in Elkhorn Siough, Monterey Bay, California. Tesis de Master. Universidad de California, Davis Campus. California. 54 p.
- Lowry D., P.J. Motta, R.E. Hueter. 2007. The ontogeny of feeding behavior and cranial morphology in the leopard shark *Triakis semifasciata* (Girald 1854): A longitudinal perspective. *Journal of Experimental Marine Biology and Ecology*, 341: 153-167.
- Moreno-Sánchez X.G., L.A. Abitia-Cárdenas, R. Riosmena-Rodríguez, M. Cabrera-Huerta & F.J. Gutiérrez-Sánchez. 2014. Diet of the yellowtail surgeonfish *Prionurus punctatus* (Gill, 1862) on the rocky reef of Los Frailes, Baja California Sur, México. *Cah. Biol. Mar.*, 55: 1-8.
- Montgomery W.L., T. Gerrodette & L.D. Marshall. 1980. Effects of grazing by the yellowtail surgeonfish, *Prionurus punctatus*, on algal communities in the Gulf of California, Mexico. *Bulletin of Marine Science*, 30 (4): 901-908.
- 185. Bermúdez-Almada B.R. & G. García-Laguna. 1985. Hábitos alimenticios en los peces de las zonas rocosas de La Bahía de La Paz, B.C.S. Tesis de licenciatura. Universidad Nacional Autónoma de México. Facultad de Ciencias. Departamento de Biología. 259 p.
- 186. Salini J.P., S.J.M Blaber & D.T. Brewer. 1990. Diets of piscivorous fishes in a tropical Australian estuary, with special reference to predation on penaeid prawns. *Marine Biology*, 105: 363-374.
- 187. Kume G., A. Yamaguchi & T. Taniuchi. 1999. Feeding habits of the Cardinalfish Apogon lineatus in Tokyo Bay, Japan. Fisheries Science, 65 (3): 420-423.
- Logothetis E.A., M.H. Horn & K.A. Dickson. 2001. Gut morphology and function in *Atherinops affinis* (Teleostei: Atherinopsidae), a stomachless omnivore feeding on macroalgae. *Journal of Fish Biology*, 59: 1298-1312.
- Gilmurray M.C. & G.R. Daborn. 1981. Feeding relations of the Atlantic Silverside *Menidia menidia* in the Minas Basis, Bay of Fundy. *Mar. Ecol. Prog. Ser.*, 6: 231-235.
- Contente R.F., M.F. Stefanoni & H.L. Spach. 2011. Feeding ecology of the Brazilian silverside Atherinella brasiliensis (Atherinopsidae) in a subtropical estuarine ecosystem. Journal of the Marine Biological Association of the United Kingdom, 91: 1197-1205.
- West J.M., G.D. Williams, S.P. Madon & J.B. Zedler. 2003. Integrating spatial and temporal variability into theanalysis of fish food web liskages in Tijuana Estuary. *Environmental Biology of Fishes*, 67: 297-309.
- Abitia-Cárdenas L.A., J. Rodríguez-Romero, F. Galván-Magaña. 1990. Observaciones tróficas de tres especies de peces de importancia comercial de Bahía Concepción, Baja California Sur, México. *Inv. Mar. CICIMAR*, 5 (1): 55-61.
- Cailliet G.M. & A.W. Ebeling. 1990. The vertical distribution and feeding habits of two common midwater fishes (*Leuroglossus stilbius* and *Stenoblachicus leucopsarus*) off Santa Barbara. *CalCOFI Rep.*, 31: 106-123.
- Cogliati K.M., C. Danukarjanto, A.C. Pereira, M.J. Laus, A. Hassan, A.F. Mistakidis, B.M. Bolker, B.D. Neff & S. Balshine. 2015. Diet and cannibalism in plainfin midshipman *Porichthys notatus. Journal of Fish Biology*, 86: 1396-1415.
- Canto-Maza W.G. & M.E. Vega-Cendejas. 2007. Distribución, abundancia y preferencias alimenticias del pez sapo Opsanus phobetrom (Batrachoididae) en la laguna costera de Chelem, Yucatán, México. Rev. Biol. Trop. 55 (3-4): 979-988.
- 196. Chacko P.I. 1948. Food and feeding habit of the fishes of the Gulf of Manaar. Proc. Indian Acad. Sci., 29 (B): 82-97.
- 197. Randall J.E. 2004. Food habits of reef fishes of the west Indies. Hawaii Institute of Marine Biology University of Hawaii, Honolulu and Bernice P. Bishop Museum, Honolulu. 187 p.
- López-Peralta & C.A.T. Arcila. 2002. Diet composition of Fish Species from the southern continental shelf of Colombia. Naga, WoldFish Center Quarterly, 25: 23-29.
- 199. Posada C. & C.B. García. Dieto f *Elegatis bipinnulata* (Quoy y Gaimard) (Carangidae) from Taganga Bay and Tayrona Natural National Park, Colombia, Caribbean Sea. *Proceedings of the Gulf and Caribbean Fisheries Institute*, 57: 1030-1031.
- Cruz-Escalona V.H. 1998. Análisis trófico de la ictiofauna de laguna San Ignacio, B.C.S. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 128 p.
- 201. Major P.F. 1973. Scale Feeding Behavior of the Leatherjacket, Scomberoides Lysan and Two Species of the Genus Oligoplites (Pisces: Carangidae). *Copeia*, 1: 151-154.
- Roux O. & F. Conand. 2000. Feeding habits of the bigeye scad, Selar crumenophthalmus (Carangidae), in La Réunion Island waters (South-Western India Ocean). Cybium, 24 (2): 173-179.
- Tripp-Valdez A. F. Arreguín-Sánchez & M.J. Zetina-Rejón. 2015. The use of stable isotopes and mixing models to determine the feeding habits of soft-bottom fishes in the southern Gulf of California. *Cah. Biol. Mar.* 56: 13-23.
- Ramírez-Luna V., A.F. Navia & E.A. Rubio. 2008. Food habith and feeding ecology o fan estuarine fish assemblage of northern Pacific Coast of Ecuador. *Pan-American Journal of Aquatic Sciences*, 3 (3): 361-372.
- Baxter J.L. 1960. Fish bulletin N° 110. A study of The Yellowtail Seriola Dorsalis (Gill). State of California department of fish and game marine resources operations. 91 p.
- 206. MacGregor J.S. 1966. Synopsis on the Biology of the Jack Mackerel (*Trachurus symmetricus*). FAO Species Synosis No. 86. Washington, D.C., 16 p.
- 207. Medina M. & H. Arancibia. 2002. Dinámica trófica del jurel (Trachurus symmetricus murphyi) en el norte de Chile. Invest. Mar. Valparaíso. 30: 45-44.
- Gonzales D.G. & L.A. Soto. 1988. Hábito alimenticios de peces depredadores del sistema lagunar Huizache-Caimanero, Sinaloa, México. Anales del Instituto de Ciencias del Mar y Limnología.
- Moreno-Sánchez X.G., D.S. Palacios-Salgado, L.A. Abitia-Cárdenas, J.T. Nieto-Navaro & A.F. Navia. 2015. Diet of the yellowfin snook, *Centropomus robalito* (Actinopterycii: Perciformes: Centropomidae), in the southwestern Gulf of California. *Acta Ichthyologica et Piscatoria*, 45 (1): 21-29.

- 210. Espinoza P., A. Bertrand, C.D. van der Lingen, S. Garrrido & B. Rojas de Mendiola. 2009. Diet of sardine (*Sardinops sagax*) in the northern Humboldt Current system and comparison with the diets of clupeoids in this and other eastern boundary upwelling systems. *Progress in Oceanography*, 83: 242-250.
- 211. Serra R. & I. Tsukayama. 1988. Sinopsis de datos biológicos y pesqueros de la sardina *Sardinop sapax* (Jenyns, 1842) en el pacífico suroriental. Organización de las naciones unidas para la agricultura y la alimentación-FAO. Roma. 60 p.
- 212. López-Martínez J., M.O. Nevárez-Martínez, R.E. Molina-Ocampo & F.A. Manrique-Colchado. 1999. Overlap in the type and size of the prey that compose the diet of the cacific sardine *Sardinops caeruleus* (Girald, 1856), thread herring *Opisthonema libertate* (Gunther, 1867) and northern anchovy *Engraulis mordax* (Girard, 1856) in the Gulf of California. Traslapo en el tipo y tamaño de las presas que forman la dieta de la Sardina Monterrey *Sardinops caeruleus* (Girald, 1856), la Sardina crinuda *Opisthonema libertate* (Gunther, 1867) y la anchoveta norteña *Engraulis mordax* (Girard, 1856) en El Golfo de California. *Ciencias Marinas*, 25 (4): 541-556.
- 213. Jacob-Cervantes M., M. Gallardo-Cabello, X. Chiappa-Carrara & A.L. Ruíz. 1992. Régimen alimentario de la sardina crinuda *Opisthonema libertate* (Pisces: Clupeidae) en el Golfo de California. *Rev. Biol. Trop.*, 40 (2): 233-238.
- 214. James A.G. 1988. Are clupeid *Microphagists herbivorous* or omnivorous? A review of the diets of some commercially important clupeids. S. Afr. J. mar. Sci. 7: 161-177.
- Motta P.J., K. B. Clifton, P. Hernández, B.T. Eggold, S.D. Giordano & R. Wilcox. 1995. Feeding relationships among nine species of Seagrass fishes of Tampa bay, Florida. *Bulletin of Marine Science*, 56 (1): 185-200.
- 216. Fishbase (2017). Disponible en: http://www.fishbase.org/summary/1529 (Acceso: 1st October 2017).
- 217. IUCN (2017). Disponible en: http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T183336A8095864.en. (Acceso: 1st October 2017).
- 218. CONABIO. 2017. Colección ictiológica-CICIMAR-IPN. La Paz. B.C.S., México.
- 219. Aguilar-Palomino B., F Galván-Magaña, L.A. Abitia-Cárdenas, A.F. Muhlia-Melo & J. Rodríguez-Romero. 1998. Aspectos alimentarios del dorado *Coryphaena hippurus* Linnaeus, 1758 en Cabo San Lucas, Baja California Sur, México. Feeding aspects of the Dolphin *Coryphaena hippurus* Linnaeus, 1758 in Cabo San Lucas, Baja California Sur, Mexico. *Ciencias Marinas*, 24 (3): 253-265.
- 220. Olson R.J. & F. Galván-Magaña. 2002. Food habits and consumption rates of common dolphinfish (*Coryphaena hippurus*) in the eastern Pacific Ocean. *Fish. Bull.* 100 (2): 279-298.
- 221. Pérez-España H., M. Saucedo-Lozano & A.R. Raymundo-Huizar. 2005. Trophic ecology of demersal fishes from the pacific shelf off central Mexico. *Bulletin of Marine Science*, 77 (1): 19-31.
- Raymundo-Huizar A.R. 2000. Análisis de la dieta de los peces demersales de fondos en la plataforma continental de Jalisco y Colima, México. Tesis de maestría. Universidad de Colima. Colima, México. 89 p.
- 223. Hiatt R.W. 1947. Food-Chains and the Food Cycle in Hawaiian Fish Ponds.- Part I. The Food and Feeding Habits of Mullet (*Mugil cephalus*), Milkfish (*Chanos Chanos*), and the Ten-Pounder (*Elops machnata*), *Transactions of the American Fisheries Society*, 74:1, 250-261.
- 224. Schmitt R.J. & J.A. Coyer. 1982. The Foranging Ecology of Simpatric Marine Fish in the Genus *Embiotoca* (Embiotocidae): Importance of Foraging Behavior in Prey Size Selection. *Oecologia* (Berl), 55: 369-378.
- Schmitt R.J. & S.J. Holbrook. 1984. Ontoeny of prey selection by black surfperch *Embiotoca jacksoni* (Pisces: Embiotocidae): the roles of fish morphology, foraging behavior, and patch selection. *Mar. Ecol. Prog. Ser.*, 18: 225-239.
- 226. O'Connell C.P. 1972. The interrelation of biting and filtering in the feeding activity of the Northern Anchovy (*Engraulis mordax*). J. Fish. Res. Bd. Canada. 29: 285.293.
- 227. Loukashkin A.S. 1970. On the diet and feeding behavior of the northern anchovy, *Engraulis mordax* (Girard). *Proceedings of the California academy of sciences*, 13: 419-458.
- 228. Plounevez S & G. Champalbert. 1999. Feeding behaviour and trophic environment of *Engraulis encrasicolus* (L.) in the Bay of Biscay. *Estuarine*, Coastal and Shelf Science, 49: 177-191.
- 229. Lazzaro X. 1987. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts. *Hidrobiologia*, 146: 97-167.
- 230. Bayliff W.H. 1963. Inter-American tropical tuna commission- Comisión interamericana del Atún tropical. Vol. VII, No. 6. La Jolla, California. 459 p.
- 231. Van Thielen R. 1976. The food of juvenile Sardinella aurita and of juvenile and adult *Anchoa guineensis* in near shore waters off Ghana, West Africa. *Meeresforsch*, 25: 46-53.
- 232. Gómez G.O., L. A. Zapata P., R. Franke A. & G.E. Ramos T. 1999. Hábitos alimentarios de *Epinephelus acanthistius* y notas de otros peces serranidos capturados en el Parque Nacional Natural Gorgona, pacífico colombiano. *Bol. Invest. Mar. Cost.* 28: 43-60.
- 233. Dennis M.H. 2015. Status Review of the Gulf Grouper (*Mycteroperca jordani*). National Marine Fisheries Service-West Coast Division. Protected Resources Division. NOAA. 73 p.
- 234. Thomson D.A., L.T. Findley & A.N. Kerstitch. 2000. Reef Fishes of the Sea of Cortez: The Rocky-Shore Fishes of the Gulf of California (Corrie Herring Hooks Series). 407 p.
- 235. Aburto-Oropeza O., B. Erisman, V. Valvez-Ornelas, G. Danemann. 2008. Commercially Important Serranid Fishes from the Gulf of California. *Ciencia y Conservación*, 1: 1-43.
- Sáenz-Arrollo A., C.M. Roberts, J. Torre & M. Cariño-Olvera. 2005. Using fishers` anecdotes, naturalists` observations and grey literature to reassess marine species ata risk: the case of the Gulf grouper in the Gulf of California, Mexico. *Fish and Fisheries*, 6: 121-133.
- 237. Condini M.V., E. Seyboth, J.P. Vieira & A.M. García. 2011. Diet and feeding strategy of the dusky prouper *Mycteroperca marginata* (Actinopterygii: Epinephelidae) in a man-made rocky habitat in southern Brazil. *Neotropical Ichthyology*, 9 (1): 161-168.
- 238. Pérez-Rojo M del P. 2016. Hábitos alimentarios de la cabrilla sardinera Mycteroperca rosacea (Streets, 1877), en Santa Rosalía, B.C.S., México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 80 p.
- Van Noord J.E., E.A. Lewallen & R.L. Pitman. 2013. Flyingfish feeding ecology in the eastern Pacific: prey partitioning within a speciose epipelagic community. *Journal of Fish Biology*, 83: 326-342.

- 240. Arizmendi-Rodríguez D.I., J. López-Martínez & E. Herrera-Valdivia. 2014. Feeding habiths of *Eucinostomus entomelas* and *Micropogonias megalops* in Las Guasimas lagoon Gulf of California. *Journal of the Marine Biological Association of the United Kingdom*, 94 (8): 1721–1729.
- 241. Zahorcsak P., R.A.M Silvano & I. Sazima. 2000. Feeding biology of a guild of benthivorous Fishes in a sandy shore on South-Eastern Brazilian coast. *Rev. Brasil. Biol.*, 60 (3): 511-518.
- 242. CONABIO. 2012. CONABIO-Dos décadas de historia. Comisión nacional para el conocimiento y uso de la biodiversidad. México. 102 p.
- 243. Gorostieta-Monjaraz M. 2001. Dinámica de la estructura trófica del ecosistema de Bahía Concepción, B.C.S. México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 75 p.
- 244. Hobbs J. 2015. Science Foundation Chapter 5. Appndix 5.1-Case Study. Longjaw mudsucker (*Gillichthys mirabilis*). Baylands ecosystem habitat goals science update. 5 p.
- 245. Toepfer C.S. & J.W. Fleeger. 1995. Diet of Juvenile fishes *Citharichthys spilopterus*, *Symphurus plagiusa*, and *Gobionellus boleosoma*. *Bulletin of Marine Science*, 56 (1): 238-249.
- 246. Gregg J.C. & J.W. Fleeger. 1997. Importance of emerged and suspended meiofauna to the diet of the darter goby (*Gobionellus boleosoma* Jordan and Gilbert). *Journal of Experimental Marine Biology and Ecology*, 209: 123-142.
- 247. Flores-Ortega J.R., E. Avila-Castro, H.J. Haro-Preciado & E. Godínez-Domínguez. 2014. Hábitos alimentarios e interacciones tróficas de Anisotremus interruptus (Pisces: Haemulidae) y Litjanus argentiventris (Piscen: Lutjanidae) en el Pacífico Central Mexicano. Lat. Am. J. Aquat. Res. Short Communication, 42 (1): 276-282.
- 248. Pombo M., M.R. Denadai, E. Bessa, F. Borges Santos, V. Hermann de Faria & A. Turra. 2014. The barred grunt *Conodon nobilis* (Perciformes: Haemulidae) in shallow areas of a tropical bight: spatial and temporal distribution, body growth and diet. *Helgol Mar Res*, 68: 271-279.
- 249. CONABIO. 2017. Disponible en: https://www.gob.mx/conabio (Acceso: 1st October 2017).
- Palacios-Salgado D.S., A. Ramírez-Valdez, A.A. Rojas-Herrera, J. Granados-Amores & M.A. Melo-García. 2014. Marine fishes of Acapulco, México (Eastern Pacific Ocean). *Mar Biodiv.*, 44 (4): 471-490.
- 251. Estrada M.R. 1986. Hábitos alimentarios de los peces del género *Haemolon* (Pisces: Haemulidae) de los arrecifes de la región de Santa Marta, Colombia. *An. Inst. Inv. Mar. Punta de Betín.* 15-16: 46-66.
- 252. Nagelkerken I., M. Dorenbosch, W.C.E.P. Verberk, E. Cocheret de la Morinière & G. van der Velde. 2000. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. *Mar. Ecol. Prog. Ser.*, 194: 55-64.
- 253. Rodríguez-Romero J., X.G. Moreno-Sánchez, L.A. Abitia-Cárdenas & D.S. Palacios-Salgado. 2009. General characteristics of dieto f the raucous grunt, *Haemulopsus leuciscus* (Perciformes: Haemulidae), in Bahía Almejas, Baja California Sur, Mexico. *Marine Biodiversity Records*, 2: e141.
- 254. Moreno-Sánchez X.G. 2004. Estructura comunitaria e interrelaciones tróficas de los peces de Bahía Almejas, Baja California Sur, México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas- Instituto Politécnico Nacional. La Paz. B.C.S., México. 100 p.
- 255. CONABIO (2017). Disponible en: http://bios.conabio.gob.mx/especies/8006904.pdf (Acceso: 1st October 2017).
- 256. Hernández I., C. Aguilar & G. González Sansón. 2007. Tramas tróficas de arrecifes en la región noroccidental de Cuba. I. Contenido estomacal. *Rev. Biol. Trop.* 56 (2): 541-555.
- 257. Golani D., A. Ben-Tuvia & B. Galil. 1983. Feeding habits of the Suez Canal migrant squirrelfish, *Sargocentron rubrum*, in the Mediterranean Sea, *Israel journal of zoology*, 32 (4): 194-204.
- 258. Arias-González J.E., R. Galzin & M. Harmelin-Vivien. 2004. Spatial, ontogenetic, and temporal variation in the feeding habits of the squirrelfish *Sargocentron microstoma* on reefs in Moorea, French Polynesia. *Bulletin of Marine Science*, 75 (3): 473-480.
- Cruz-Escalona V.H., R.N. Águila-Ramírez & L.A. Abitia-Cárdenas. 2009. Food of *Kyphosus elegans* (Perciformes: Khyposidae) in Loreto, Baja California Sur, México. CICIMAR Oceánides, 24(1): 55-58.
- 260. Cole A.J., M.S. Pratchett & G.P. Jones. 2010. Corallivory in tubelip wrasses: diet feeding and trophic importance. *Journal of Fish Biology*, 76: 818-835
- Shepherd S.A. & P.S. Clarkson. 2001. Diet, feeding behavior, activity and predation of the temperate blue-throated wrasse, *Notolabrus tetricus. Mar. Freshwater Res.*, 52: 311-322.
- 262. Smithsonian Tropical Research Institute (2017). Disponible en: <u>http://biogeodb.stri.si.edu/sftep/en/thefishes/species/1665</u> (Acceso: 1st October 2017).
- 263. Pennings S.C. 1990. Multiple factors promoting narrow host range in the sea hare, Aplysia californica. Oecologia, 82: 192-200.
- 264. Adreani M.S. & L.G. Allen. 2008. Mating System and Reproductive Biology of a Temperate Wrasse, *Halichoeres semicinctus. Copeia*, 2: 467-475.
- 265. Hobson E.S. & J.R. Chess. 1986. Relationships among fishes and their prey in a nearshore sand community off southern California. *Environmental Biology of Fishes*, 17 (3): 201-226.
- 266. Hobson E.S. 1976. The roch wrasee, Halichoeres semicinctus, as a cleaner fish. Calif. Fish and Game, 62 (1): 73-78.
- Vázquez R.I., J. Rodríguez, L.A. Abitia & F. Galván. 2008. Food habits of the yellow snapper *Lutjanus argentiventris* (Peters, 1869) (Percoidei: Lutjanidae) in La Paz Bay, Mexico. *Revista de Biología Marina y Oceanografía*, 43 (2): 295-302.
- 268. Carrillo-Viteri M.B. 2016. Preferencia alimentaria de tres especies de peces marinos comerciales según su estructura dental en la provincia de Esmeraldas, Ecuador. Tesis de Licenciatura. Universidad Internacional del Ecuador. Escuela de Biología Aplicada. 99 p.
- Santamaría-Miranda, A., J.F. Elorduy-Garay & A.A. Rojas Herrera. 2003. Hábitos alimentarios de Lutjanus peru (Pisces: Lutjanidae) en las costas de Guerrero, México. Rev. Biol. Trop. 51 (2): 503-518.
- Moreno-Sánchez X.G., L.A. Abitia-Cardenas, G. Trujillo-Retana, A.F. Navia, J.S. Ramírez-Pérez & B. Shirasago-German. 2016. Variation of feeding habits of *Lutjanus peru* (Actinopterygii: Perciformes: Lutjanidae) caught in two regions of The Gulf of California, México. Acta Ichthyologica et piscatorial, 46 (2): 97-108.

- 271. Elordoy-Garay J.F. & J. Caraveo-Patiño. 1994. Hábitos alimentarios de la pierna, *Caulolatilus prínceps* Jenyns 1842. (Pisces: Branchiostegidae), en la Bahía de La Paz, B.C.S., México. Feeding habits of the ocean whitefish, *Caulolatilus prínceps* Jenyns 1842. (Pisces: Branchiostegidae), in La Paz Bay, B.C.S., Mexico. *Ciencias Marinas*, 20 (2): 199-218.
- 272. Elordoy-Garay J.F. & K. Peláez-Mendoza. 1996. Hábitos alimentarios de *Caulolatilus affinis* (Perciformes: Branchiostegidae) en la Bahía de La Paz, Baja California Sur, México. *Rev. Biol. Trop.*, 44 (1): 241-249.
- 273. Rexstad E.A. & E.K. Pikitch. 1986. Stomach contents and food consumption estimates of pacific hake, *Merluccius productus*. *Fishery Bulletin*, 84 (4): 947-956.
- 274. Islam R., M.B. Hossain, N.G. Das & R-U-N Rafi. 2009. Food and feeding behavior of grey mullet, *Mugil cephalus* (L), of Bangladesh coastalwater. *Bangladesh J. Prog.Sci. & Tech*, 7 (2): 1-5.
- 275. Campos-Dávila L., V.H. Cruz-Escalona, L.A. Abitía-Cárdenas, F. Galván-Magaña & E.F. Balart. 2002. Feeding habits of Dwarf Goatfish (*Upeneus paruus*: Mullidae) on the continental shelf in the Gulf of Mexico. *Gulf of Mexico Science*, 1: 60-66.
- Navia-López A.F. 2013. Función ecológica de tiburones y rayas en un ecosistema costero tropical del pacífico colombiano. Tesis doctoral. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. La Paz. B.C.S., México. 172 p.
- 277. Borges-Santos F. & R.M. Castro. 2003. Activity, habitat utilization, feeding behaviour, and diet of the sand moray *Gymnothorax ocellatus* (Anguilliformes, muraenidae) in the south western Atlantic. *Biota Neotropica*, 3 (1): 1-7.
- 278. Young R.F. & H.E. Winn. 2003. Activity patterns, diet, and shelter site use for two species of moray eels, *Gymnothorax moringa* and *Gymnothorax vicinus*, in Belize. *Copeia*, 1: 44-55.
- 279. Hobson E.S. 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fishery Bulletin, 72 (4): 915-1031.
- 280. Renteria-Cano M.E. 2005. Distribución de larvas de peces y composición de la dieta de especies abundantes en las costas de la región central del Golfo de California, durante el verano 1998 y verano 2000. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. La Paz. B.C.S., México. 60 p.
- Bernal A., M.P. Olivar, F. Maynou & M.L. Fernández de Puelles. 2015. Diet and feeding strategies of mesopelagic fishes in the western. Progress in Oceanology, 135: 1-17.
- Conley W.J. & T.L. Hopkins. 2004. Feeding ecology of lanternfish (Pisces: Myctophidae) Larvae: Prey preferences as a reflection of morphology. *Bulletin of Marine Science*, 75 (3): 361-379.
- Pusch C., S. Schnack-Shiel, E. Mizdalshi & H. von Westernhagen. 2004. Feeding ecology of three myctophid species at the Great Meteor Seamount (North-east Atlantic). Arch. Fish. Mar. Res., 51 (1-3): 251-271.
- Oliva E.A., R. Ulloa H. & J. Bleck Z. 2003. Feeding habits of four species of mesopelagic fishes from the Northern Chilean. *Rev. Biol. Trop.*, 54 (2): 613-622.
- Imsand S. 1981. Comparison of the food of *Triphoturus mexicanus* and *T. nigrescens*, Two Lanternfishes of the Pacific Ocean. *Marine Biology*, 63: 87-100.
- 286. Watanabe H., K. Kawaguchi & A. Hayashil. 2002. Feeding habits of juvenil Surface-migratory myctophid fishes (family Myctophidae) in the Kuroshio region of the western North Pacific. *Mar. Ecol. Prog. Ser.*, 236: 263-272.
- Naranjo-Elizondo B., M. Espinoza, M. Herrera, T.M. Clarke & I.S. Wehrtmann. 2016. Feeding habits of the Pacific bearded brotula Brotula clarkae Hubbs, 1944 (Ophidiidae) along the Pacific coast of Costa Rica, Central America. J. Appl. Ichthyol. 32: 439-447.
- Garrison L.P. & J.S. Link. 2000. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser., 202: 231-240.
- 289. Enciclovida. 2017. Disponible en: http://enciclovida.mx/especies/8005937 (Acceso: 1st October 2017).
- Kravitz M. & W.G. Pearcy. 1976. Food of five species of cooccurring flatfishes on Oregon's continental shelf. Fish Bull., 74 (4): 984-990.
- 291. Wakefield W.W. 1984. Feeding relationships within assemblages of nearshore and mid-continental shelf benthic fishes off Oregon. Mater thesis. Oregon State University. Oregon. 102 p.
- Guedes A.P.P & F.G. Araújo. 2008. Trophic resource partitioning among five flatfish species (Actinopterygii, Pleuronectiformes) in a tropical bay in south-eastern Brazil. *Journal of Fish Biology*, 72: 1035-1054.
- 293. Reichert M.J.M. 2003. Diet, consumption, and growth of juvenile fringed flounder (*Etropus crossotus*); a test of the "maximum growth/optimum food hypothesis" in a subtropical nursery area. *Journal of Sea Research*, 50 (2-3): 97-116.
- 294. Allen L.G. 1988. Recruitment, distribution, and feeding habits of Young-of-the-Year California Halibut (*Paralichthys californicus*) in the Vicinity of Alamitos Bay-Long Beach Harbor, California, 1983-1985. *Bull Southern California Acad. Sci.*, 87 (1): 19-30.
- 295. Smithsonian Tropical Research Institute (2017). Disponible en: <u>http://biogeodb.stri.si.edu/sftep/es/thefishes/species/2334</u> (Acceso: 1st October 2017).
- 296. Lane E.D. 1975. Quantitative aspects of the life history of the diamond turbot, *Hypsopsetta guttulate* (Girard), in Anaheim Bay. *Fish* bulletin, 165: 153-173.
- 297. Flores-Ortega J.R., E. Godínez-Domínguez, G. González-Sansón J.A. Rojo-Vázquez, A.C. López-Prado & M.Y. Morales-Jauregui. 2013. Abundancia, distribución, hábitos alimentarios e interacciones tróficas de cinco especies de lenguados (Pleuronectiformes) en el Pacífico central mexicano. *Lat. Am. J. Aquat. Res.*, 41 (3): 423-439.
- Ogawa T.K., D.A. Ziemann & S.W.S. Bloom. 2008. Feeding habits of wild and Hatchery-Reared Pacific Threadfin, *Polydactylus sexfilis* (Family Polynemidae), in Hawai'i. *Reviews in Fisheries Science*, 16 (1-3): 317-328.
- Pérez-España H. & L.A. Abitia-Cárdenas. 1996. Description of the digestive tract and feeding habits of the King angelfish and the Cortes angelfish. Journal of Fish Biology, 48: 807-817.
- Moreno-Sánchez X.G., C. Quiñonez-Velázquez, L.A. Abitia-Cárdenas & J. Rodríguez-Romero. 2011. Diet of the Pacific sierra Scomberomorus sierra (Perciformes: Scombridae) in two areas of north-west Mexico coast. Aqua, International Journal of Ichthyology, 17: 4-15.
- 301. Bellwood D.R. 1988. Ontogenetic changes in the diet of early post-settlement *Scarus* species (Pisces: Scaridae). J. Fish. Bio. 33: 213-219.
- 302. Wulff J.L. 1997. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology, 129: 41-52.

- Griffiths M.H. & T. Hecht. 1995. On the life-history of *Atractoscion aequidens*, a migratory sciaenid off the east coast of southern África. *Journal of Fish Biology*, 47: 962-985.
- 304. Donohoe C.J. 1997. Age, growth, distribution, and food habits of recently settled white seabass, *Atractoscion nobilis*, off San Diego County, California. *Fishery Bulletin*, 95: 709-721.
- 305. Sardiña P. 2004. Ecología trófica de estadios juveniles de los esciénidos dominantes en el estuario de Bahía Blanca. Pescadilla de red (*Cynoscion guatucupa*). Tesis doctoral. Universidad Nacional del Sur. Bahía Blanca. Argentina. 173 p.
- 306. Román-Rodríguez M.J. 2000. Estudio poblacional del chano norteño, *Micropogonias megalops* y la curvina Golfina *Cynoscion othonopterus* (Gilbert) (Pisces: Sciaenidae), especies endémicas del Alto Golfo de California, México. Informe final del proyecto L298. Instituto del medio ambiente y desarrollo sustentable de Sonora, México. 143 p.
- 307. Encinas-Rivera Y.M. 2008. Análisis del contenido estomacal de Cynoscion othonopterus (Jordan y Gilbert) en el Alto Golfo de California y delta del río Colorado. Tesis de licenciatura. Instituto Tecnológico del Valle del Yaqui. Bacum, Sonora. México. 52 p.
- Cruz-Escalona V.H., L.A. Abitia-Cardenas, L. Campos-Dávila & F. Galvan-Magaña. 2000. Trophic interrelations of the three most abundant fish species from laguna San Ignacio, Baja California Sur, Mexico. *Bulletin of Marine Science*, 66 (2): 361-373.
- 309. Skogsberg T. 1939. Fish Bulletin No. 54. The Fishes of the Family Sciaenidae (Croakers) of California. Division of fish and game of California bureau of Marine Fisheries. 62 p.
- 310. FISHBASE. 2017. Disponible en: http://www.fishbase.org/search.php (Acceso: 1st October 2017).
- 311. Mostarda E., D. Campo, L. Castriota, V. Esposito, M.P. Scarabello & F. Andaloro. 2007. Feeding habits of the bullet tuna *Auxis rochei* in the southern Tyrrhenian Sea. J. Mar. Biol. Ass. U.K. 87: 1007-1012.
- 312. Smithsonia Tropical Research Institute (2017). Disponible en: <u>http://biogeodb.stri.si.edu/sftep/en/thefishes/species/2226</u> (Acceso: 1st October 2017).
- 313. Castro J.J. 1993. Feeding ecology of chub mackerel *Scomber japonicus* in the Canary islands area. *South African Journal of Marine Science*, 13 (1): 323-328.
- 314. Rizkalla S.I. & S.N. Faltas. 1997. Feeding habits of Chub mackerel (*Scomber japonicus*) in Egyptian Metiterranean Waters. *JKAU: Mar. Sci.*, 8: 127-136.
- 315. Roger C. 1994. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean. *Fish. Oceanogr.*, 3 (2): 133-141.
- 316. Maldeniya R. 1996. Food consumption of yellowfin tuna, *Thunnus albacares*, in Sri Lanka waters. *Enviromental Biology of Fishes*, 47: 101-107.
- 317. Romero-Ponce R.C. 2004. Ecología trófica y dinámica poblacional de *Scorpaenodes xyris* (Jordan y Gilbert, 1882) (Scorpaeniformes: Scorpaenidae) en la comunidad arrecifal de peces crípticos de la Bahía de La Paz, Baja California Sur. Tesis de maestría. Centro de investigaciones biológicas del noroeste, S.C. La Paz. 79 p.
- Loury E.K. 2011. Diet of the gopher rochfish (*Sebastes carnatus*) inside and outside of marine protected areas in central California. Master thesis. San José State University. California. 87 p.
- Aguilar Palomino B. & G. González Sansón. 2010. Composición y superposición de dietas en cuatro especies de Diplectrum (Perciformes: Serranidae) en el Pacífico central mexicano. Rev. Biol. Trop. 58 (4): 1189-1198.
- 320. Bortone S.A. 1977. Observations on the Life History of *Diplectrum pacificum* and *D. macropora* (Pisces, Serranidae) from the Bay of Panama. *Pacific Science*, 31 (1): 49-60.
- 321. Viesca-Lobatón C., E.F. Balart, A. González-Cabello, I. Mascareñas-Osorio, O. Aburto-Oropeza, H. Reyes-Bonilla & E. Torreblanca. 2008. Peces arreficales. 386-427. *In*: Danemannn G.D. & E. Ezcurra (eds). Los peces de arrecife de Bahía de Los Ángeles, Golfo de California. 427 p.
- 322. Carvalho-Filho A., C.E.L. Ferreira & M. Craig. 2009. A shallow water population of *Pronotogrammus martinicensis* (Guichenot, 1868) (Teleostei: Serranidae: Anthiinae) from South-western Atlantic, Brazil. *Zootaxa*, 2228: 29-42.
- 323. CONABIO. 2017. Disponible en: http://bios.conabio.gob.mx/especies/8007825.pdf (Acceso: 1st October 2017).
- 324. Browne R.K., J.L. Baker & R.M. Connolly. 2008. Syngnathids: Seadragons, seahorses, and pipefishes of Gulf ST Vincent. 162-176. *In*: Scoresby S. (ed). History of Gulf St Vincent. Royal Society of South Australia. 496 p.
- 325. Wardley T.R. 2006. A study on the feeding of the Pot-bellied seahorse (*Hippocampus adbominalis*): Reducing the reliance on Brine shrimp (*Artemia*). Doctor of Phylosophy thesis. University of Tasmania, Launceston. 317.
- 326. da Costa-Castro A.L., A. de Farias Diniz, I. Zaparolli Martins, AL. Vendel, T.P. Ribeiro de Oliveira & I.M. de Lucena Rosa. 2008. Assessing diet composition of seahorses in the wild using a nondestructive method: *Hippocampus reidi* (Teleostei: Syngnathidae) as a study-case. *Neotropical Ichthyology*, 6 (4): 637-644.
- 327. Kendrick A.J. & G.A. Hyndes. 2005. Variations in the dietary compositions of morphologically diverse syngnathid fishes. *Environmental Biology of Fishes*, 72: 415-427.
- 328. EspositoV., P. Battaglia L. Castriota, M. Grazia Finoia, G. Scotti & F. Andaloro. 2009. Diet of Atlantic lizardfish, *Synodus saurus* (Linnaeus, 1758) (Pisces: Sinodontidae) in the cenral Mediterranean Sea. *Scientia marina*, 73 (2): 369-376.
- 329. Stergiou K.I. & V.S. Karpouzi. 2002. Feeding habits and trophic levels of Mediterranean fish. *Reviews in Fish Biology and Fisheries*, 11: 217-254.
- 330. Moreno-Sánchez X.G., A. Abitia, A. Faviola, F.J. Gutiérrez & D.S. Palacios. 2008. Ecología trófica del pez Arothron meleagris (Tetraodontiformes: Tetraodontidae) en el arrecife de Los Frailes, Baja California Sur, México. Rev. Biol. Trop. 57 (1-2): 113-123.
- 331. Martins A.S., M. Haimovici & R. Palacios. 2005. Diet and feeding of the cutlassfish *Trichiurus lepturus* in the Subtropical Convergence Ecosystem of southern Brazil. *J. Mar. Biol. Ass. U.K.* 85: 1223-1229.
- 332. Rohit P., K.M. Rajesh, G. Sampathkumar & K. Sahib. 2015. Food and feeding of the ribbonfish *Trichiurus lepturus* Linnaeus off Karnataka, south-west coast of India. *India J. Fish.*, 62 (1): 58-63.
- Schmitter-Soto J.J. & J.L. Castro-Aguirre. 1995. Trophic comparison among Triglidae (Pisces: Scorpaeniformes) off Baja California Sur, Mexico. *Rev. Biol. Trop.*, 44 (2): 803-811.

- 334. Clemente R.R.B., P.A.S. Costa & A.S. Martins. 2014. Distribution and feeding habits of three sea robin species (*Bellator brachychir*, *Prionotus nudigula* and *Prionotus punctatus*) in the Campos Basin, southeastern Brazil. *Lat. Am. J. Aquat. Res.*, 42 (3): 488-496.
- 335. Blaskovic V., D. Castillo, C. Fernández & I. Navarro. 2008. Hábitos alimentarios de las principales especies costeras del litoral de tumbes en el 2007. Informe técnico anual. Instituto del Mar del Perú. Dirección de investigaciones en peces Demersales y Litorales. Unidad de Investigaciones en biodiversidad. Área de Ecología Trófica. 13 p.

Bibliografía de los atributos

- 336. Duarte C.M. 1991. Seagrass Depth limits. Aquatic Botany, 40: 363-377.
- Ramírez-García R & A. LOT. 1994. La distribución del maglar y de los "Pastos Marinos" en el Golfo de California, México. Anales Inst. Biol. Univ. Nac. Autón. México, Ser. Bot., 65 (1): 63-72.
- 338. San Diego Natural History Museum. 2017. Disponible en: www.bajaflora.org (Acceso: 1st October 2017)
- 339. Riosmena-Rodríguez R & J.L. Sánchez-Lizaso. 1996. El límite sur de distribución de Zostera marina L. y Phyllospadix torreyi Watson para el noroeste mexicano. Oceánides, 11 (1): 45-48.
- 340. López Calderón, J., R. Riosmena Rodríguez, J Torre & A. Meling López. 2013. El pasto marino en el Golfo de California: estado actual y amenazas. CONABIO. *Biodiversitas*, 97: 20-15.
- 341. Biodiversidad mexicana. 2007. Disponible en: http://www.biodiversidad.gob.mx/ecosistemas/praderasPastos.html. (Acceso: 1st October 2017)
- 342. iSpecies. 2017. Disponible en: https://ispecies.herokuapp.com/. (Acceso: 1st October 2017)
- 343. Norris, J.N. 1994. Marine Algae of the Morthern Gulf of California: Chlorophyta and Phaeophyceae. Smithsonian contributions to botany. Number 94. 276 pp.
- 344. Markager S. & K. Sand-Jensen. 1992. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88: 83-92.
- 345. Núñez Millán E. 1986. Distribución y composición del fitoplancton en El Golfo de California, durante 1982-1984. Tesis de maestría. Centro de investigación científica y de educación superior de Ensenada. Ensenada- Baja California. 65 p.
- 346. Ochoa J.L., D.U. Hernández-Becerril, S. Lluch-Cota, B.O. Arredondo-Vega, E. Núñez-Vázquez, A. Heredia-Tapia, J. Pérez-Linares & R. Alonso-Rodríguez. 2002. Marine biotoxins and harmful algal blooms in Mexico's Pacific littoral. PICES Scientific Report No. 23. 13 p.
- 347. UBIO. 2017. Disponible en: www.ubio.org. (Acceso: 1st October 2017)
- 348. Galland G.R. & S.L. Pennebaker. 2012. A benthic diatom bloom in the Gulf of California, Mexico. BioInvasions Records, 1: 65-69.
- 349. Siqueiros-Beltrones D.A., U. Argumedo-Hernández, J.M. Murillo-Jiménez & A.J. Marmolejo-Rodríguez. 2014. Diversidad de diatomeas bentónicas marinas en un ambiente ligeramente enriquecido con elementos potencialmente tóxicos. Diversity of benthic marine diatoms in an environment lightly enriched with potentially toxic elements. *Revista Mexicana de Biodiversidad*, 85: 1065-1085.
- 350. Morquecho Escamilla L. 2004. Estudio de la dinámica poblacional de dinoflagelados en Bahía Concepción, Golfo de California: Relación entre las fases quística y vegetativa. Tesis de doctorado. Centro de investigaciones biológicas del noroeste, S.C. La Paz. B.C.S. 75 p.
- 351. Zakharova Y.R., Y.P. Galachyants, M.I. Kurilkina, A.V. Likhoshvay, D.P. Petrova, S.M. Shishlyannikov, N.V. Ravin, A.V. Mardanov, A.V. Beletsky & Y.V. Likhoshway. 2013. The structure of microbial community and degradation of Diatoms in the deep Near-Bottom layer of lake Baikal. PLoS ONE 8(4): e59977.
- 352. Ochoa J.L. 2003. ENSO phenomenon and toxic red tides in Mexico. Geofísica Internacional, 42 (3): 505-515.
- 353. GBIF. 2017. <u>www.gbif.org</u>. Acceso libre y gratuito a los datos de biodiversidad. Disponible en: https://doi.org/10.15468/dl.ywhpmz. (Acceso: 1st Octubre 2017)
- 354. Encyclopedia of life (EOL). 2017. Disponible en: <u>www.eol.org</u>. Global access to knowledge about life on Earth. (Acceso: 1st October 2017)
- 355. Gárate-Lizárraga I., Y.B. Okolodkov & R. Cortés-Altamirano. 2016. Microalgas formadoras de florecimientos algales en el Golfo de California. 18 p. En: García-Mendoza, E., Quijano-Scheggia, S. I., Olivos-Ortiz, A. y Núñez-Vázquez, E. J. (eds.). 2016. Florecimientos Algales Nocivos en México. Ensenada, México. CICESE. 438 p.
- 356. Okolodkov Y.B. & I. Gárate-Lizárraga. 2006. An annotated checklist of dinoflagellates (Dinophyceae) from the Mexican pacific. *Acta Botanica Mexicana*, 74: 1-154.
- 357. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Enciclovida. (2017). Disponible en: http://www.enciclovida.mx/. (Acceso: 1st October 2017)
- 358. Froese, R. & Pauly, D. Fishbase. (2017). Disponible en: http://www.fishbase.org/. (Acceso: 1st October 2017)
- 359. GBIF. Global Biodiversity Information System (GBIF.org). (2017). Disponible en: https://doi.org/10.15468/dl.ywhpmz. (Acceso: 20th July 2010)
- 360. iSpecies (A simple mashup of species information). (2017). Disponible en: http://ispecies.org/. (Acceso: 1st July 2017)
- 361. Intergovernmental Oceanographic Commission of UNESCO, I. Ocean biogeographic information system (OBIS). (2017). Disponible en: http://www.iobis.org/about/. (Acceso: 20th July 2010)
- 362. Aceves-Medina, G. et al. Fish larvae from the Gulf of California. Sci. Mar. 67, 1–11 (2003).
- Balart, E. F., Castro-Aguirre, J. L., Aurioles-Gamboa, D., García-Rodríguez, F. & Villavicencio-Garayzar, C. Adiciones a la ictiofauna de Bahía de la Paz, Baja California Sur, México. *Hidrobiológia* 7, 79–85 (1995).
- Del Moral-Flores, L. F., González-Acosta, A. F., Espinosa-Pérez, H., Ruiz-Campos, G. & Castro-Aguirre, J. L. Lista anotada de la ictiofauna de las islas del golfo de California, con comentarios sobre sus afinidades zoogeográficas. *Rev. Mex. Biodivers.* 84, 184–214 (2013).
- 365. Aburto-Oropeza1, *, O. & Balart2, E. F. Community Structure of Reef Fish in Several Habitats of a Rocky Reef in the Gulf of California. Mar. Ecol. 22, 283–305 (2001).
- 366. Hobson, E. S. Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 1965, 291–302 (1965).

- 367. University of Michigan, M. of zoology. Animal diversity web (ADW). (2017). Disponible en: http://animaldiversity.org/. (Acceso: 1st October 2017)
- Sala, E., Aburto-oropeza, O., Paredes, G. & Thompson, G. Spawning Aggregations and Reproductive Behavior of Reef Fishes in the Gulf of California. 72, 103–121 (2003).
- Palacios-Salgado, D. S., Ramírez-Valdez, A., Rojas-Herrera, A. A., Amores, J. G. & Melo-García, M. A. Marine fishes of Acapulco, Mexico (Eastern Pacific Ocean). *Mar. Biodivers*. 1–20 (2014). doi:10.1007/s12526-014-0209-4
- 370. Schuh, R. T., Hewson-Smith, S. & Ascher, J. S. Discover life. Specimen databases: A case study in entomology using web-based software. (2010). Disponible en: http://www.discoverlife.org/. (Acceso: 1st October 2017)
- 371. Castro-Aguirre, J. L., González-Acosta, A. F. & de la Cruz-Agüero, J. Lista anotada de las especies ícticas anfipacíficas, de afinidad boreal, endémicas y anfipeninsulares del Golfo de California, México. Univ. y Cienc. 21, 85–106 (2005).
- Palacios-Salgado, D. S., Burnes-Romo, L. A., Tavera, J. J. & Ramírez-Valdez, A. Endemic fishes of the cortez biogeographic province (Eastern Pacific Ocean). Acta Ichthyol. Piscat. 42, 153–164 (2012).
- 373. California Natural Resources Agency. California department of fish and wildlife. (2017). Disponible en: https://nrm.dfg.ca.gov/. (Acceso: 1st October 2017)
- 374. Brinton, E. & Townsend, A. W. Euphausiids in the Gulf of California the 1957 cruises. *Calif. Coop. Ocean. Fish. Investig. Reports* 21, 211–236 (1980).
- 375. BioInformatics, E. Marine species identification portal. (2017). Disponible en: http://species-identification.org/index.php. (Acceso: 1st July 2017)
- 235Aburto-Oropeza, O., Erisman, B., Valdez-Ornelas, V. & Danemann, G. Commercially important serranid fishes from the Gulf of California. Ecology, fisheries and conservation. *Cienc. y Conserv.* 2008, 1–23 (2008).
- 377. Palma, S. G. Plancton marino de las aguas circundantes al archipiélago de Juan Fernández. Investig. Mar. (1985).
- 378. Carefoot, T. A snail's odyssey. (2017). Disponible en: http://www.asnailsodyssey.com. (Acceso: 1st October 2017)
- 379. Ramirez, F. C. Cladocera. Atlas del Zooplankt. del Atl. Sudoccidental 7, 936 (1981).
- 380. Animal life resource. (2017). Disponible en: http://animals.jrank.org/. (Acceso: 1st October 2017)
- 381. Nicol, S. Understanding krill growth and aging: the contribution of experimental studies. *Can. J. Fish. Aquat. Sci.* 57(S3), 168–177 (2000).
- 382. Lipps, J. H. & Valentine, J. W. The role of foraminifera in the trophic structure of marine communities. Lethaia 3, 279–286 (1970).
- 383. Hofmann, D. Coelenterate Biology 2003. 178, (2004).
- Whatley, R. C., Staunton, M. & Kaesler, R. L. The depth distribution of recent marine Ostracoda from the southern Strait of Magellan. J. Micropalaeontology 16, 121–130 (1997).
- 385. Benson, R. H. Ecology of Recent Ostracodes of the Todos Santos Bay Region, Baja California, Mexico. *Kansas Univ. Paleontol. Contrib.* Arthropoda, 1–80 (1959).
- 386. Alder, V. A. Protistas marinos. in Los invertebrados marinos 354 (Fundación de historia natural Félix de Azara, 2014).
- 387. Benson, R. N. Holocene radiolaria from sediments of the Gulf of California. Thesis (University of Minneapolis, 2005).
- 388. Matsuoka, A. Living radiolarian feeding mechanisms: New light on past marine ecosystems. Swiss J. Geosci. 100, 273–279 (2007).
- 389. Lazarus, D. A brief review of radiolarian research. *Paläontologische Zeitschrift* 79, 183–200 (2005).
- 390. Yount, J. L. Distribution and Ecologic Aspects of Central Pacific Salpidae (Tunicata). Pacific Sci. 12, 111–130 (1958).
- 391. Maeda-Martínez, A. N. Estado actual del cultivo de bivalvos en México. Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura (2008).
- 392. Galindo-Jaramillo, J. M., Y-Loa-Loza, J. M. & Eleazar, L. Marco jurídico e institucional para el uso y la conservación de la biodiversidad. in *La diversidad biológica de México: Estudio de País* 238–283 (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio), 1998).
- 393. IUCN. Global invasive species database. (2017). Disponible en: http://www.iucngisd.org/gisd/species.php?sc=1080. (Acceso: 1st October 2017)
- 394. Smithsonian marine station, at F. P. Bugula neritina Linnaeus, 1758. (2017). Disponible en: http://www.sms.si.edu/IRLSpec/Bugula_neriti.htm. (Acceso: 20th July 2010)
- 395. Bieri, R. Feeding preferences and rates of the snail Ianthina prolongata, the barnacle Lepas anatifera, the nudibranchs Glaucus atlanticus and Fiona pinnata, and the food web in the marine neuston. *Publ. Seto Mar. Biol. Lab.* 14, 161–170 (1966).
- 396. Alvariño_A_1969_Quetognatos_Sifonoforos_Medusas_Diet018.pdf.
- 397. Palomares, M. L. D. & Pauly, D. SeaLifeBase. World wide web electronic publication. (2017). Disponible en: http://www.sealifebase.org/. (Acceso: 1st October 2017)
- Gómez-Noguera, S. E. Hendrickx, M. E. Distribution and abundance of meiofauna in a Subtropical Coastal Lagoon in the south-eastern Gulf of California, Mexico. *Mar. Pollut. Bull.* 34, 582–587 (1997).
- 399. Giere, O. & Pfannkuche, O. Biology and ecology of marine Oligochaeta, a review. Ocean. mar. Biol 20, 173-308 (1982).
- Bastida-Zavala, J. R. Poliquetos (Annelida: Polychaeta) del arrecife coralino de Cabo Pulmo-Los Frailes, BCS, México. Rev. Zool. 6, 9– 29 (1995).
- 401. Carvallo, J. L. & Gómez, P. Las esponjas marinas de Sinaloa: un recurso desconocido en nuestro litoral. Atlas de los ecosistemas de Sinaloa. (2002).
- 402. Flores Coto, C., Arellanes, H. L., Sánchez Robles, J. & López Serrano, A. Composition, abundance and distribution of Pteropoda (Mollusca: Gastropoda) on the neritic zone, at the Southern Gulf of Mexico (August, 1995). *Hidrobiologica* 23, 3348–364 (2013).
- 403. WoRMS Editorial Board. World Register of Marine Species. (2017). Disponible en: http://www.marinespecies.org. (Acceso: 1st October 2017)
- 404. The mantis shrimp. (2017). Disponible en: http://themantisshrimp.weebly.com/index.html. (Acceso: 1st October 2017).
- 405. Caldwell, R. L. & Holthuis, L. B. Stomatopoda. (McGraw-Hill Education, 2014). doi:https://doi.org/10.1036/1097-8542.657400
- 406. Granja-Fernández, R. et al. Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. Zookeys 406, 101–145 (2014).

- 407. Herrero-Pérezrul, M. D., Reyes-bonilla, H., González-Azcárraga, A., Cintra-Buenrostro, C. E. & Rojas-Sierra, A. Aspectos bioecológicos. in *Equinodermos* 339–362 (2003).
- Solís-Marín, F. A., Laguarda-Figueras, A. & Honey-Escandón, M. Biodiversidad de equinodermos (Echinodermata) en M??xico. Rev. Mex. Biodivers. 85, 441–449 (2014).
- Solís-Marín, F. A., Laguarda-Figueras, A., Durán-González, A., Ahearn, C. G. & Torres Vega, J. Equinodermos (Echinodermata) del Golfo de California, México. *Rev. Biol. Trop.* 53 Suppl 3, 123–137 (2005).
- 410. Greenfield, D. W. Systematics and zoogeography of Myripristis in the Eastern Tropi- cal Pacific. Calif. fish game 51, 229–247 (1965).
- 411. Cobb, S. P., Futch, C. R. & Camp, D. K. The rock shrimp, Sicyonia brevirostris Stimpson, 1871 (Decapoda, Penaeidae). *Memoirs of the Hourglass Cruises* 3, 1–38 (1973).
- 412. Bauer, R. T. Testing generalizations about latitudinal variation in reproduction and recruitment patterns with sicyoniid and caridean shrimp species. *Invertebr. Reprod. Dev.* 22, 193–202 (1992).
- 413. Romero-Sedano, J. C., Aragón-Noriega, E. A., Manzano-Sarabia, M. M., Salinas-Zavala, C. A. & García-Juárez, A. R. Periodo reproductivo del camarón café Farfantepenaeus californiensis (Holmes, 1900) en la laguna costera de Agiabampo, Sonora/Sinaloa, México. *Ciencias Mar.* 30, 465–475 (2004).
- 414. Holthuis. Shrimps and Prawns of the World. An Annotated Catalogue of Species of Interest to Fisheries.L.B. FAO Fish. Synopsis 1, 1–4 (1980).
- 415. Flores-anduaga, J. & Hendrickx, M. E. Pelagic shrimps (Decapoda : Dendrobranchiata and Caridea) collected during the TALUD XIV cruise in the northern Gulf of. 22, 33–40 (2014).
- 416. Hendrickx, M. E. & Estrada-Navarrete, F. D. A checklist of the species of pelagic (Penaoidea and Caridean) from the eastern pacific, with notes on their geographic and depth distribution. *Unam* 30__, 104–121 (1989).
- 417. Scripps Institution of Oceanography, University of California–San Diego. Oceanographic collections. (2017). Disponible en: https://scripps.ucsd.edu/collections. (Acceso: 1st October 2017)
- 418. Hendrickx, M. E. The species of Sicyonia H. Milne Edwards (Crustacea :Penaeoidea) of the Gulf of California, México, with a key for their identification and a note on their zoogeography. *Biol. Trop.* 32, 298–1984 (1984).
- 419. Pérez-Farfante, I. The rock shrimp genus Sicyonia (Crustacea: Decapoda: Penaeoidea) in the Eastern Pacific. Fish. Bull. 83, 1–45 (1985).
- 420. Aurioles-Gamboa, D. Inshore-offshore movements of pelagic red crabs Pleuroncodes planipes (Decapoda, Anomura, Galatheidae) off the Pacific coast of Baja California Sur, Mexico. *Crustaceana* 62, 71–84 (1992).
- 421. Longhurst, A. R. The pelagic phase of Pleuroncodes planipes Stimpson (Crustacea, Galatheidae) in the California current. *Calif. Coop. Ocean. Fish. Investig. Reports* 11, 142–154 (1967).
- 422. Longhurst, A. R., Lorenzen, C. J. & Thomas, W. H. The Role of Pelagic Crags in the Grazing of Phytoplankton Off Baja California. *Ecology* 48, 190–200 (1967).
- 423. Adreani, M. S. & Allen, L. G. Mating System and Reproductive Biology of a Temperate Wrasse, Halichoeres semicinctus. *Copeia* 2008, 467–475 (2008).
- 424. Hernández, L. & Arreola-Lizárraga, J. A. Estructura de tallas y crecimiento de los cangrejos Callinectes arcuatus y C. bellicosus (Decapoda: Portunidae) en la laguna costera Las Gu??simas, M??xico. *Rev. Biol. Trop.* 55, 225–233 (2007).
- 425. Lara, V. C. De, Gómez-rojo, C. & D, J. C. C. Buenas prácticas de pesca de jaiba guerrera Callinectes bellicosu s en Baja California Sur , México. 53–64 (2015).
- López-Martínez, J., López-Herrera, L., Valdez-Holguín, J. E. & Rábago-Quiroz, C. H. Population dynamics of the swimming crabs Callinectes (Portunidae) components of shrimp bycatch in the eastern coast of the Gulf of California. *Rev. Biol. Mar. Oceanogr.* 49, 17– 29 (2014).
- 427. Arreola-Lizárraga, J. A. *et al.* Ecology of Callinectes Arcuatus and C. bellicosus (Decapoda, Portunidae) in a coastal lagoon of northwest, Mexico. *Crustaceana* 76, 651–664 (2003).
- 428. Hendrickx, M. E. Estudio de la fauna marina y costera del sur de Sinaloa, México. III. Clave de identificación de los cangrejos de la familia portunidae (Crustacea: Decapoda). An. del Inst. Ciencias del Mar y Linnol. (1983).
- 429. Morales-Bojórquez, E. *et al.* Abundancia poblacional del calamar gigante (Dosidicus gigas) en las costas de Sonora, México. *Cienc. Pesq.* 21, 5–13 (2013).
- Markaida, U. Food and feeding of jumbo squid Dosidicus gigas in the Gulf of California and adjacent waters after the 1997-98 El Niño event. Fish. Res. 79, 16–27 (2006).
- 431. Ibarra-garcía, L. E., Camarillo-coop, S. & Salinas-zavala, C. A. Evaluación del canibalismo en el calamar gigante Dosidicus gigas en el Golfo de California Cannibalism assessment of jumbo squid Dosidicus gigas from the Gulf of California. 24, 51–56 (2014).
- 432. Brito-Castillo, L., Alcántara-Razo, E., Morales-Azpeitia, R. & Salinas-Zavala, C. A. Ciencias Marinas ISSN: 0185-3880 Universidad Autónoma de Baja California México Brito Castillo, L.; Alcántara Razo, E.; Morales Azpeitia, R.; Salinas Zavala, C. A. Temperaturas del golfo de california durante mayo y junio de 1996 y su relación c. *Ciencias Mar.* 26, 413–440 (2000).
- 433. Ruiz-Castro, R. Relación trófica entre el cachalote (Physeter macrocephalus) y el calamar gigante (Dosidicus gigas) en el Golfo de California mediante el análisis de isótopos estables de carbono y nitrógeno. *Cicimar* Maestría e, 48 p. (2002).
- 434. Molina-arenas, G. SIZE DISTRIBUTION OF THE Sthenoteuthis- Dosidicus COMPLEX IN RELATION WITH THE ENVIRONMENT IN THE GULF OF ... (2017).
- 435. Ramos-Castillejo, J. E. Análisis morfológico y genético de las paralarvas Rhynchoteuthion del calamar gigante Dosidicus gigas (Dórbigny, 1835) y del calamar púrpura Sthenoteuthis oualaniensis (Lesson, 1830). (Centro de Investigaciones Biológicas del Noroeste (CIBNOR), 2007).
- 436. Roper, F. E. C., Sweeney, M. J. & Nauen, C. E. Cephalopods of the world. FAO Species Cat. 3, (1984).
- 437. Arizmendi-Rodríguez, D. I., Salinas-Zavala, C. a, Quiñonez-Velazquez, C. & Mejia-Rebollo, A. Abundance and distribution of the Panama brief squid, Lolliguncula panamensis (Teuthida: Loliginidae), in the Gulf of California. *Ciencias Mar.* 38, 31–45 (2011).
- 438. Alejo-Plata, M. del C., Gómez-Márquez, J. L. & Herrera-Galindo, J. E. Tallas, sexos y madurez del calamar dardo Lolliguncula diomedeae (Cephalopoda: Loliginidae) en el Golfo de Tehuantepec, México. *Cuad. Investig. UNED* 7, 79–87 (2015).

- 439. California Academy of Science. Red iNaturalist. (2017). Disponible en: https://www.inaturalist.org/. (Acceso: 1st October 2017)
- 440. Watanabe, H., Kubodera, T. & Moku, M. Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific. *Mar. Ecol. Prog. Ser.* 315, 187–197 (2006).
- 441. Ochoa-Diaz, R. Espectro trófico del tiburón martillo Sphyrna zygaena (LLinnaeus, 1758) en Baja California Sur: aplicación de δ13C Y δ15N. Maestría (2009). doi:10.1080/17451000.2016.1267366
- 442. Aguilar-Castro, N. A. & Galván-Magaña, F. Ecología trófica de juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) en el Golfo de California. *Dep. Pesq. y Biol. Mar.* Maestría e, 113 (2003).
- 443. Neves, A., Sequeira, V., Vieira, A. R., Paiva, R. & Gordo, L. S. Feeding habits of the cuttlefish sepia officinalis during its life cycle in the sado estuary (Portugal). *Hydrobiologia* 636, 479–488 (2009).
- 444. Hochscheid, S., Godley, B. J., Broderick, A. C. & Wilson, R. P. Reptilian diving: Highly variable dive patterns in the green turtle Chelonia mydas. *Mar. Ecol. Prog. Ser.* 185, 101–112 (1999).
- 445. Rice, M. R. & Balazs, G. H. Diving behavior of the Hawaiian green turtle (Chelonia mydas) during oceanic migrations. J. Exp. Mar. Bio. Ecol. 356, 121–127 (2008).
- 446. Uetz, P., Freed, P. & Hošek, J. The reptile database. (2017). Disponible en: http://www.reptile-database.org. (Acceso: 1st October 2017)
- 447. Texas State University San Marcos. Mugil cephalus. Striped mullet. (2013). Disponible en: http://txstate.fishesoftexas.org/mugil cephalus.htm.
- 448. The Cornell Lab of Ornithology. All about birds. (2017). Disponible en: https://www.allaboutbirds.org/. (Acceso: 1st October 2017)
- 449. Mellink, E., Palacios, E. & Amador, E. Colonies of Four Species of Terns and the Black Skimmer in Western Mexico. *Waterbirds* 30, 358–366 (2007).
- 450. Hinojosa-Huerta, O., DeStefano, S., Carillo-Guerrero, Y., Shaw, W. & Valdes, C. Waterbird communities and associated wetlands of the Colorado River Delta, Mexico. *Stud. Avian Biol.* 27, 52–69 (2004).
- 451. Museums Victoria. Fishes of Australia. Disponible en: http://fishesofaustralia.net.au/.
- 452. Howell, S. N. G. Introduction. Petrels, Albatrosses, Storm-Petrels North Am. 49 (2012).
- 453. Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. *Rev. Fish Biol. Fish.* 21, 339–354 (2011).
- 454. Kozlov, a. A review of the trophic role of mesopelagic fish of the family Myctophidae in the Southern Ocean ecosystem. *CCAMLR Sci.* 2, 71–77 (1995).
- 455. Mellink, E., Castillo-Guerrero, J. A. & Peñaloza-Padilla, E. Development of Diving Abilities by Fledgling Brown Boobies (*Sula leucogaster*) in the Central Gulf of California, México. *Waterbirds* 37, 451–456 (2014).
- Guevara-Medina, M., Castillo-Guerrero, J. A. & Gonzalez-Bernal, M. A. Presencia y abundancia de aves de la isla Farallón de San Ignacio, Sinaloa. *Huitzil* 9, 20–28 (2008).
- 457. Aguirre-Villaseñor, H. & Castillo-Velázquez, R. New depth record of Cherublemma emmelas, black brotula (Ophidiiformes: Ophidiidae) from the Gulf of California, Mexico. *Rev. Mex. Biodivers.* 82, 713–715 (2011).
- Torres-G., A., Esquivel-M, C. & Ceballos, G. Diversidad y Conservación de los Mamíferos Marinos en México. Revista Mexicana de Mastozoología 1, 22–43 (1995).
- 459. Tershy, B. R., Breese, D. & Strong, C. S. Abundance, seasonal distribution and population composition of balaenopterid whales in the Canal de Ballenas, Gulf of California, Mexico. *Report International Whaling Commission, Special Issue* 12, 369–375 (1990).
- 460. Tershy, B. R. 1992. Body size, diet, habitat use, and social behavior of Balaenoptera whales in the Gulf of California. *J. Mammal.* 73, 477–486.
- 461. Sánchez-Gil, P. *et al.* Ecological and biological strategies of Etropus crossotus and Citharichthys spilopterus (Pleuronectiformes: Paralichthyidae) related to the estuarine plume, Southern Gulf of Mexico. J. Sea Res. 59, 173–185 (2008).
- 462. Martínez-Muñoz, M. A. & Ortega-Salas, A. A. Growth and mortality of the fish Citharichthys xanthostigma (Pleuronectiformes: Paralichthyidae) off the Western coast of Baja California, México. *Rev. Biol. Trop.* 58, 689–705 (2010).
- 463. Bruns, N. The Morphological and Genetic Similarity Among Three Species of Halibut (Paralalichthys spp.) from Baja California, Mexico. (2012).
- 464. López-Martínez, J., Acevedo-Cervantes, A., Herrera-Valdivia, E., Rodríguez-Romero, J. & Palacios-Salgado, D. S. Composición taxonómica y aspectos zoogeográficos de peces de profundidad (90-540m) del Golfo de California, México. *Rev. Biol. Trop.* 60, 347– 360 (2012).
- 465. Jaquet, N. & Gendron, D. Distribution and relative abundance of sperm whales in relation to key environmental features, squid landings and the distribution of other cetacean species in the Gulf of California, Mexico. *Mar. Biol.* 141, 591–601 (2002).
- 466. Snow, J. Mexico: Fish, marine life, birds and terrestrial life (Vinciguerria lucetia). (2017). Disponible en: https://www.mexican-fish.com/panama-lightfish/.
- 467. Vojkovich, M. & Reed, R. J. White seabass, Atractoscion nobilis, in California-Mexican waters: tatus of the fishery. *Calif. Coop. Ocean. Fish. Investig. Reports* XXIV, 79–83 (1983).
- 468. Bizzarro, J. J. et al. Spatial segregation in Eastern North pacific skate assemblages. PLoS One 9, (2014).
- Galván-Magaña, F., Hoyos-Padilla, E. M., Navarro-Serment, C. J. & Márquez-Farías, F. Records of white shark, Carcharodon carcharias, in the Gulf of California, Mexico. *Mar. Biodivers. Rec.* 3, e111 (2010).
- 470. Godknecht, A. J., Guex, G. D. & Kindlimann, R. J. Shark foundation. (2007). Disponible en: http://www.shark.ch/. (Acceso: 1st October 2017)
- 471. Walker Jr, H. J. & Radford, K. W. Eastern Pacific species of the genus Umbrina (Pisces: Sciaenidae) with a description of a new species. Especies del Pacífico oriental del género Umbrina (Pisces: Sciaenidae) con la descripción de una nueva especie. *Fish. Bull.* 90, 574–587 (1992).
- 472. Salomón-Aguilar, C. A., Villavicencio-Garayzar, C. J. & Reyes Bonilla, H. Shark breeding grounds and seasons in the Gulf of California: Fishery management and conservation strategy. *Ciencias Mar.* 35, 369–388 (2009).

- 473. Ortega-García, S., Villa-Arce, A. & Rodríguez-Sánchez, R. Pesquería de atún. in *Estudio del potencial pesquero y acuícola de Baja California Sur* (eds. Casas-Valdez, M. & Ponce-Díaz, G.) II, 351–388 (1996).
- 474. Loury, E. K. Diet of the Gopher Rockfish (Sebastes carnatus) Inside and Outside of Marine Protected Areas in Central California. *Calif. Sea Grant Coll. Progr.* (2011).
- Magnuson-Ford, K., Ingram, T., Redding, D. W. & Mooers, A. Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing. *Biol. Conserv.* 142, 1787–1796 (2009).
- 476. Hobson, E. S. & Chess, J. R. Relationships among fishes and their prey in a nearshore sand community off southern California. *Environ. Biol. Fishes* 17, 201–226 (1986).
- 477. Golani, D. The biology of the Red Sea migrant, *Saurida undosquamis* in the Mediterranean and comparison with the indigenous confamilial *Synodus saurus* (Teleostei: Synodontidae). *Hydrobiologia* 271, 109–117 (1993).
- 478. Esposito, V. *et al.* Diet of Atlantic lizardfish, Synodus saurus (Linnaeus, 1758) (Pisces: Synodontidae) in the central Mediterranean Sea. *Sci. Mar.* 73, 369–376 (2009).
- 479. Stergiou, K. I. & Karpouzi, V. S. Feeding habits and trophic levels of Mediterranean fish. Reviews in Fish Biology and Fisheries 11, (2001).
- 480. Snow, J. Mexico: Fish, marine life, birds and terrestrial life. (2017). Disponible en: https://www.mexican-fish.com/california-smoothtongue/. (Acceso: 1st October 2017)
- 481. Martins, A. S., Haimovici, M. & Palacios, R. Diet and feeding of the cutlassfish Trichiurus lepturus in the Subtropical Convergence Ecosystem of southern Brazil. *J. Mar. Biol. Assoc. United Kingdom* 85, 1223–1229 (2005).
- 482. Rohit, P., Rajesh, K. M., Sampathkumar, G. & Sahib, P. K. Food and feeding of the ribbonfish Trichiurus lepturus Linnaeus off Karnataka , south-west coast of India. *Indian J. Fish* 62, 58–63 (2015).
- 483. González-Ochoa, O. A., López-Martínez, J. & Hernández-Saavedra, N. Y. Darkedge Midshipman Porichthys analis (batrachoidiformes: Batrachoididae), a common shrimp-bycatch fish from the Gulf of California. *Rev. Biol. Trop.* 60, 1795–1805 (2012).
- 484. Walker, A. H. J., Rosenblatt, R. H., Walker Jr, H. & Rosenblatt, R. H. Pacific Toadfishes of the Genus Porichthys (Batrachoididae) with Descriptions of Three New Species. *Copeia* 1988, 887–904 (1988).

ANEXO III. CÓDIGO EN R

Construcción de la Edge list o lista de interacciones

```
      G <- read.table(file = "G.txt", header = TRUE, sep = "\t")</td>
      # Importación de la matriz de dietas

      II <- length(which(G!=0))</td>
      # Número de interacciones

      EDGE <- data.frame(cbind(rep(NA,II),rep(NA,II),rep(NA,II)))</td>
      # Construcción del esqueleto de la Edge list
```

```
k <- 1 # k funciona como índice del bucle
```

```
for(i in 1:nrow(G)){
                             # para cualquier nodo i en las filas de G (1 a nrow (N° filas de G))
                             # para todo depredador j en todas las filas de G
 for(j in 1:ncol(G)){
  if(G[i,j]!=0){
                             # si el valor de las coordenadas i-j es diferente de cero (=!0)
   prey <- rownames(G)[i] # la presa será el nombre de la fila i en ese punto
   pred <- colnames(G)[j] # el depredador será el nombre de la columna j en ese punto
    strength <- G[i,j]
                             # la fuerza de interacción será el valor en esa coordenada G[i,j]
    EDGE[k,1] <- prey
                          # k será la fila 1 de la Edge list en la 1° interacción y el nombre de la presa
    EDGE[k,2] <- pred
                          # k será la fila 1 de la Edge list en la 1° interacción y el nombre del depredador
    EDGE[k,3] <- strength # k será la fila 1 de la Edge list en la 1° interacción y tendrá el valor de la fila
   k <- k + 1
                          # Cada vez que se acabe el bucle, si encuentra interacción, la k valdrá (k + 1)
                          # (siguiente fila)
  }
```

```
}
```

colnames(EDGE) <- c("prey","predator","strength")# Se asignan nombres a las columnas de la Edge list

EDGE_bin <- EDGE[,-3] # se crea la Edge list binaria quitando la columna 3 (fuerza de interacción) # Se crean los archivos de las listas de interacciones con y sin fuerza de interacción en formato de texto: write.table(EDGE, file = "EL_G.txt", col.names = TRUE,row.names = FALSE, quote = FALSE, sep = "\t") write.table(EDGE_bin, file = "EL_G_bin.txt", col.names = FALSE, row.names = FALSE, quote = FALSE, sep = "\t")

De una Lista de interacciones a una Matriz de adyacencia

Dado que en el presente trabajo se presentan las interacciones en formato de lista de interacciones por motivos de espacio, ya que la matriz ocupaba 98 páginas, se presenta el código para poder convertir la lista de interacciones en una matriz de dietas o matriz de adyacencia:

```
colnames(UM) <- tot
```

```
for(i in 1:nrow(ED)){# Bucle: para todo "i" desde 1 hasta el final de la lista de interacciones,rr <- ED[i,1]</td># "rr" será el valor o carácter de la primera columnacc <- ED[i,2]</td># "cc" será el valor o carácter de la segunda columnaUM[rr,cc] <- ED[i,3] # los valores de la matriz "UM" contendrán el valor de la tercera columna "strength"</td>}# Al acabar devuelve la matriz "UM"
```

```
# Lo mismo que el anterior ejercicio, pero sin la tercera columna (matriz binaria de presencia-ausencia):
EL_bin <- read.table(file = "EL_G_bin.txt", header = TRUE, colClasses = rep("character",1), sep = "\t")
el_to_adj_bin(EL_bin)
el_to_adj_bin <- function(ED){
tot <- sort(unique(c(ED[,1],ED[,2])))
Il <- length(tot)
UM <- matrix(rep(0,II^2), nrow = II)
rownames(UM) <- tot
colnames(UM) <- tot</pre>
```

```
for(i in 1:nrow(ED)){
    rr <- ED[i,1]
    cc <- ED[i,2]
    UM[rr,cc] <- 1  # Aquí está la diferencia con el bucle anterior (el valor, si hay interacción será de 1)
    }
    return(UM)
}</pre>
```

```
MAT_bin <- el_to_adj(EL_bin)</th># Se crea y se salva la matriz binariaMAT_W <- el_to_adj_w(EL_W)</td># Se crea y se salva la matriz con fuerza de interacción
```

```
write.table(MAT_bin, file = "MAT_bin.txt", col.names = TRUE, row.names = FALSE, quote = FALSE,
sep = " ")
```

```
write.table(MAT_W, file = "MAT_W.txt", col.names = TRUE, row.names = FALSE, quote = FALSE, sep
= " ")
```

Análisis con el paquete Igraph (Diversidad, conectancias, densidad, grados del nodo (promedio, máximo, mínimo), distancia media etc.)

library("igraph")

Se crea el grafo a partir de la lista de interacciones

g_G_bin <- read_graph ("EL_G_bin.txt", format = c("ncol"), directed = TRUE)

V(g_G_bin) # nodos de la red

E(g_G_bin) # interacciones de la red	
--------------------------------------	--

 $length(V(g_G_bin))$ # N° de nodos

 $length(E(g_G_bin))$ # N° de interacciones

is.connected(g_G_bin) # ¿está conectada? (¿algún nodo sin conectar?)

is.directed(g_G_bin) # ¿está dirigida? (dirección del flujo de energía)

 $S \le vcount(g_G_bin) \# S = N^\circ$ de nodos = diversidad de la red trófica. "v" refiere a "vértices" (nodos) L <- ecount(g_G_bin) \# L = N° de interacciones o Links. "e" refiriéndose a "edges" (interacciones)

Link_D <- L/S # conectancia o Link density (Cohen, 1977)

con_G_bin <- L/S^2 # conectancia directa (S² incluye ciclos y canibalismo)

con_Interactiva <- L/(S*(S-1)/2) # conectancia interactiva (Martinez, 1991). S-1 quita el canibalismo, dividir entre 2 quita los ciclos. Se quedan sólo las interacciones de una parte de la diagonal de la matriz

edge_density(g_G_bin, loops = FALSE) # densidad de interacciones o ratio entre interacciones existentes y posibles

distances(g_G_bin) # longitud de todos los caminos más cortos (longitud de las distancias geodésicas) mean_distance(g_G_bin, directed = TRUE) # pasos promedio de las distancias geodésicas de la red diameter(g_G_bin, directed = TRUE) # número de nodos del camino geodésico más largo farthest_vertices(g_G_bin, directed = TRUE) # nodos más alejados sum(degree(g_G_bin))/length(V(g_G_bin)) # promedio del grado del nodo g_Degree <- degree(g_G_bin) # grados del nodo

max(g_Degree)	# grado del nodo máximo
min(g_Degree)	# grado del nodo más bajo

Análisis con el paquete Cheddar

library(cheddar)

Mientras que Igraph trabajaba con grafos, Cheddar trabaja con objetos llamados "comunidad" Se debe de colocar una carpeta con nombre "PWS" en el directorio que utilicemos La carpeta debe de contener 3 archivos formato ".csv":

- 1. nodes.csv: 3 columnas→ node (los nombres de los nodos); N (id numérica); taxa (taxón)
- 2. properties.csv: información de la red; 3 columnas → title (GulfCal; hábitat (marine); N.units

3. trophic.links.csv: la lista de interacciones; 3 columnas → resource; consumer; biomass.flow
Se indica la ruta donde está nuestra carpeta PWS con los 3 archivos .csv
load_path <- "C:/Users/ruben/Desktop/Tesis_CICIMAR/PWS"

GC <- LoadCommunity(load_path)	# se le da nombre a la comunidad, en este caso "GC"
save_path <- "C:/Users/ruben/Desktop/	Tesis_CICIMAR " # para guardar el objeto "community"
head(TLPS(GC))	
GC_Bin <- PredationMatrix(GC, weight	= NULL) # se crea la matriz binaria
GC_W <- PredationMatrix(GC, weight =	biomass.flow") # se crea la matriz con peso de interacción
S_GC <- NumberOfNodes(GC) #	N° de nodos
L_GC <- NumberOfTrophicLinks(GC) #	* N° de interacciones
TrophicLinkPropertyNames(GC) #	resumen de los atributos de la red
sum(TLPS(GC)[,"biomass.flow"]) # s	suma de la cantidad de flujos de biomasa
LinkageDensity(GC) #0	Conectancia (Link density) (Cohen, 1977)
DirectedConnectance(GC) #	Conectancia directa (Martínez, 1991). Incluye canibalismo
## Otra forma de comprobar si existe ca	anibalismo:
IsCannibal(GC)	# ¿Hay canibalismo en la comunidad?
can_spp <- which(IsCannibal(GC)==TR	UE) # ¿Quiénes son los caníbales?
length(which(IsCannibal(GC)==TRUE))	# ¿cuántas interacciones de canibalismo existen?
B_GC <- BasalNodes(GC)	# nombres de las especies basales
FB_GC <- FractionBasalNodes(GC)	# %B: fracción de especies basales
I_GC <- IntermediateNodes(GC)	# nombres de las especies intermedias
FI_GC <- FractionIntermediateNodes(G	iC) # %I: fracción de especies intermedias
T_GC <- TopLevelNodes(GC)	# nombres de los depredadores tope

FT_GC <- FractionTopLevelNodes(GC) # %T: fracción de depredadores tope

length(NonBasalNodes(GC))	# N° de especies basales
length(NonTopLevelNodes(GC))	# N° de especies no depredadores tope
FractionNonBasalNodes(GC)	# fracción de nodos no basales
FractionNonTopLevelNodes(GC)	# fracción de nodos no depredadores tope
IsolatedNodes(GC)	# lista de nodos desconectados
FractionIsolatedNodes(GC)	# proporción de nodos desconectados
ConnectedNodes(GC)	# lista de nodos conectados
FractionConnectedNodes(GC)	# proporción de nodos conectados

Cálculo de %B, %I, %T y sus proporciones relativas (Manualmente), sin paquetes:

B_GC2 <- names(which(apply(GC_W,2,sum)==0)) # ¿Qué columnas suman cero y quiénes son? FB_GC2 <- length(B_GC2)/S_GC # %B: especies basales entre las especies totales I_GC2 <- names(which(apply(GC_W,2,sum)!=0 & apply(GC_W,1,sum)!=0)) # condición: especies intermedias deben de ser diferentes de cero la suma de sus columnas o filas # (en paréntesis para considerar ambas al mismo tiempo) FI_GC2 <- length(I_GC2)/S_GC # %I: fracción de especies intermedias entre las totales T GC2 <- names(which(apply(GC W,1,sum)==0)) # ¿Qué filas suman cero y quiénes son? FT GC2 <- length(T GC2)/S GC # %T: Fracción de depredadores tope length(B_GC) + length(I_GC) + length(T_GC) # Sumatorio de las 3 fracciones debe de ser el 100% de los nodos de la red e igual a la diversidad de la red trófica (S) length(I GC2) + length(T GC2)# N° de especies basales (Manualmente) # N° de especies no depredadores tope (Manualmente) length(B GC2) + length(I GC2) $(length(I_GC2) + length(T_GC2))/S_GC$ # fracción de nodos no basales (Manualmente) (length(I_GC2) + length(B_GC2))/S_GC # fracción de nodos no depredadores tope (Manualmente) # N° de nodos S_manu <- nrow(G) # N° de interacciones L manu <- nrow(EL G bin)

BI_links_GC <- sum(GC_Bin[B_GC,I_GC])</td># N° de interacciones entre basales e intermediasFBI_links_GC <- BI_links_GC/L_manu</td># fracción de interacciones entre basales e intermediasBT_links_GC <- sum(GC_Bin[B_GC,T_GC])</td># N° de interacciones entre basales y depredadores topeFBT_links_GC <- BT_links_GC/L_manu</td># fracción de interacciones entre basales y dep. topeII_links_GC <- sum(GC_Bin[I_GC,I_GC])</td># N° de interacciones entre especies intermediasFII_links_GC <- II_links_GC/L_manu</td># fracción de interacciones entre especiesIT_links_GC <- sum(GC_Bin[I_GC,T_GC])</td># N° de interacciones entre especies

FIT_links_GC <- IT_links_GC/L_manu # fracción de interacciones entre intermedias y depredadores tope

Links <- BI_links_GC + BT_links_GC + II_links_GC + IT_links_GC # suma de interacciones NP_GC <- (FB_GC + FI_GC)/(FI_GC + FT_GC) # N:P = (%B + %I)/(%I + %T).

Ratio de consumidores (N) por presa (P)
 CP(GC, "title")
 # Título de la comunidad creada
 CPS(GC)
 # Columnas informativas sobre el objeto "comunidad"
 NodePropertyNames(GC)
 # Atributos incluidos en el objeto "comunidad" en la carpeta de PWS
 # (archivo properties.csv)
 ResourcesByNode(GC)
 # presas de cada nodo

Cálculo de los niveles tróficos

(Levine, 1980; Williams & Martinez, 2004)
"PreyAveragedTrophicLevel" = forma binaria ; 'FlowBasedTrophicLevel' = con fuerza de interacción PA_TL_CB <- PreyAveragedTrophicLevel(GC, include.isolated = TRUE)
Niveles tróficos para la matriz binaria (sin fuerza de interacción)
CA_TL_CB <- ChainAveragedTrophicLevel(GC, include.isolated = TRUE)
Con redes muy grandes no hay capacidad de cómputo para calcularlo, un ejemplo fue la red de este # trabajo, no se pudo calcular

Se apuntan los anteriores por curiosidad, pero en el presente estudio se usó el siguiente índice:
FB_TL_CB <- FlowBasedTrophicLevel(GC, weight.by = "biomass.flow", include.isolated = TRUE)
Nivel trófico con la proporción de las presas en los depredadores (fuerza de interacción)

TL_GC_W <- sort(FB_TL_CB, decreasing = TRUE)

Índices de centralidad

Grado del nodo

in_D <- degree(g_G_bin, mode = "in")

out_D <- degree(g_G_bin, mode = "out")

all_D <- degree(g_G_bin, mode = "all")

Intermediación

dir_B <- betweenness(g_G_bin, directed = TRUE)

Cercanía

in_C <- closeness(g_G_bin, mode = "in")

out_C <- closeness(g_G_bin, mode = "out")</pre>
all_C <- closeness(g_G_bin, mode = "all")

Se crea una tabla con los distintos índices:

g_G_bin_table <- data.frame(cbind(in_D, out_D, all_D, dir_B,in_C, out_C, all_C)) colnames(g_G_bin_table) <- c("in DC","out DC","all DC","dir BW","in CC","out CC","all CC")

Índice de importancia de centralidad

Este no es realmente un índice sino un cálculo de un algoritmo. Primero elegimos el orden jerárquico eligiendo el nº de especies a considerar, pero hay que tener en cuenta que los valores cambian dependiendo el número que escoges. En este caso se utilizó el número completo de nodos en la red (317).

```
n.sp.Sanders <- 317 # cantidad de especies que queremos representar como más importantes
# Se eligen las columnas a calcular de la tabla de centralidades:
Centrality_MAT <- g_G_bin_table[,c(-1,-2,-4,-5)]
# Ranking: de la más importante a la menos:
ranking <- apply(Centrality MAT, 2, rank, ties.method="first")
# Para obtener la matriz de dominadores de los nodos más importantes se debe de ordenar
# La función "ties.method" es útil para separar los valores de los rangos. Se debe especificar el método
# a partir del cual la función "rank" dividirá los intervalos. "first" deja a la primera entrada ganar,
# el rango estará en orden numérico. Como el rango es de pequeño a más grande, se ajusta por la
inversa del valor respecto de N
N <- dim (Centrality_MAT)[1]
                                          # N será el nº de filas
                                          # m será el nº de columnas
m <- dim (Centrality_MAT)[2]
Importance_Matrix <- N - ranking +1
                                          # Nueva matriz con los valores inversos de importancia, los
                                          # más pequeños = los más importantes
ranking2 <- data.frame (matrix(data=0, nrow=N, ncol=m)) # se crea el esqueleto de una tabla para recibir
                                                        # los valores del rango
row.names (ranking2) <- row.names (Importance_Matrix) # se trasladan los valores de interés a la tabla
                                                         # rango2 dando la puntuación del rango
for(i in 1:N){
                               # para cada especie o nodo i incluido en "N" (número de nodos)
 for(j in 1:m)
                               # y cada propiedad j de 1 a m (columnas de la tabla)
  if(Importance_Matrix[i,j] <= n.sp.Sanders) ranking2[i,j] <- n.sp.Sanders-Importance_Matrix[i,j]+1
                               # agarra todos los valores
}
# Se obtiene la suma de los puntos
```

IIC <- apply(ranking2,1,sum)</th># suma las filas, es decir, los valores de cada índice para cada especieIIC <-sort(IIC, decreasing=TRUE)</td># se ordena de mayor a menorIIC <-IIC[IIC>0]# Se eligen los valores diferentes de cero. En caso de haber elegido
un np.sp.Sanders menor a S, sino no habrá ceros.

IIC_rel <- IIC*100/sum(IIC) # Se relativiza el índice

write.table (ranking, file = "ranking.txt", col.names = TRUE, row.names = FALSE, quote = FALSE, sep = "\t")

Cálculo del índice de importancia de centralidad

Se detalla el cálculo del índice mediante el código en R:

Se parte de una tabla con los valores de los índices en columnas y las especies o nodos en filas. Esta tabla es un archivo de texto que se llama Centrality_G.txt.

G<-read.table ("Centrality_G.txt",header=TRUE,colClasses=c("character",rep("numeric",7)),sep="\t")

ranking <- apply(G,2,rank,ties.method="first") # Se ordenan las especies según sus valores que irán de 1 a n (N° de nodos) donde el 1 será el valor más importante.

N <- dim(G)[1] # N° de filas

m <- dim(G)[2] # N° de columnas

Importance_Matrix <- N - ranking +1 # Se invierten los valores, siendo ahora 1 el valor más bajo y n el valor más alto

row.names(ranking)<-row.names(Importance_Matrix)

IVBi <- apply(ranking,1,sum) # Suma los valores de las filas IVBi_ord <-sort(IVBi, decreasing=TRUE) # Ordena los valores en orden descendente

IIC_G <- IVBi_ord*100/sum(IVBi_ord) # Calcula el índice relativizado

ANEXO IV. LISTA DE INTERACCIONES

Tabla 12. Listado de interacciones (Edge list). Columnas 1, 4, 7 y 10 actúan como presas, columnas 2, 5, 8 y 11 actúan como depredadores y los valores son la fuerza de interacción.

Presa	Dep.	Fuerza									
SEAG	CIRRI	0.1000	GASTR	CHAZO	0.0030	CRABS	PLATR	0.0202	MENPA	PHALA	0.0252
SEAG	OLIGO	0.0450	GASTR	POZON	0.0050	CRABS	GALCU	0.0031	MENPA	CARFA	0.0008
SEAG	CHITO	0.2500	GASTR	ABTRO	0.0480	CRABS	PARXA	0.1200	MENPA	NEBRE	0.0009
SEAG	GASTR	0.0265	GASTR	PRIPU	0.0070	CRABS	MUCAL	0.2367	MENPA	RHILO	0.0613
SEAG	CALBE	0.0583	GASTR	SPHYE	0.0001	CRABS	MUHEN	0.8879	MENPA	SPHYT	0.0018
SEAG	STOMA	0.0669	GASTR	GIMI	0.0121	CRABS	MULUN	0.1177	CYNOT	PHALA	0.0252
SEAG	CHEMY	0.0060	GASTR	CITHA	0.0592	CRABS	TRISE	0.0847	CYNOT	CARFA	0.0008
SEAG	CHAZO	0.0110	GASTR	SECOR	0.0101	CRABS	GINCI	0.0120	CYNOT	NEBRE	0.0009
SEAG	GIMI	0.0258	GASTR	SCOMY	0.1500	CRABS	NOCEP	0.0537	CYNOT	SPHYT	0.0018
SEAG	OPILI	0.0170	GASTR	BALPO	0.0974	CRABS	ALECI	0.0734	CYNOT	NOCEP	0.0215
SEAG	MUCE	0.0752	GASTR	SUVER	0.0429	CRABS	CAROT	0.0118	CYNOT	LUTAR	0.0001
SEAG	ATAF	0.2210	GASTR	DIHOL	0.0314	CRABS	SEBRE	0.0475	CYNOT	CYNOR	0.0062
RUPPI	CALAR	0.0433	GASTR	DIHY	0.4699	CRABS	SEPER	0.0102	CYNXA	LARA	0.0357
RUPPI	CHEMY	0.0070	GASTR	CAPUN	0.0169	CRABS	TRASY	0.0431	CYNXA	PHOSI	0.0640
SALIC	CALAR	0.0433	GASTR	SPAN	0.0562	CRABS	SECRU	0.0115	CYNXA	TRISE	0.0212
ZOSTE	OLIGO	0.0500	GASTR	CHECA	0.0080	CRABS	THUNA	0.0070	CYNXA	NOCEP	0.0215
ZOSTE	PORTU	0.0270	GASTR	HIPIN	0.0123	CRABS	SCOSI	0.0112	CYNXA	LUTAR	0.0001
ZOSTE	CHEMY	0.0219	GASTR	DOREX	0.0279	CRABS	HOGUN	0.0562	CYNXA	ΤΟΤΟΑ	0.1578
ZOSTE	HEFRA	0.0094	GASTR	SARGO	0.0112	CRABS	LUTCO	0.1630	CYNXA	CYNOR	0.0062
ZOSTE	KYPAN	0.0711	GASTR	ATAF	0.0321	CRABS	LUTGU	0.0277	CYNOR	LARA	0.0357
PHYLL	CHEMY	0.0060	GASTR	PORMI	0.2359	CRABS	LUTAR	0.0104	CYNOR	SULEU	0.0518
PHYLL	ATNOB	0.0030	GASTR	PORAN	0.0320	CRABS	LUTPE	0.0131	CYNOR	CARFA	0.0061
MANGL	CHEMY	0.0020	PTERO	POLYC	0.0299	CRABS	HALDI	0.0115	CYNOR	NEBRE	0.0097
AVICE	CHEMY	0.0010	PTERO	SERGE	0.0320	CRABS	PAUR	0.0667	CYNOR	SPHYT	0.0191
MACPI	PRIG	0.0010	PTERO	PASIP	0.0652	CRABS	RYBI	0.1423	CYNOR	TRISE	0.0212
MACPI	ATNOB	0.0050	PTERO	STOMA	0.0130	CRABS	SEPSI	0.0168	CYNOR	NOCEP	0.0215
ALGAE	ZOOPL	0.0727	PTERO	SCYPH	0.0090	CRABS	EPILA	0.0978	CYNOR	LUTAR	0.0001
ALGAE	BRYOZ	0.7500	PTERO	CHEMY	0.0050	CRABS	EPIPA	0.0251	CYNOR	CYNOR	0.0062
ALGAE	CIRRI	0.3000	PTERO	LARDE	0.0120	CRABS	EPIAC	0.0297	CYNPA	PHALA	0.0252
ALGAE	MEIO	0.3807	PTERO	GALCU	0.0166	CRABS	MYRO	0.0151	CYNPA	CARFA	0.0061
ALGAE	ISOPO	0.5000	PTERO	RHITY	0.0303	CRABS	MYJO	0.0699	CYNPA	NEBRE	0.0032
ALGAE	OLIGO	0.0500	PTERO	SEPER	0.0205	CRABS	PACOL	0.0324	CYNPA	SPHYT	0.0064
ALGAE	CHITO	0.3000	PTERO	ELBI	0.0406	CRABS	DIAPE	0.0980	CYNPA	NOCEP	0.0215
ALGAE	GASTR	0.0662	PTERO	TRASY	0.0331	CRABS	GECIN	0.4699	CYNPA	LUTAR	0.0001
ALGAE	BIVAL	0.5000	PTERO	SECRU	0.0210	CRABS	CABRA	0.0459	CYNPA	CYNOR	0.0062
ALGAE	SEACU	0.1752	PTERO	HOGUN	0.0140	CRABS	ANIN	0.1430	ATNOB	LARA	0.0357
ALGAE	FACAD	0.0133	PTERO	DIAPE	0.0196	CRABS	ANITA	0.3796	ATNOB	CARFA	0.0058
ALGAE	LITOA	0.0184	PTERO	COSER	0.1203	CRABS	HASEX	0.1369	ATNOB	NEBRE	0.0062

ALGAE	CALBE	0.0292	PTERO	CAPRI	0.0347	CRABS	HAEFL	0.0394	ATNOB	SPHYT	0.0121
ALGAE	PORTU	0.0165	PTERO	ENMOR	0.0046	CRABS	HASTE	0.1031	ATNOB	TRISE	0.0212
ALGAE	SCACO	0.9000	PTERO	CITHA	0.0633	CRABS	HAELE	0.5348	CAPRI	CARFA	0.0060
ALGAE	GIMI	0.0121	PTERO	CHECA	0.0749	CRABS	HAENI	0.0520	CAPRI	MYRO	0.0063
ALGAE	ENMOR	0.0225	PTERO	DOREX	0.0279	CRABS	HAEAX	0.0714	TRILE	ZACAL	0.2279
ALGAE	PAWO	0.0121	PTERO	TRIME	0.0010	CRABS	ORED	0.0540	TRILE	SEPER	0.1261
ALGAE	PORMI	0.0830	PTERO	HYGOP	0.0901	CRABS	LAPAC	0.0100	TRILE	SCOSI	0.0157
SARGA	AMPHI	0.0952	BIVAL	GASTR	0.2344	CRABS	ΤΟΤΟΑ	0.0341	TRILE	TRILE	0.0817
SARGA	CHEMY	0.0199	BIVAL	SEAST	0.1748	CRABS	UMBRI	0.0327	POLAP	PEPLA	0.3428
SARGA	CABRA	0.0010	BIVAL	FACAD	0.0889	CRABS	CYNPA	0.0102	APORE	PHALA	0.0252
SARGA	ANIN	0.0176	BIVAL	SICYO	0.3357	CRABS	CAUAF	0.0346	APORE	PLATR	0.0272
SARGA	KYPEL	0.2099	BIVAL	CALAR	0.3463	CRABS	APORE	0.0060	APORE	NEBRE	0.0324
SARGA	KYPAN	0.6844	BIVAL	CALBE	0.1824	CRABS	STERE	0.0410	APORE	SPHYT	0.0255
SARGA	CHAZO	0.1079	BIVAL	PORTU	0.1289	CRABS	GIMI	0.0370	APORE	LUTAR	0.0002
SARGA	HOLPA	0.0998	BIVAL	CRABS	0.3003	CRABS	ZARO	0.0259	APORE	POLAP	0.0254
SARGA	POZON	0.0452	BIVAL	PANIN	0.2649	CRABS	PAWO	0.0243	APORE	APORE	0.0460
SARGA	ABTRO	0.0931	BIVAL	STOMA	0.0260	CRABS	CITHA	0.0154	APORE	FICOM	0.7000
SARGA	SUVER	0.0080	BIVAL	SEPIA	0.0040	CRABS	SYALA	0.0058	MULLI	STOMA	0.1289
CALCA	AMPHI	0.0286	BIVAL	OCTO	0.0147	CRABS	ANDEN	0.0909	MULLI	PEPLA	0.1763
CALCA	SEAUR	0.8791	BIVAL	CHEMY	0.0010	CRABS	PLEGU	0.0111	MULLI	CARFA	0.0121
CALCA	CHEMY	0.0120	BIVAL	LARDE	0.5060	CRABS	SECOR	0.2330	MULLI	NEBRE	0.0129
CALCA	SUVER	0.0250	BIVAL	LARA	0.0357	CRABS	SCOXY	0.1491	MULLI	SPHYT	0.0253
CALCA	CAPUN	0.0309	BIVAL	ESROB	0.1684	CRABS	SCOSO	0.0714	MULLI	NEPEC	0.0101
RHODO	AMPHI	0.0667	BIVAL	ZICAV	0.0209	CRABS	PRIST	0.0101	MULLI	FICOM	0.3000
RHODO	SEAUR	0.1099	BIVAL	PSEPR	0.0755	CRABS	PRIAL	0.0100	KYPEL	CARFA	0.0061
RHODO	OPHI	0.4000	BIVAL	DASDI	0.2699	CRABS	BALPO	0.0413	KYPEL	MULUN	0.0147
RHODO	STOMA	0.0669	BIVAL	AENAR	0.3250	CRABS	SUVER	0.0279	KYPAN	CARFA	0.0061
RHODO	CHEMY	0.5304	BIVAL	MYLCA	0.4212	CRABS	DIHOL	0.5362	KYPAN	MULUN	0.0147
RHODO	SCAPE	0.7900	BIVAL	URHA	0.2983	CRABS	DIHY	0.2190	CHAZO	CARFA	0.0061
RHODO	SCARU	0.9000	BIVAL	GYMAR	0.0002	CRABS	GYMPA	0.1513	FOFLA	NEBRE	0.0129
RHODO	MYRO	0.0126	BIVAL	RHIST	0.0261	CRABS	GYZE	0.2000	FOFLA	SPHYT	0.0254
RHODO	EUCEN	0.0425	BIVAL	RAJIN	0.0036	CRABS	DOREX	0.0279	JONI	NEBRE	0.0129
RHODO	GECIN	0.0230	BIVAL	TRISE	0.0847	CRABS	SARGO	0.1116	JONI	SPHYT	0.0254
RHODO	CABRA	0.0040	BIVAL	HEFRA	0.1774	CRABS	MYLE	0.1653	HOLPA	CARFA	0.0118
RHODO	ANIN	0.0230	BIVAL	SCOSI	0.0224	CRABS	PORAN	0.1200	POZON	CARFA	0.0145
RHODO	ATNOB	0.0015	BIVAL	HOGUN	0.1404	PANIN	LARDE	0.0120	STERE	PEPLA	0.0167
RHODO	KYPEL	0.1409	BIVAL	SCAPE	0.1000	PANIN	ESROB	0.0284	STERE	PHALA	0.0252
RHODO	KYPAN	0.0812	BIVAL	HALSE	0.0161	PANIN	ZICAV	0.0104	STERE	CARFA	0.0121
RHODO	GISIM	0.9430	BIVAL	PAUR	0.0667	PANIN	PHYMA	0.0103	STERE	NEBRE	0.0354
RHODO	CHAZO	0.0799	BIVAL	MYRO	0.0006	PANIN	GRAGR	0.0101	STERE	SPHYT	0.0697
RHODO	JONI	0.1570	BIVAL	MYJO	0.0021	PANIN	PSELE	0.0111	STERE	LUTAR	0.0070
RHODO	HOLPA	0.3941	BIVAL	DIAPE	0.5882	PANIN	URHA	0.0266	STERE	LUTNO	0.1250
RHODO	POZON	0.2139	BIVAL	EUCEN	0.1594	PANIN	RAJIN	0.0599	STERE	HOLPA	0.0012

RHODO	STERE	0.4470	BIVAL	CABRA	0.2874	PANIN	GALCU	0.0249	ABTRO	PEPLA	0.0167
RHODO	ABTRO	0.2332	BIVAL	ANITA	0.2068	PANIN	TRISE	0.0847	ABTRO	PHALA	0.0629
RHODO	PRIPU	0.5670	BIVAL	HASEX	0.0440	PANIN	GINCI	0.0120	ABTRO	CARFA	0.0121
RHODO	ZACOR	0.2000	BIVAL	HAEFL	0.0323	PANIN	ALECI	0.0734	ABTRO	NEBRE	0.0129
RHODO	SCOXY	0.1091	BIVAL	HASTE	0.0206	PANIN	LUTAR	0.0063	ABTRO	SPHYT	0.0254
RHODO	BALPO	0.0206	BIVAL	HAELE	0.1070	PANIN	LUTPE	0.0131	ABTRO	LUTAR	0.0243
RHODO	SUVER	0.1926	BIVAL	HAENI	0.1625	PANIN	PAUR	0.0667	ABTRO	LUTNO	0.1250
RHODO	CAPUN	0.1584	BIVAL	HAEAX	0.1642	PANIN	RYBI	0.0040	ABTRO	MYRO	0.0378
RHODO	TOZE	0.0222	BIVAL	ORED	0.0108	PANIN	EPIPA	0.0251	ABTRO	HOLPA	0.0012
RHODO	ТОВО	0.0500	BIVAL	COSER	0.0006	PANIN	MYRO	0.0151	PRIPU	PEPLA	0.0167
PHAEO	AMPHI	0.0095	BIVAL	LAPAC	0.0070	PANIN	MYJO	0.1048	PRIPU	CARFA	0.0117
PHAEO	CHEMY	0.0499	BIVAL	MIMEG	0.0954	PANIN	PACOL	0.0324	PRIPU	NEBRE	0.0190
PHAEO	PRIG	0.0001	BIVAL	UMBRI	0.6161	PANIN	HASTE	0.0103	PRIPU	SPHYT	0.0246
PHAEO	CABRA	0.0010	BIVAL	CHAZO	0.0080	PANIN	POLAP	0.0045	PRIPU	GINCI	0.0964
PHAEO	ANITA	0.0879	BIVAL	FOFLA	0.0571	PANIN	PAWO	0.0296	SPHYE	CARFA	0.0121
PHAEO	HASEX	0.0889	BIVAL	POZON	0.0050	PANIN	PLEGU	0.0271	SPHYE	SPHYL	0.0621
PHAEO	ATNOB	0.0010	BIVAL	STERE	0.0080	PANIN	SPAN	0.0022	SPHYE	ALOVU	0.0068
PHAEO	KYPEL	0.5258	BIVAL	ABTRO	0.0080	PANIN	GYMPA	0.0239	SPHYE	SCOJA	0.0305
PHAEO	KYPAN	0.0180	BIVAL	PRIPU	0.0010	PANIN	GYZE	0.2000	GOMIC	STOMA	0.0440
PHAEO	GISIM	0.0260	BIVAL	GOMIC	0.0761	PANIN	SARGO	0.0781	GOMIC	SEPIA	0.1359
PHAEO	CHAZO	0.2238	BIVAL	GIMI	0.0370	STOMA	SICYO	0.0040	GOMIC	ОСТО	0.0441
PHAEO	JONI	0.1690	BIVAL	ZARO	0.0348	STOMA	STOMA	0.0380	GOMIC	LOLLI	0.0109
PHAEO	HOLPA	0.2674	BIVAL	PAWO	0.4978	STOMA	ОСТО	0.0441	GOMIC	STERA	0.0385
PHAEO	POZON	0.1707	BIVAL	ETCRO	0.0217	STOMA	ONBAN	0.0199	GOMIC	LARA	0.0357
PHAEO	STERE	0.0340	BIVAL	PLEGU	0.5355	STOMA	LOLLI	0.0312	GOMIC	DELCA	0.0217
PHAEO	ABTRO	0.2072	BIVAL	SECOR	0.0101	STOMA	CHEMY	0.0010	GOMIC	NEBRE	0.0356
PHAEO	PRIPU	0.2620	BIVAL	BALPO	0.0974	STOMA	PSELE	0.0032	GOMIC	SPHYT	0.0127
PHAEO	ZACOR	0.1900	BIVAL	SUVER	0.0429	STOMA	ZAPEX	0.0058	GOMIC	MYJO	0.0070
PHAEO	SUVER	0.0110	BIVAL	DIHOL	0.0502	STOMA	DASDI	0.1687	GOMIC	ANIN	0.0001
PHAEO	CAPUN	0.0199	BIVAL	DIHY	0.0754	STOMA	URHA	0.1332	GOMIC	CYNXA	0.1612
CHLOR	OPHI	0.4400	BIVAL	CAPUN	0.0120	STOMA	URAS	0.2345	GOMIC	CYNPA	0.0102
CHLOR	CHEMY	0.0728	BIVAL	SPAN	0.0177	STOMA	DIPOM	0.1668	GOMIC	APORE	0.0180
CHLOR	CABRA	0.0529	BIVAL	LEPRO	0.0080	STOMA	NAREN	0.0818	GOMIC	PAWO	0.0306
CHLOR	HASEX	0.0080	BIVAL	SARGO	0.0112	STOMA	RAJIN	0.0407	GOMIC	PAES	0.1629
CHLOR	KYPEL	0.0550	BIVAL	ATAF	0.0389	STOMA	PRIG	0.0000	GOMIC	PLEGU	0.0333
CHLOR	KYPAN	0.0020	BIVAL	PORAN	0.1120	STOMA	MULUN	0.1130	GOMIC	SCOXY	0.1101
CHLOR	GISIM	0.0310	SEACU	PORTU	0.0310	STOMA	SEBRE	0.0717	GOMIC	TYCRO	0.1170
CHLOR	CHAZO	0.1129	SEACU	ESROB	0.0232	STOMA	SEPER	0.0190	GOMIC	BROCL	0.0285
CHLOR	FOFLA	0.3323	SEACU	DASDI	0.0027	STOMA	ELBI	0.0680	GOMIC	HIPIN	0.0103
CHLOR	JONI	0.2200	SEACU	HOGUN	0.2247	STOMA	SECRU	0.1258	GIMI	STOMA	0.0440
CHLOR	HOLPA	0.0499	SEACU	DIAPE	0.0490	STOMA	CORHY	0.0243	GIMI	SEPIA	0.1359
CHLOR	POZON	0.1135	SEACU	EUCEN	0.0351	STOMA	THUNA	0.0463	GIMI	осто	0.0441
CHLOR	STERE	0.1300	SEACU	ANIN	0.0494	STOMA	AUTHA	0.0242	GIMI	LOLLI	0.0109

CHLOR	ABTRO	0.0791	SEACU	HAEFL	0.0505	STOMA	SCOSI	0.0112	GIMI	STERA	0.0385
CHLOR	ZACOR	0.3100	SEACU	ORED	0.0224	STOMA	LUTGU	0.1663	GIMI	LARA	0.0357
CHLOR	OPILI	0.1878	SEACU	ENMOR	0.0023	STOMA	LUTJO	0.0120	GIMI	DELCA	0.0217
CHLOR	MUCE	0.1094	SEACU	CAPUN	0.0518	STOMA	LUTAR	0.1563	GIMI	PSEPR	0.0245
CHLOR	SUVER	0.0100	SEAUR	SICYO	0.0110	STOMA	LUTPE	0.0131	GIMI	NEBRE	0.0356
CHLOR	CAPUN	0.0588	SEAUR	PORTU	0.0088	STOMA	PAMA	0.0305	GIMI	SPHYT	0.0127
ENTER	OLIGO	0.0500	SEAUR	PANIN	0.0344	STOMA	RYBI	0.0371	GIMI	TRISE	0.0212
ENTER	CALAR	0.0433	SEAUR	ОСТО	0.0176	STOMA	SEPSI	0.0936	GIMI	MYJO	0.0042
ENTER	SCAPE	0.0100	SEAUR	CHEMY	0.0120	STOMA	DIPEU	0.1004	GIMI	ANIN	0.0001
ENTER	KYPEL	0.0140	SEAUR	ESROB	0.0232	STOMA	DIPA	0.1745	GIMI	CYNXA	0.1612
ENTER	KYPAN	0.0631	SEAUR	PSEPR	0.0216	STOMA	DILAB	0.5387	GIMI	CYNPA	0.0102
ENTER	CHAZO	0.0809	SEAUR	MUCAL	0.0211	STOMA	EPIAC	0.3192	GIMI	APORE	0.0180
ENTER	HOLPA	0.0499	SEAUR	GINCI	0.0120	STOMA	MYRO	0.0151	GIMI	PAWO	0.0306
ENTER	POZON	0.0402	SEAUR	HOGUN	0.2809	STOMA	MYJO	0.0349	GIMI	PAES	0.1629
ENTER	SUVER	0.0050	SEAUR	HALSE	0.0403	STOMA	EUCUR	0.0466	GIMI	PLEGU	0.0333
ENTER	CAPUN	0.0120	SEAUR	PAMA	0.0915	STOMA	ANIN	0.0009	GIMI	SCOXY	0.1101
CLAPH	OLIGO	0.0500	SEAUR	MYRO	0.0453	STOMA	HASEX	0.0549	GIMI	TYCRO	0.1170
CLAPH	CHEMY	0.0808	SEAUR	DIAPE	0.0490	STOMA	HAEFL	0.0071	GIMI	BROCL	0.0285
CLAPH	MYRO	0.0309	SEAUR	CABRA	0.1188	STOMA	HAEMA	0.0056	GIMI	HIPIN	0.0103
CLAPH	KYPEL	0.0140	SEAUR	ANIN	0.0890	STOMA	HAENI	0.0639	ZARO	PHALA	0.0252
CLAPH	HOLPA	0.0499	SEAUR	HASEX	0.3127	STOMA	HAEAX	0.0482	ZARO	PSEPR	0.0245
CLAPH	STERE	0.0480	SEAUR	HAEFL	0.0152	STOMA	LAPAC	0.1003	ZARO	TRISE	0.0212
CLAPH	ABTRO	0.0661	SEAUR	HAEAX	0.0952	STOMA	MIMEG	0.0447	ENMOR	STOMA	0.0799
CLAPH	PRIPU	0.0140	SEAUR	ORED	0.1030	STOMA	CYNOT	0.0221	ENMOR	DOGIG	0.0327
CLAPH	SUVER	0.0050	SEAUR	CAPRI	0.0017	STOMA	CYNOR	0.1169	ENMOR	PEPLA	0.0333
CLAPH	CAPUN	0.0120	SEAUR	FOFLA	0.1131	STOMA	POLAP	0.5435	ENMOR	RYNIG	0.2198
CLAPH	SPAN	0.2754	SEAUR	STERE	0.0020	STOMA	APORE	0.0020	ENMOR	STERA	0.3846
ULVAL	OLIGO	0.0500	SEAUR	ABTRO	0.0410	STOMA	MULLI	0.0410	ENMOR	LARDE	0.0120
ULVAL	CALBE	0.0292	SEAUR	SUVER	0.1098	STOMA	CENIG	0.0437	ENMOR	HYCA	0.1667
ULVAL	PORTU	0.0165	SEAUR	DIHOL	0.1570	STOMA	PAWO	0.0243	ENMOR	PELOC	0.2000
ULVAL	CHEMY	0.0070	SEAUR	DIHY	0.0887	STOMA	SYALA	0.9118	ENMOR	PHALA	0.0252
ULVAL	KYPAN	0.0802	SEAUR	CAPUN	0.0518	STOMA	SYOV	0.3262	ENMOR	PHYMA	0.0152
ULVAL	STERE	0.0480	SEAUR	SPAN	0.2864	STOMA	SCOXY	0.0210	ENMOR	ORCOR	0.0236
PHYTO	CORAL	0.7000	OPHI	OPHI	0.0400	STOMA	PRIST	0.1313	ENMOR	GLOMA	0.0207
PHYTO	ZOOPL	0.5545	OPHI	PORTU	0.1789	STOMA	PRIAL	0.0200	ENMOR	TUTRU	0.0202
PHYTO	RADIO	0.4000	OPHI	STOMA	0.0529	STOMA	SUVER	0.0279	ENMOR	GRAGR	0.0101
PHYTO	RADI1	0.3960	OPHI	OCTO	0.0221	STOMA	DIHOL	0.0252	ENMOR	DELCA	0.0580
PHYTO	RADI2	0.3922	OPHI	ESROB	0.0232	STOMA	DIHY	0.0266	ENMOR	PHOSI	0.0640
ΡΗΥΤΟ	RADI3	0.3883	OPHI	PSEGL	0.0440	STOMA	GYMPA	0.0269	ENMOR	ZACAL	0.0723
PHYTO	RADI4	0.3846	OPHI	RHIST	0.9278	STOMA	IYCRO	0.0622	ENMOR	ZAPEX	0.0217
PHYTO	FORAM	0.4000	OPHI	HALDI	0.0115	STOMA	BROCL	0.3763	ENMOR	RHIST	0.0357
PHYTO	PROTO	0.5000	OPHI	HALSE	0.0081	STOMA	LEPRO	0.0884	ENMOR	PLATR	0.0049
PHYTO	ACAN1	0.4950	OPHI	DIAPE	0.0784	STOMA	SARGO	0.0033	ENMOR	SQUCA	0.0226

PHYTO	ACAN2	0.4902	OPHI	CABRA	0.0090	SEPIA	STOMA	0.0260	ENMOR	PRIG	0.0001
ΡΗΥΤΟ	ACAN3	0.4854	OPHI	ANIN	0.0496	SEPIA	осто	0.0074	ENMOR	RHILO	0.0613
ΡΗΥΤΟ	ACAN4	0.4808	OPHI	HAEFL	0.0313	SEPIA	ONBAN	0.1068	ENMOR	PARXA	0.0100
ΡΗΥΤΟ	ACAN5	0.4762	OPHI	HAEAX	0.0613	SEPIA	LOLLI	0.0016	ENMOR	MUHEN	0.0194
ΡΗΥΤΟ	ACAN6	0.4717	OPHI	ORCHA	0.0579	SEPIA	DELCA	0.0145	ENMOR	MULUN	0.0100
ΡΗΥΤΟ	OSTRA	0.6000	OPHI	ORED	0.0473	SEPIA	RAJIN	0.0359	ENMOR	ALOVU	0.5442
ΡΗΥΤΟ	CLADO	0.8000	OPHI	MIMEG	0.0447	SEPIA	PLATR	0.0034	ENMOR	SERLA	0.3047
ΡΗΥΤΟ	ROTIF	0.8000	OPHI	SECOR	0.1854	SEPIA	GALCU	0.0125	ENMOR	CHORQ	0.0381
ΡΗΥΤΟ	ASCI	0.4000	OPHI	DIHOL	0.1047	SEPIA	RHILO	0.0123	ENMOR	SEPER	0.1229
ΡΗΥΤΟ	BRYOZ	0.2500	OPHI	LEPRO	0.0637	SEPIA	PARXA	0.0100	ENMOR	TRASY	0.0252
ΡΗΥΤΟ	MEIO	0.2064	OPHI	PORMI	0.0039	SEPIA	MULUN	0.0047	ENMOR	CORHY	0.0036
ΡΗΥΤΟ	COPEP	0.0667	SEAST	ESROB	0.0232	SEPIA	CACA	0.0389	ENMOR	SCOJA	0.0305
ΡΗΥΤΟ	ISOPO	0.5000	SEAST	HOGUN	0.0309	SEPIA	GINCI	0.0120	ENMOR	AUTHA	0.0363
ΡΗΥΤΟ	CHITO	0.2000	SEAST	LUTGU	0.3215	SEPIA	SEPER	0.0379	ENMOR	SCOSI	0.0112
ΡΗΥΤΟ	PTERO	0.0191	SEAST	HALDI	0.0115	SEPIA	THUNA	0.0130	ENMOR	MYRO	0.0252
ΡΗΥΤΟ	BIVAL	0.5000	SEAST	HALSE	0.0081	SEPIA	SCOJA	0.0109	ENMOR	MYJO	0.0070
ΡΗΥΤΟ	SEAUR	0.0110	SEAST	DIAPE	0.0490	SEPIA	AUTHA	0.0907	ENMOR	LAPAC	0.2909
ΡΗΥΤΟ	GIMI	0.0258	SEAST	EUCEN	0.0850	SEPIA	LUTGU	0.0122	ENMOR	MENAS	0.0254
ΡΗΥΤΟ	ANCHE	0.0495	SEAST	SUVER	0.1098	SEPIA	DIPA	0.0067	ENMOR	MENPA	0.0254
ΡΗΥΤΟ	CHECA	0.0020	SEAST	CAPUN	0.0518	SEPIA	MYRO	0.0082	ENMOR	CYNXA	0.0107
CIANO	RADIO	0.2000	SEAST	PORAN	0.0230	SEPIA	DIAPA	0.0477	ENMOR	CYNOR	0.1231
CIANO	RADI1	0.1980	EUPHA	WORM	0.1004	SEPIA	COSER	0.0602	ENMOR	TRILE	0.3297
CIANO	RADI2	0.1961	EUPHA	SERGE	0.0549	SEPIA	ΤΟΤΟΑ	0.0273	ENMOR	POLAP	0.0208
CIANO	RADI3	0.1942	EUPHA	SERPH	0.0618	SEPIA	POLAP	0.0435	ENMOR	NEPEC	0.1011
CIANO	RADI4	0.1923	EUPHA	PASIP	0.2734	SEPIA	SYALA	0.0097	ENMOR	CITHA	0.2959
CIANO	FORAM	0.3000	EUPHA	PLEPL	0.1031	OCTO	STOMA	0.0260	ENMOR	PRIST	0.0101
CIANO	PROTO	0.1000	EUPHA	STHEO	0.1228	OCTO	ОСТО	0.0265	ENMOR	GYMPA	0.0269
CIANO	ACAN1	0.0990	EUPHA	ONBAN	0.0427	OCTO	STHEO	0.0031	ENMOR	MERLU	0.0173
CIANO	ACAN2	0.0980	EUPHA	LOLLI	0.0312	OCTO	ONBAN	0.1068	ENMOR	TYCRO	0.1122
CIANO	ACAN3	0.0971	EUPHA	HYDRO	0.2063	OCTO	LOLLI	0.0016	ENMOR	STREX	0.1429
CIANO	ACAN4	0.0962	EUPHA	SCYPH	0.0918	ОСТО	ESROB	0.0232	ENMOR	SYSCI	0.1714
CIANO	ACAN5	0.0952	EUPHA	LARDE	0.0120	ОСТО	ZICAV	0.0104	ENMOR	SYLU	0.0953
CIANO	ACAN6	0.0943	EUPHA	OCMIC	0.3407	ОСТО	ZACAL	0.0224	CEMYS	RYNIG	0.0440
CIANO	OLIGO	0.1000	EUPHA	BAPHY	0.6061	ОСТО	RAJIN	0.0359	CEMYS	STERA	0.0641
CIANO	LITOA	0.0204	EUPHA	BAMUS	0.7000	ОСТО	GALCU	0.0249	CEMYS	LARDE	0.0120
CIANO	CHEMY	0.0289	EUPHA	BALED	0.3311	ОСТО	NEBRE	0.1619	CEMYS	HYCA	0.1667
CIANO	MUCE	0.0485	EUPHA	ESROB	0.0421	ОСТО	PRIG	0.0434	CEMYS	PELOC	0.1000
CIANO	тово	0.2000	EUPHA	URHA	0.0224	ОСТО	RHILO	0.0245	CEMYS	PHALA	0.0252
DIATO	ZOOPL	0.1818	EUPHA	PLATR	0.1345	OCTO	PARXA	0.0500	CEMYS	SULEU	0.0732
DIATO	RADIO	0.2000	EUPHA	PARXA	0.1000	OCTO	MULUN	0.0176	CEMYS	PHYMA	0.0152
DIATO	RADI1	0.1980	EUPHA	RHITY	0.4044	OCTO	TRISE	0.0085	CEMYS	ORCOR	0.0236
DIATO	RADI2	0.1961	EUPHA	OLIRE	0.2000	ОСТО	GINCI	0.0120	CEMYS	GLOMA	0.0207
DIATO	RADI3	0.1942	EUPHA	ELBI	0.1281	ОСТО	HEFRA	0.0005	CEMYS	TUTRU	0.0202

DIATO	RADI4	0.1923	EUPHA	TRASY	0.3614	OCTO	SECRU	0.1572	CEMYS	GRAGR	0.0101
DIATO	FORAM	0.3000	EUPHA	THUNA	0.0781	ОСТО	THUNA	0.0130	CEMYS	DELCA	0.0580
DIATO	PROTO	0.3000	EUPHA	SCOJA	0.3267	осто	SCOJA	0.0109	CEMYS	PHOSI	0.0640
DIATO	ACAN1	0.2970	EUPHA	AUTHA	0.1591	осто	AUTHA	0.0121	CEMYS	ZACAL	0.0334
DIATO	ACAN2	0.2941	EUPHA	LUTAR	0.0031	осто	PAMA	0.0508	CEMYS	ZAPEX	0.0011
DIATO	ACAN3	0.2913	EUPHA	HALSE	0.0403	осто	PAUR	0.0667	CEMYS	SQUCA	0.0226
DIATO	ACAN4	0.2885	EUPHA	RYBI	0.0090	осто	DIPA	0.0067	CEMYS	SERLA	0.0680
DIATO	ACAN5	0.2857	EUPHA	MYRO	0.1241	осто	EPILA	0.1955	CEMYS	CHORQ	0.0381
DIATO	ACAN6	0.2830	EUPHA	EUGRA	0.1000	осто	MYRO	0.0082	CEMYS	SEPER	0.1229
DIATO	OSTRA	0.3000	EUPHA	EUCUR	0.1059	OCTO	ANIN	0.0020	CEMYS	SECRU	0.2096
DIATO	CLADO	0.1500	EUPHA	EUCEN	0.0531	OCTO	HAEFL	0.0333	CEMYS	SCOSI	0.0112
DIATO	ROTIF	0.1500	EUPHA	EUDO	0.1429	OCTO	HAEAX	0.0164	CEMYS	MYRO	0.0063
DIATO	ASCI	0.2000	EUPHA	HAEMA	0.0050	ОСТО	COSER	0.0602	CEMYS	MYJO	0.0070
DIATO	CIRRI	0.4000	EUPHA	COSER	0.4738	ОСТО	ΤΟΤΟΑ	0.0273	CEMYS	LAPAC	0.2808
DIATO	COPEP	0.6857	EUPHA	CYNOR	0.0647	ОСТО	CYNPA	0.0102	CEMYS	ΤΟΤΟΑ	0.1578
DIATO	AMPHI	0.2286	EUPHA	ATNOB	0.9086	ОСТО	CITHA	0.0592	CEMYS	MENAS	0.0254
DIATO	OLIGO	0.6000	EUPHA	CAPRI	0.0763	OCTO	SYALA	0.0097	CEMYS	MENPA	0.0254
DIATO	GASTR	0.2119	EUPHA	CAUAF	0.1440	OCTO	SECOR	0.0101	CEMYS	CYNOT	0.6328
DIATO	PTERO	0.2414	EUPHA	APORE	0.0180	ОСТО	SCOMY	0.6800	CEMYS	CYNXA	0.0107
DIATO	EUPHA	0.5600	EUPHA	ABTRO	0.0771	ОСТО	SCOSO	0.0714	CEMYS	POLAP	0.0208
DIATO	SERPH	0.1230	EUPHA	GIMI	0.0431	ОСТО	GYMPA	0.0795	CEMYS	SPHYE	0.1640
DIATO	PLEPL	0.4124	EUPHA	ZARO	0.0299	DOGIG	DOGIG	0.4770	CEMYS	NEPEC	0.1011
DIATO	GOMIC	0.0345	EUPHA	ENMOR	0.1704	DOGIG	STHEO	0.0430	CEMYS	STREX	0.1429
DIATO	ENMOR	0.1565	EUPHA	SASA	0.0040	DOGIG	ONBAN	0.1068	CEMYS	SYSCI	0.1714
DIATO	CEMYS	0.4254	EUPHA	PAES	0.1459	DOGIG	CHEMY	0.0020	CEMYS	SYLU	0.0953
DIATO	SASA	0.1720	EUPHA	ETCRO	0.0217	DOGIG	ZICAV	0.2714	ANCHE	CALAR	0.0433
DIATO	OPILI	0.1538	EUPHA	CITHA	0.1793	DOGIG	PHYMA	0.6189	ANCHE	CALBE	0.0250
DIATO	MUCE	0.0247	EUPHA	SECOR	0.0729	DOGIG	ORCOR	0.0591	ANCHE	RYNIG	0.0440
DIATO	ETCRO	0.0543	EUPHA	SCOXY	0.0861	DOGIG	GLOMA	0.3448	ANCHE	STERA	0.0641
DIATO	ATAF	0.0253	EUPHA	PRIST	0.3030	DOGIG	TUTRU	0.0505	ANCHE	LARDE	0.0120
DIAT1	POLYC	0.2355	EUPHA	PRIAL	0.0500	DOGIG	GRAGR	0.3543	ANCHE	HYCA	0.1667
DIAT1	FACAD	0.0116	EUPHA	BELGY	0.4000	DOGIG	DELCA	0.0290	ANCHE	PELOC	0.1000
DIAT1	LITOA	0.0204	EUPHA	MERLU	0.2232	DOGIG	STELO	0.2660	ANCHE	PHALA	0.0252
DIAT1	CEMYS	0.0280	EUPHA	CHECA	0.0090	DOGIG	GALCU	0.0104	ANCHE	SULEU	0.0396
DIAT1	OPILI	0.0340	EUPHA	HIPIN	0.1029	DOGIG	PRIG	0.0132	ANCHE	PHYMA	0.0152
DIAT2	POLYC	0.0060	EUPHA	DOREX	0.1996	DOGIG	RHILO	0.0245	ANCHE	ORCOR	0.0236
DIAT2	FACAD	0.0116	EUPHA	тово	0.1000	DOGIG	PARXA	0.0100	ANCHE	GLOMA	0.0207
DIAT2	LITOA	0.0204	EUPHA	VINLU	0.0186	DOGIG	SPHYZ	0.3396	ANCHE	TUTRU	0.0202
DIAT2	SASA	0.1520	EUPHA	LEUST	0.0366	DOGIG	ALOSU	0.2535	ANCHE	GRAGR	0.0101
DIAT3	POLYC	0.2315	EUPHA	TRIME	0.5020	DOGIG	CACA	0.0078	ANCHE	DELCA	0.0580
DIAT3	FACAD	0.0116	EUPHA	HYGOP	0.1472	DOGIG	ISURO	0.2360	ANCHE	PHOSI	0.0640
DIAT3	LITOA	0.0204	FACAD	PORTU	0.0130	DOGIG	GINCI	0.0120	ANCHE	ZAPEX	0.0011
DIAT3	CEMYS	0.1802	FACAD	CRABS	0.0483	DOGIG	SERLA	0.0144	ANCHE	SQUCA	0.0226

DIAT3	SASA	0.1520	FACAD	STOMA	0.0849	DOGIG	SEPER	0.0379	ANCHE	CARLE	0.0167
DIAT3	OPILI	0.2308	FACAD	ONBAN	0.0199	DOGIG	CORHY	0.2428	ANCHE	CARLI	0.0707
DIAT3	MUCE	0.2931	FACAD	LOLLI	0.0312	DOGIG	THUNA	0.0130	ANCHE	NEBRE	0.0065
DIAT4	FACAD	0.0116	FACAD	CHEMY	0.0020	DOGIG	SCOJA	0.0109	ANCHE	RHILO	0.0613
DIAT4	LITOA	0.0204	FACAD	LARDE	0.0120	DOGIG	LUTGU	0.0122	ANCHE	SPHYL	0.0311
DIAT5	FACAD	0.0116	FACAD	PELOC	0.0100	DOGIG	LUTAR	0.0010	ANCHE	SPHYT	0.0127
DIAT5	LITOA	0.0204	FACAD	PHALA	0.0126	DOGIG	MYRO	0.0082	ANCHE	SERLA	0.0680
DIAT5	CEMYS	0.1992	FACAD	ESROB	0.0284	DOGIG	ΤΟΤΟΑ	0.0273	ANCHE	CHORQ	0.0381
DIAT6	POLYC	0.3932	FACAD	DELCA	0.0058	DOGIG	TRILE	0.0442	ANCHE	OLIRE	0.1000
DIAT6	FACAD	0.0116	FACAD	PSEPR	0.0098	DOGIG	SCOSO	0.0714	ANCHE	SEPER	0.1229
DIAT6	LITOA	0.0204	FACAD	PSELE	0.4211	STHEO	PASIP	0.0126	ANCHE	SCOSI	0.2461
DIAT6	CEMYS	0.0120	FACAD	ZAPEX	0.0044	STHEO	ОСТО	0.0074	ANCHE	LUTGU	0.1289
DIAT7	FACAD	0.0116	FACAD	DASDI	0.0128	STHEO	DOGIG	0.0143	ANCHE	LUTPE	0.1312
DIAT7	LITOA	0.0204	FACAD	URHA	0.0266	STHEO	STHEO	0.0430	ANCHE	MYRO	0.0063
DIAT7	OPILI	0.1968	FACAD	URAS	0.0501	STHEO	ONBAN	0.1068	ANCHE	MYJO	0.0070
DIAT7	MUCE	0.2188	FACAD	NAREN	0.0130	STHEO	LOLLI	0.0781	ANCHE	LAPAC	0.2808
DIAT8	FACAD	0.0116	FACAD	PLATR	0.0592	STHEO	LARDE	0.0120	ANCHE	ΤΟΤΟΑ	0.1578
DIAT8	LITOA	0.0204	FACAD	PARXA	0.0100	STHEO	BAPHY	0.0202	ANCHE	MENAS	0.0254
DIAT8	CEMYS	0.1441	FACAD	MUHEN	0.0442	STHEO	ZICAV	0.1044	ANCHE	MENPA	0.0254
DIAT8	OPILI	0.1538	FACAD	GINCI	0.0120	STHEO	PHYMA	0.0340	ANCHE	CYNOT	0.0074
DIAT8	MUCE	0.1827	FACAD	HEFRA	0.0006	STHEO	ORCOR	0.0118	ANCHE	CYNXA	0.0107
DINOF	ZOOPL	0.1000	FACAD	ALECI	0.0933	STHEO	GLOMA	0.1149	ANCHE	POLAP	0.0208
DINOF	RADIO	0.1000	FACAD	CAROT	0.0224	STHEO	TUTRU	0.0707	ANCHE	CENIG	0.0055
DINOF	RADI1	0.0990	FACAD	OLIAL	0.8000	STHEO	GRAGR	0.1680	ANCHE	NEPEC	0.2437
DINOF	RADI2	0.0980	FACAD	SEBRE	0.0949	STHEO	DELCA	0.0145	ANCHE	STREX	0.1429
DINOF	RADI3	0.0971	FACAD	SEPER	0.0102	STHEO	STELO	0.0931	ANCHE	SYSCI	0.1714
DINOF	RADI4	0.0962	FACAD	SECRU	0.0115	STHEO	ZACAL	0.0125	ANCHE	SYLU	0.0953
DINOF	CLADO	0.0500	FACAD	CORHY	0.0081	STHEO	GALCU	0.0104	SASA	ОСТО	0.0735
DINOF	COPEP	0.2000	FACAD	SCOJA	0.0109	STHEO	PRIG	0.1870	SASA	DOGIG	0.0296
DINOF	AMPHI	0.0286	FACAD	LUTGU	0.0111	STHEO	RHILO	0.0184	SASA	LOLLI	0.0234
DINOF	POLYC	0.0030	FACAD	LUTJO	0.0150	STHEO	PARXA	0.0100	SASA	CHEMY	0.0010
DINOF	GASTR	0.0795	FACAD	LUTAR	0.0052	STHEO	SPHYZ	0.1552	SASA	STERA	0.0128
DINOF	PTERO	0.1720	FACAD	LUTPE	0.1312	STHEO	MULUN	0.0047	SASA	LARDE	0.0120
DINOF	EUPHA	0.0600	FACAD	HALDI	0.0115	STHEO	ALOSU	0.0805	SASA	HYCA	0.0556
DINOF	ENMOR	0.0046	FACAD	HALSE	0.0081	STHEO	CACA	0.0078	SASA	PELOC	0.2000
DINOF	CEMYS	0.0010	FACAD	PAMA	0.2337	STHEO	ISURO	0.0102	SASA	SULEU	0.0061
DINO1	FACAD	0.0116	FACAD	PAUR	0.0667	STHEO	GINCI	0.0120	SASA	BAPHY	0.1818
DINO1	LITOA	0.0204	FACAD	RYBI	0.0020	STHEO	SERLA	0.0144	SASA	BALED	0.3311
DINO1	SASA	0.0810	FACAD	SEPSI	0.0589	STHEO	SEPER	0.0379	SASA	PHYMA	0.0152
DINO2	FACAD	0.0116	FACAD	DIPEU	0.1315	STHEO	CORHY	0.0162	SASA	ORCOR	0.0430
DINO2	LITOA	0.0204	FACAD	DIPA	0.3758	STHEO	THUNA	0.0130	SASA	GLOMA	0.0207
DINO3	FACAD	0.0116	FACAD	DILAB	0.0070	STHEO	SCOJA	0.0109	SASA	TUTRU	0.0202
DINO3	LITOA	0.0204	FACAD	EPIPA	0.0251	STHEO	AUTHA	0.0525	SASA	GRAGR	0.0101

DINO3	SASA	0.0810	FACAD	EPIAC	0.0037	STHEO	LUTGU	0.0122	SASA	DELCA	0.0725
CORAL	CHEMY	0.0020	FACAD	MYRO	0.0151	STHEO	DIPA	0.0067	SASA	ZACAL	0.1390
CORAL	SCACO	0.0200	FACAD	MYJO	0.0021	STHEO	MYRO	0.0082	SASA	PSEPR	0.0025
CORAL	SCARU	0.0200	FACAD	PACOL	0.0324	STHEO	DIAPA	0.0477	SASA	MYLCA	0.0103
CORAL	HALDI	0.6897	FACAD	EUCUR	0.1059	STHEO	ΤΟΤΟΑ	0.0273	SASA	SQUCA	0.0226
CORAL	SPAN	0.1652	FACAD	GECIN	0.0551	STHEO	SCOSO	0.0714	SASA	CAROB	0.1756
ZOOPL	CORAL	0.3000	FACAD	ANIN	0.0005	ONBAN	PASIP	0.0126	SASA	PARXA	0.0100
ZOOPL	ZOOPL	0.0364	FACAD	HAEFL	0.0162	ONBAN	OCTO	0.0074	SASA	SPHYZ	0.0001
ZOOPL	RADIO	0.0500	FACAD	HAEMA	0.0051	ONBAN	DOGIG	0.0143	SASA	MUCAL	0.0201
ZOOPL	RADI1	0.0495	FACAD	HASTE	0.1031	ONBAN	STHEO	0.0393	SASA	MULUN	0.0100
ZOOPL	RADI2	0.0490	FACAD	HAELE	0.0187	ONBAN	ONBAN	0.1068	SASA	ALOSU	0.0287
ZOOPL	RADI3	0.0485	FACAD	HAENI	0.0433	ONBAN	LOLLI	0.0781	SASA	ALOVU	0.1361
ZOOPL	RADI4	0.0481	FACAD	HAEAX	0.0328	ONBAN	LARDE	0.0120	SASA	CACA	0.2335
ZOOPL	CTENO	0.0900	FACAD	ORED	0.0789	ONBAN	BAPHY	0.0202	SASA	GINCI	0.0964
ZOOPL	ASCI	0.3000	FACAD	MIMEG	0.0492	ONBAN	ZICAV	0.1044	SASA	SERLA	0.1970
ZOOPL	PORIF	1.0000	FACAD	UMBRI	0.0327	ONBAN	PHYMA	0.0340	SASA	ELBI	0.1413
ZOOPL	MEIO	0.3223	FACAD	MENAS	0.1015	ONBAN	ORCOR	0.0118	SASA	SECRU	0.1572
ZOOPL	CHAET	0.0200	FACAD	MENPA	0.1015	ONBAN	GLOMA	0.1149	SASA	THUNA	0.0125
ZOOPL	STHEO	0.0123	FACAD	CYNOT	0.0368	ONBAN	TUTRU	0.0707	SASA	SCOJA	0.0305
ZOOPL	HYDRO	0.0265	FACAD	CYNXA	0.0334	ONBAN	GRAGR	0.1680	SASA	AUTHA	0.0463
ZOOPL	SCYPH	0.1667	FACAD	CYNOR	0.1554	ONBAN	DELCA	0.0145	SASA	SCOSI	0.0112
ZOOPL	RYNIG	0.0549	FACAD	CYNPA	0.3878	ONBAN	STELO	0.0931	SASA	LUTPE	0.0285
ZOOPL	STERA	0.0256	FACAD	ATNOB	0.0101	ONBAN	ZACAL	0.0125	SASA	PAMA	0.0508
ZOOPL	OCMIC	0.5010	FACAD	CAPRI	0.0017	ONBAN	GALCU	0.0104	SASA	EPILA	0.0122
ZOOPL	BAPHY	0.0505	FACAD	POLAP	0.0009	ONBAN	PRIG	0.1980	SASA	EPIPA	0.0251
ZOOPL	BAMUS	0.3000	FACAD	APORE	0.1109	ONBAN	RHILO	0.0245	SASA	EPIAC	0.0033
ZOOPL	BALED	0.1104	FACAD	MULLI	0.0210	ONBAN	PARXA	0.0100	SASA	MYRO	0.0504
ZOOPL	ESROB	0.0105	FACAD	SPHYE	0.0140	ONBAN	SPHYZ	0.1650	SASA	MYXE	0.2500
ZOOPL	URORO	0.0104	FACAD	CENIG	0.2185	ONBAN	MULUN	0.0047	SASA	EUCEN	0.0106
ZOOPL	MABIR	0.4000	FACAD	GIMI	0.0043	ONBAN	ALOSU	0.0805	SASA	MIMEG	0.0596
ZOOPL	RHITY	0.0910	FACAD	ZARO	0.0199	ONBAN	CACA	0.0078	SASA	CYNXA	0.0387
ZOOPL	CHORQ	0.0293	FACAD	CITHA	0.0189	ONBAN	ISURO	0.0102	SASA	CAPRI	0.0017
ZOOPL	OLIRE	0.0800	FACAD	SYALA	0.0224	ONBAN	GINCI	0.0120	SASA	SECOR	0.0101
ZOOPL	SEPER	0.1635	FACAD	SYOV	0.0689	ONBAN	SERLA	0.0144	SASA	GYMPA	0.0036
ZOOPL	TRASY	0.0128	FACAD	HITE	0.4942	ONBAN	SEPER	0.0379	SASA	MERLU	0.0806
ZOOPL	SECRU	0.1572	FACAD	ANDEN	0.0909	ONBAN	CORHY	0.0405	SASA	SYSCI	0.0141
ZOOPL	THUNA	0.0667	FACAD	ELAF	0.3576	ONBAN	THUNA	0.0130	SASA	SYLU	0.0060
ZOOPL	SCOJA	0.0109	FACAD	SECOR	0.0213	ONBAN	SCOJA	0.0109	OPILI	ОСТО	0.0735
ZOOPL	AUTHA	0.0363	FACAD	SCOSO	0.0714	ONBAN	LUTGU	0.0122	OPILI	LOLLI	0.0234
ZOOPL	LUTAR	0.0023	FACAD	PRIST	0.0303	ONBAN	DIPA	0.0067	OPILI	LARDE	0.0120
ZOOPL	RYBI	0.1122	FACAD	PRIAL	0.1500	ONBAN	MYRO	0.0082	OPILI	HYCA	0.0556
ZOOPL	PROMU	0.2500	FACAD	BALPO	0.0413	ONBAN	DIAPA	0.0477	OPILI	PELOC	0.1000
ZOOPL	DILAB	0.0050	FACAD	DIHOL	0.0002	ONBAN	ΤΟΤΟΑ	0.0273	OPILI	SULEU	0.0213

ZOOPL	PACOL	0.1013	FACAD	GYMPA	0.0957	ONBAN	SCOSO	0.0714	OPILI	BAPHY	0.1010
ZOOPL	DIAPA	0.7393	FACAD	MERLU	0.0863	LOLLI	PASIP	0.0126	OPILI	BALED	0.2274
ZOOPL	DIAPE	0.0098	FACAD	TYCRO	0.2958	LOLLI	STOMA	0.0260	OPILI	PHYMA	0.0152
ZOOPL	HAENI	0.0379	FACAD	STREX	0.1429	LOLLI	ОСТО	0.0074	OPILI	ORCOR	0.0430
ZOOPL	HAEAX	0.0109	FACAD	BROCL	0.0228	LOLLI	STHEO	0.1412	OPILI	GLOMA	0.0207
ZOOPL	XECA	1.0000	FACAD	LEPRO	0.1769	LOLLI	ONBAN	0.1068	OPILI	TUTRU	0.0202
ZOOPL	COSER	0.0301	FACAD	DOREX	0.0279	LOLLI	LOLLI	0.0172	OPILI	GRAGR	0.0101
ZOOPL	CAPRI	0.2426	FACAD	SARGO	0.0134	LOLLI	CHEMY	0.0010	OPILI	DELCA	0.0725
ZOOPL	CAUAF	0.0410	FACAD	MYLE	0.0827	LOLLI	LARDE	0.0120	OPILI	PSEPR	0.0054
ZOOPL	POLAP	0.0634	FACAD	BENPA	0.5000	LOLLI	PELOC	0.0100	OPILI	MYLCA	0.0103
ZOOPL	ZACOR	0.0500	FACAD	ATAF	0.0243	LOLLI	SULEU	0.0152	OPILI	SQUCA	0.0226
ZOOPL	ENMOR	0.3408	FACAD	PORMI	0.0491	LOLLI	OCMIC	0.0421	OPILI	CARFA	0.0061
ZOOPL	ANCHE	0.0693	FACAD	PORAN	0.0030	LOLLI	BAPHY	0.0202	OPILI	CARLE	0.0167
ZOOPL	SASA	0.0740	FACAD	SYSCI	0.0282	LOLLI	ZICAV	0.1044	OPILI	CARLI	0.0707
ZOOPL	HART	0.1360	FACAD	SYLU	0.0160	LOLLI	PHYMA	0.0340	OPILI	NEBRE	0.0065
ZOOPL	LISTO	1.0000	LITOA	PORTU	0.0130	LOLLI	ORCOR	0.0236	OPILI	RHILO	0.0613
ZOOPL	PAWO	0.0121	LITOA	STOMA	0.0849	LOLLI	GLOMA	0.1149	OPILI	SPHYL	0.0311
ZOOPL	PAES	0.0410	LITOA	ONBAN	0.0199	LOLLI	TUTRU	0.0707	OPILI	SPHYT	0.0127
ZOOPL	ETCRO	0.0435	LITOA	LOLLI	0.0312	LOLLI	GRAGR	0.1680	OPILI	MUCAL	0.0201
ZOOPL	SYOV	0.1149	LITOA	LARDE	0.0120	LOLLI	DELCA	0.0145	OPILI	GINCI	0.0964
ZOOPL	BELGY	0.1800	LITOA	PELOC	0.0100	LOLLI	STELO	0.0931	OPILI	SERLA	0.0326
ZOOPL	CHECA	0.0339	LITOA	PHALA	0.0126	LOLLI	PHOSI	0.2700	OPILI	ELBI	0.1413
ZOOPL	HIPIN	0.2881	LITOA	ESROB	0.0284	LOLLI	ZACAL	0.0333	OPILI	CORHY	0.0057
ZOOPL	DOREX	0.2994	LITOA	DELCA	0.0058	LOLLI	ZAPEX	0.0001	OPILI	THUNA	0.0125
ZOOPL	VINLU	0.0518	LITOA	PSELE	0.4211	LOLLI	GYMAR	0.0005	OPILI	SCOSI	0.1119
ZOOPL	LEUST	0.4390	LITOA	PSEGL	0.0106	LOLLI	PLATR	0.0155	OPILI	LUTPE	0.0285
ZOOPL	TRIME	0.0602	LITOA	ZAPEX	0.0044	LOLLI	GALCU	0.0104	OPILI	EPILA	0.0122
ZOOPL	HYGOP	0.1002	LITOA	URHA	0.0266	LOLLI	CAROB	0.3775	OPILI	EPIPA	0.0251
ZOOPL	ATAF	0.1266	LITOA	URAS	0.0501	LOLLI	RHILO	0.0613	OPILI	EPIAC	0.0033
ZOOPL	PORMI	0.0118	LITOA	NAREN	0.0130	LOLLI	PARXA	0.0100	OPILI	MYXE	0.2500
RADIO	ZOOPL	0.0182	LITOA	RAJIN	0.0754	LOLLI	MUHEN	0.0108	OPILI	MIMEG	0.0596
RADIO	RADIO	0.0200	LITOA	PLATR	0.0592	LOLLI	MULUN	0.0047	OPILI	CYNXA	0.0387
RADIO	RADI1	0.0198	LITOA	PARXA	0.0100	LOLLI	TRISE	0.0085	OPILI	CYNPA	0.2041
RADIO	RADI2	0.0196	LITOA	GINCI	0.0120	LOLLI	ALOVU	0.0680	OPILI	CAPRI	0.0017
RADIO	RADI3	0.0194	LITOA	HEFRA	0.0006	LOLLI	CACA	0.0078	OPILI	SPHYE	0.3231
RADIO	RADI4	0.0192	LITOA	ALECI	0.0933	LOLLI	ISURO	0.0102	OPILI	GYMPA	0.0036
RADIO	ASCI	0.0500	LITOA	CAROT	0.0135	LOLLI	GINCI	0.0120	OPILI	MERLU	0.0806
RADIO	COPEP	0.0238	LITOA	SEBRE	0.0949	LOLLI	SERLA	0.0144	OPILI	SYSCI	0.0141
RADIO	POLYC	0.0439	LITOA	SEPER	0.0102	LOLLI	SEPER	0.0379	OPILI	SYLU	0.0060
RADIO	PTERO	0.1127	LITOA	SECRU	0.0115	LOLLI	ELBI	0.0910	HART	осто	0.0735
RADIO	SERPH	0.3706	LITOA	SCOJA	0.0109	LOLLI	THUNA	0.0130	HART	LOLLI	0.0234
RADIO	PLEPL	0.0619	LITOA	LUTGU	0.0111	LOLLI	SCOJA	0.0109	HART	LARDE	0.0120
RADIO	ANITA	0.0579	LITOA	LUTJO	0.0150	LOLLI	AUTHA	0.0121	HART	HYCA	0.0556

RADIO	ENMOR	0.0008	LITOA	LUTAR	0.0052	LOLLI	SCOSI	0.1119	HART	PELOC	0.1000
RADIO	SASA	0.0280	LITOA	LUTPE	0.0131	LOLLI	LUTGU	0.0122	HART	PHYMA	0.0152
RADIO	VINLU	0.0225	LITOA	HALDI	0.0115	LOLLI	LUTAR	0.0006	HART	ORCOR	0.0430
RADIO	TRIME	0.0100	LITOA	HALSE	0.0081	LOLLI	LUTPE	0.0918	HART	GLOMA	0.0207
RADI1	FACAD	0.0038	LITOA	PAMA	0.0254	LOLLI	DIPA	0.0067	HART	TUTRU	0.0202
RADI1	LITOA	0.0204	LITOA	PAUR	0.0667	LOLLI	DILAB	0.0261	HART	GRAGR	0.0101
RADI2	FACAD	0.0038	LITOA	RYBI	0.0020	LOLLI	MYRO	0.0082	HART	DELCA	0.0725
RADI2	LITOA	0.0204	LITOA	SEPSI	0.0589	LOLLI	DIAPA	0.0477	HART	PSEPR	0.0060
RADI3	FACAD	0.0038	LITOA	DIPEU	0.1315	LOLLI	COSER	0.0602	HART	MYLCA	0.0103
RADI3	LITOA	0.0204	LITOA	DIPA	0.3758	LOLLI	ΤΟΤΟΑ	0.0273	HART	SQUCA	0.0226
RADI4	FACAD	0.0038	LITOA	DILAB	0.0070	LOLLI	CYNOT	0.0074	HART	CARFA	0.0121
RADI4	LITOA	0.0204	LITOA	EPIPA	0.0251	LOLLI	CYNOR	0.0077	HART	CARLE	0.0167
FORAM	ZOOPL	0.0182	LITOA	EPIAC	0.0037	LOLLI	CAPRI	0.0173	HART	CARLI	0.1413
FORAM	CIRRI	0.0125	LITOA	MYRO	0.0151	LOLLI	TRILE	0.0773	HART	NEBRE	0.0129
FORAM	CHAET	0.0100	LITOA	MYJO	0.0021	LOLLI	SPHYE	0.0007	HART	SPHYL	0.0621
FORAM	POLYC	0.0529	LITOA	PACOL	0.0324	LOLLI	NEPEC	0.0131	HART	SPHYT	0.0255
FORAM	WORM	0.0663	LITOA	EUCUR	0.1059	LOLLI	CITHA	0.0160	HART	MUCAL	0.0201
FORAM	GASTR	0.0066	LITOA	GECIN	0.0551	LOLLI	SYALA	0.0004	HART	GINCI	0.0964
FORAM	PTERO	0.2656	LITOA	ANIN	0.0005	LOLLI	SCOSO	0.0714	HART	ELBI	0.1413
FORAM	FACAD	0.0092	LITOA	HAEFL	0.0162	LOLLI	GYMPA	0.0269	HART	THUNA	0.0125
FORAM	LITOA	0.0204	LITOA	HAEMA	0.0051	LOLLI	SYSCI	0.1714	HART	SCOSI	0.0112
FORAM	SERGE	0.0080	LITOA	HASTE	0.1031	LOLLI	SYLU	0.5466	HART	LUTPE	0.0285
FORAM	SERPH	0.0122	LITOA	HAELE	0.0187	HYDRO	CIRRI	0.0300	HART	EPILA	0.0122
FORAM	SICYO	0.1279	LITOA	HAENI	0.0433	HYDRO	AMPHI	0.0476	HART	EPIPA	0.0251
FORAM	PLEPL	0.0206	LITOA	HAEAX	0.0328	HYDRO	CHITO	0.1000	HART	EPIAC	0.0033
FORAM	CALAR	0.0043	LITOA	ORED	0.0789	HYDRO	PASIP	0.0242	HART	MYXE	0.2500
FORAM	PORTU	0.0340	LITOA	ΤΟΤΟΑ	0.0341	HYDRO	CALAR	0.0043	HART	MIMEG	0.0596
FORAM	CRABS	0.0107	LITOA	MIMEG	0.0492	HYDRO	HYDRO	0.4127	HART	CYNXA	0.0387
FORAM	STOMA	0.0090	LITOA	UMBRI	0.0327	HYDRO	CHEMY	0.0229	HART	CAPRI	0.0017
FORAM	RYBI	0.2004	LITOA	CYNOT	0.0368	HYDRO	RHITY	0.0243	HART	GYMPA	0.0036
FORAM	MYRO	0.0044	LITOA	CYNXA	0.0334	HYDRO	GECIN	0.3046	HART	MERLU	0.0806
FORAM	CABRA	0.0110	LITOA	CYNOR	0.1554	HYDRO	ANIN	0.0117	HART	SYSCI	0.0141
FORAM	KYPEL	0.0002	LITOA	ATNOB	0.0101	HYDRO	COSER	0.0002	HART	SYLU	0.0060
FORAM	GOMIC	0.0441	LITOA	CAPRI	0.0017	HYDRO	CYNXA	0.0451	LISTO	CALAR	0.0433
FORAM	ENMOR	0.0008	LITOA	POLAP	0.0009	HYDRO	KYPEL	0.0006	LISTO	CALBE	0.0250
FORAM	CEMYS	0.0020	LITOA	APORE	0.1109	HYDRO	CHAZO	0.2138	LISTO	ОСТО	0.0735
FORAM	SUVER	0.0269	LITOA	MULLI	0.0210	HYDRO	FOFLA	0.0911	LISTO	LOLLI	0.0234
FORAM	HIPIN	0.0103	LITOA	CENIG	0.2185	HYDRO	HOLPA	0.0449	LISTO	LARDE	0.0120
FORAM	DOREX	0.0499	LITOA	GIMI	0.0043	HYDRO	POZON	0.3564	LISTO	HYCA	0.0556
FORAM	ATAF	0.0127	LITOA	ZARO	0.0199	HYDRO	STERE	0.0260	LISTO	PELOC	0.1000
PROTO	RADIO	0.0100	LITOA	SYALA	0.0224	HYDRO	PRIPU	0.0940	LISTO	SULEU	0.0152
PROTO	RADI1	0.0099	LITOA	SYOV	0.0689	HYDRO	ENMOR	0.0046	LISTO	PHYMA	0.0152
PROTO	RADI2	0.0098	LITOA	HITE	0.4942	HYDRO	SUVER	0.0240	LISTO	ORCOR	0.0430

PROTO	RADI3	0.0097	LITOA	ANDEN	0.0909	HYDRO	CAPUN	0.0986	LISTO	GLOMA	0.0207
PROTO	RADI4	0.0096	LITOA	ELAF	0.3576	HYDRO	CHECA	0.0519	LISTO	TUTRU	0.0202
PROTO	PROTO	0.0500	LITOA	SECOR	0.0213	HYDRO	LEUST	0.0122	LISTO	GRAGR	0.0101
PROTO	ACAN1	0.0594	LITOA	SCOSO	0.0714	HYDRO	TRIME	0.0010	LISTO	DELCA	0.0725
PROTO	ACAN2	0.0686	LITOA	PRIST	0.0303	SCYPH	CHEMY	0.0090	LISTO	PSEPR	0.0025
PROTO	ACAN3	0.0777	LITOA	PRIAL	0.1500	SCYPH	RHITY	0.0051	LISTO	MYLCA	0.0103
PROTO	ACAN4	0.0865	LITOA	BALPO	0.0413	SCYPH	STERE	0.0010	LISTO	SQUCA	0.0226
PROTO	ACAN5	0.0952	LITOA	DIHOL	0.0002	PEPLA	GALCU	0.0222	LISTO	CARLE	0.0167
PROTO	ACAN6	0.1038	LITOA	GYMPA	0.0957	PEPLA	CARFA	0.0073	LISTO	CARLI	0.0707
PROTO	OSTRA	0.1000	LITOA	MERLU	0.0863	PEPLA	SPHYL	0.0311	LISTO	NEBRE	0.0065
PROTO	ROTIF	0.0500	LITOA	TYCRO	0.2958	PEPLA	EPILA	0.1105	LISTO	SPHYL	0.0311
PROTO	ASCI	0.0500	LITOA	STREX	0.1429	PEPLA	EPIPA	0.1183	LISTO	SPHYT	0.0127
PROTO	CIRRI	0.0750	LITOA	BROCL	0.0228	PEPLA	EPIAC	0.0155	LISTO	MUCAL	0.0201
PROTO	COPEP	0.0238	LITOA	LEPRO	0.1769	CHEMY	PELOC	0.0100	LISTO	GINCI	0.0964
PROTO	OLIGO	0.0050	LITOA	DOREX	0.0279	CHEMY	ORCOR	0.0206	LISTO	CHORQ	0.2227
PROTO	PTERO	0.0181	LITOA	SARGO	0.0134	CHEMY	GALCU	0.2339	LISTO	OLIRE	0.6000
PROTO	OPILI	0.0260	LITOA	MYLE	0.0827	RYNIG	CARFA	0.0061	LISTO	ELBI	0.1413
ACAN1	FACAD	0.0038	LITOA	PORMI	0.0491	RYNIG	NEBRE	0.0064	LISTO	THUNA	0.0125
ACAN1	LITOA	0.0204	LITOA	PORAN	0.0030	RYNIG	SPHYT	0.0127	LISTO	SCOSI	0.0112
ACAN2	FACAD	0.0038	LITOA	SYSCI	0.0282	LARDE	ORCOR	0.0206	LISTO	LUTPE	0.0285
ACAN2	LITOA	0.0204	LITOA	SYLU	0.0160	LARA	ORCOR	0.0206	LISTO	EPILA	0.0122
ACAN3	FACAD	0.0038	SERGE	SICYO	0.0200	LARA	GALCU	0.0260	LISTO	EPIPA	0.0251
ACAN3	LITOA	0.0204	SERGE	OCTO	0.0147	HYCA	ORCOR	0.0206	LISTO	EPIAC	0.0033
ACAN4	FACAD	0.0038	SERGE	STHEO	0.0123	HYCA	GALCU	0.0260	LISTO	MYXE	0.2500
ACAN4	LITOA	0.0204	SERGE	ONBAN	0.0199	PELOC	ORCOR	0.0206	LISTO	MIMEG	0.0596
ACAN5	FACAD	0.0038	SERGE	LOLLI	0.0312	PELOC	GALCU	0.0260	LISTO	CYNXA	0.0387
ACAN5	LITOA	0.0204	SERGE	HYDRO	0.0423	PHALA	ORCOR	0.0206	LISTO	CAPRI	0.0017
ACAN6	FACAD	0.0038	SERGE	LARDE	0.0120	PHALA	GALCU	0.0260	LISTO	CENIG	0.0218
ACAN6	LITOA	0.0204	SERGE	DELCA	0.0072	SULEU	ORCOR	0.0206	LISTO	PRIST	0.0909
OSTRA	RADIO	0.0100	SERGE	MABIR	0.0500	SULEU	GALCU	0.0260	LISTO	GYMPA	0.0036
OSTRA	RADI1	0.0198	SERGE	ALOSU	0.1422	OCMIC	LARDE	0.0964	LISTO	MERLU	0.0806
OSTRA	RADI2	0.0294	SERGE	GINCI	0.0120	OCMIC	GALCU	0.0260	LISTO	SYSCI	0.0141
OSTRA	RADI3	0.0388	SERGE	RHITY	0.1011	BAPHY	ORCOR	0.0206	LISTO	SYLU	0.0060
OSTRA	RADI4	0.0481	SERGE	ALECI	0.0933	BAPHY	CACA	0.0778	MUCE	CALAR	0.0087
OSTRA	POLYC	0.0010	SERGE	SEBRE	0.0791	BALED	ORCOR	0.0206	MUCE	CALBE	0.0250
OSTRA	FACAD	0.1887	SERGE	SEPER	0.0102	BALED	CACA	0.0778	MUCE	SEPIA	0.0972
OSTRA	LITOA	0.0204	SERGE	THUNA	0.0091	ESROB	ORCOR	0.0206	MUCE	PEPLA	0.1175
OSTRA	SERGE	0.0699	SERGE	SCOJA	0.0109	ESROB	CACA	0.0778	MUCE	STERA	0.0128
OSTRA	SERPH	0.0618	SERGE	AUTHA	0.0604	ZICAV	ORCOR	0.0206	MUCE	PANHA	0.6429
OSTRA	SICYO	0.0400	SERGE	LUTPE	0.0131	PHYMA	ORCOR	0.0206	MUCE	TUTRU	0.0161
OSTRA	RHITY	0.0101	SERGE	MYRO	0.0151	GLOMA	ORCOR	0.0206	MUCE	PSEPR	0.0029
OSTRA	SCOJA	0.0131	SERGE	DIAPE	0.0098	GLOMA	GALCU	0.0208	MUCE	GYMAR	0.1144
OSTRA	MYRO	0.0516	SERGE	CABRA	0.0459	TUTRU	GALCU	0.0208	MUCE	CARFA	0.0061

OSTRA	CABRA	0.0030	SERGE	HASEX	0.0549	TUTRU	CACA	0.0389	MUCE	NEBRE	0.0065
OSTRA	ANIN	0.0042	SERGE	COSER	0.0602	TUTRU	NOCEP	0.0097	MUCE	RHILO	0.0613
OSTRA	ANITA	0.0020	SERGE	CYNOT	0.0368	GRAGR	GALCU	0.0208	MUCE	SPHYT	0.0163
OSTRA	CAPRI	0.5199	SERGE	CYNOR	0.1411	GRAGR	CACA	0.0121	MUCE	ISURO	0.0008
OSTRA	APORE	0.0869	SERGE	TRILE	0.1259	GRAGR	NOCEP	0.0032	MUCE	CORHY	0.0486
OSTRA	MULLI	0.1508	SERGE	KYPEL	0.0063	DELCA	GALCU	0.0208	MUCE	CYNXA	0.0279
OSTRA	FOFLA	0.0340	SERGE	JONI	0.0090	DELCA	CACA	0.0311	MUCE	CENIG	0.0983
OSTRA	STERE	0.0210	SERGE	ZARO	0.0199	DELCA	NOCEP	0.0032	MUCE	NEPEC	0.0101
OSTRA	ABTRO	0.0280	SERGE	SECOR	0.0213	STELO	ORCOR	0.0206	PAWO	SEPIA	0.0069
OSTRA	PRIPU	0.0010	SERGE	SUVER	0.0279	STELO	GALCU	0.0208	PAWO	LOLLI	0.0019
OSTRA	GOMIC	0.2314	SERGE	STREX	0.1429	STELO	CACA	0.0078	PAWO	ORCOR	0.0430
OSTRA	ENMOR	0.0015	SERGE	BROCL	0.0228	STELO	NOCEP	0.0032	PAWO	GALCU	0.0042
OSTRA	HART	0.0040	SERGE	DOREX	0.0279	PHOSI	ORCOR	0.0206	PAWO	RHILO	0.0123
OSTRA	ETCRO	0.0109	SERGE	LEUST	0.0122	PHOSI	GALCU	0.0208	PAWO	SEPSI	0.0421
OSTRA	SUVER	0.0279	SERPH	SICYO	0.0200	PHOSI	CACA	0.0078	PAWO	DIPEU	0.0707
OSTRA	CAPUN	0.0219	SERPH	OCTO	0.0147	PHOSI	NOCEP	0.0032	PAWO	CYNXA	0.0473
OSTRA	CHECA	0.0210	SERPH	STHEO	0.0123	ZACAL	ORCOR	0.0411	PAWO	POLAP	0.0199
OSTRA	HIPIN	0.0103	SERPH	ONBAN	0.0199	ZACAL	GALCU	0.0208	PAES	STOMA	0.0050
OSTRA	DOREX	0.0499	SERPH	LOLLI	0.0312	ZACAL	CACA	0.2335	PAES	SEPIA	0.0069
OSTRA	TOZE	0.0778	SERPH	HYDRO	0.0423	ZACAL	NOCEP	0.3652	PAES	ORCOR	0.0430
OSTRA	ТОВО	0.2500	SERPH	LARDE	0.0120	PSELE	GALCU	0.0021	PAES	PSEPR	0.0098
OSTRA	VINLU	0.0371	SERPH	DELCA	0.0072	PSEGL	GALCU	0.0021	PAES	DASDI	0.0008
OSTRA	LEUST	0.0244	SERPH	MABIR	0.0400	DASDI	GALCU	0.0125	PAES	RHILO	0.0123
OSTRA	TRIME	0.0100	SERPH	ALOSU	0.1422	DASDI	CARFA	0.0061	PAES	TRISE	0.0212
OSTRA	HYGOP	0.0130	SERPH	GINCI	0.0120	DASDI	CARLE	0.0167	PAES	CAROT	0.0118
OSTRA	ATAF	0.0380	SERPH	RHITY	0.1011	DASDI	CARLI	0.0706	PAES	SEPSI	0.0421
CLADO	CTENO	0.1200	SERPH	ALECI	0.0933	DASDI	CAROB	0.4469	PAES	DIPEU	0.0707
CLADO	FACAD	0.0120	SERPH	SEBRE	0.0791	AENAR	CARFA	0.0073	PAES	BROCL	0.0091
CLADO	LITOA	0.0204	SERPH	SEPER	0.0102	AENAR	NEBRE	0.1289	ETCRO	STOMA	0.0050
CLADO	CALAR	0.0433	SERPH	THUNA	0.0091	AENAR	CACA	0.0019	ETCRO	SEPIA	0.0069
CLADO	HYDRO	0.0106	SERPH	SCOJA	0.0109	MYLCA	GALCU	0.0125	ETCRO	LOLLI	0.0019
CLADO	SCYPH	0.0459	SERPH	AUTHA	0.0604	MYLCA	CACA	0.0008	ETCRO	SULEU	0.0213
CLADO	ENMOR	0.0008	SERPH	LUTPE	0.0131	RHIST	GALCU	0.0021	ETCRO	PSEPR	0.0098
CLADO	HART	0.1200	SERPH	MYRO	0.0151	SQUCA	NOCEP	0.0237	ETCRO	DASDI	0.0008
CLADO	CHECA	0.0020	SERPH	DIAPE	0.0098	CARFA	SPHYL	0.0335	ETCRO	GYMAR	0.0187
CLADO	DOREX	0.0499	SERPH	HASEX	0.0549	CARLE	SPHYL	0.0335	ETCRO	GALCU	0.0042
CLADO	TRIME	0.0120	SERPH	COSER	0.0602	CARLI	CARFA	0.0072	ETCRO	CARFA	0.0020
ROTIF	PROTO	0.0500	SERPH	CYNOT	0.0368	CARLI	CARLE	0.1084	ETCRO	RHILO	0.0123
ROTIF	ACAN1	0.0495	SERPH	CYNOR	0.1411	CARLI	SPHYL	0.0335	ETCRO	TRISE	0.0212
ROTIF	ACAN2	0.0490	SERPH	TRILE	0.1259	CAROB	CACA	0.0623	ETCRO	CAROT	0.0118
ROTIF	ACAN3	0.0485	SERPH	ZARO	0.0199	NEBRE	CARFA	0.0073	ETCRO	LUTAR	0.3752
ROTIF	ACAN4	0.0481	SERPH	SECOR	0.0213	NEBRE	CARLE	0.1084	ETCRO	SEPSI	0.0421
ROTIF	ACAN5	0.0476	SERPH	STREX	0.1429	NEBRE	SPHYL	0.0335	ETCRO	DIPEU	0.0707

ROTIF	ACAN6	0.0472	SERPH	BROCL	0.0228	PRIG	PRIG	0.0011	ETCRO	HAEMA	0.0010
ROTIF	HYDRO	0.0106	SERPH	DOREX	0.0279	RHILO	CARFA	0.0072	ETCRO	CYNXA	0.0473
ROTIF	SCYPH	0.0459	SICYO	ONBAN	0.0199	RHILO	CARLE	0.1000	ETCRO	POLAP	0.0109
ROTIF	CEMYS	0.0080	SICYO	LOLLI	0.0312	RHILO	SPHYL	0.0307	ETCRO	CITHA	0.0036
CTENO	HYDRO	0.0106	SICYO	LARDE	0.0120	RHILO	CACA	0.0047	ETCRO	BROCL	0.0091
CTENO	SCYPH	0.0459	SICYO	PHALA	0.0126	SPHYL	CACA	0.0039	ETCRO	LEPRO	0.0295
CTENO	CHEMY	0.0010	SICYO	ESROB	0.0284	SPHYT	CARFA	0.0073	ETCRO	SYSCI	0.0040
CTENO	CITHA	0.0006	SICYO	DELCA	0.0029	SPHYT	CARLE	0.0834	ETCRO	SYLU	0.0020
ASCI	CHITO	0.0400	SICYO	PSELE	0.0037	SPHYT	SPHYL	0.0311	CITHA	STOMA	0.0050
ASCI	SEAST	0.1456	SICYO	PSEGL	0.3503	SPHYT	CACA	0.0039	CITHA	SEPIA	0.0069
ASCI	CHEMY	0.0090	SICYO	URHA	0.0266	SPHYZ	CACA	0.0039	CITHA	LOLLI	0.0019
ASCI	PARXA	0.0100	SICYO	URAS	0.0741	MUCAL	CARFA	0.0024	CITHA	ZACAL	0.0090
ASCI	EPIAC	0.0083	SICYO	URORO	0.0170	MUCAL	CARLE	0.0277	CITHA	PSEPR	0.0098
ASCI	HAEAX	0.0109	SICYO	GYMAR	0.0002	MUCAL	SPHYL	0.0112	CITHA	DASDI	0.0008
ASCI	PAWO	0.0253	SICYO	RAJIN	0.0754	MUCAL	CACA	0.0008	CITHA	GYMAR	0.0163
ASCI	PLEGU	0.0231	SICYO	PLATR	0.0034	MUCAL	NOCEP	0.0107	CITHA	GALCU	0.0042
ASCI	SUVER	0.0818	SICYO	MULUN	0.0094	MUHEN	CARFA	0.0024	CITHA	CARFA	0.0020
ASCI	VINLU	0.0772	SICYO	GINCI	0.0120	MUHEN	CARLE	0.0277	CITHA	RHILO	0.0245
ASCI	LEUST	0.3659	SICYO	ALECI	0.0933	MUHEN	SPHYL	0.0112	CITHA	TRISE	0.0212
ASCI	TRIME	0.0723	SICYO	SEBRE	0.0475	MUHEN	CACA	0.0008	CITHA	CAROT	0.0118
PORIF	AMPHI	0.0095	SICYO	SEPER	0.0102	MUHEN	NOCEP	0.1826	CITHA	SEPSI	0.0841
PORIF	GASTR	0.0106	SICYO	SECRU	0.0115	MULUN	CARFA	0.0024	CITHA	DIPEU	0.0707
PORIF	SICYO	0.0180	SICYO	SCOJA	0.0109	MULUN	CARLE	0.0277	CITHA	HAEMA	0.0010
PORIF	CALAR	0.0043	SICYO	LUTGU	0.0111	MULUN	SPHYL	0.0112	CITHA	CYNXA	0.0473
PORIF	CHEMY	0.0070	SICYO	LUTAR	0.0003	MULUN	CACA	0.0008	CITHA	POLAP	0.0109
PORIF	SCACO	0.0700	SICYO	LUTPE	0.0131	MULUN	NOCEP	0.0107	CITHA	CITHA	0.0036
PORIF	SCARU	0.0700	SICYO	HALDI	0.0115	TRISE	TRISE	0.0085	CITHA	SYOV	0.0080
PORIF	CHAZO	0.1469	SICYO	HALSE	0.0081	TRISE	NOCEP	0.0537	CITHA	BROCL	0.0091
PORIF	JONI	0.0040	SICYO	PAUR	0.0667	ALOSU	CACA	0.0008	CITHA	LEPRO	0.0295
PORIF	STERE	0.0010	SICYO	RYBI	0.0020	ALOVU	CACA	0.0008	CITHA	SYSCI	0.0040
PORIF	ZACOR	0.1500	SICYO	EPIPA	0.0251	RHITY	CACA	0.0078	CITHA	SYLU	0.0020
PORIF	BALPO	0.0413	SICYO	EPIAC	0.0051	SERLA	PEPLA	0.0098	SYALA	STOMA	0.0050
PORIF	CAPUN	0.0468	SICYO	MYRO	0.0151	SERLA	LARA	0.0357	SYALA	SEPIA	0.0069
PORIF	SPAN	0.1377	SICYO	MYJO	0.0021	SERLA	DELCA	0.0072	SYALA	PSEPR	0.0098
PORIF	PORAN	0.0290	SICYO	PACOL	0.0324	SERLA	SQUCA	0.0451	SYALA	DASDI	0.0008
BRYOZ	CIRRI	0.0700	SICYO	ANIN	0.0001	SERLA	CARFA	0.0073	SYALA	RHILO	0.0123
BRYOZ	POLYC	0.0030	SICYO	HAEFL	0.0162	SERLA	SPHYL	0.0311	SYALA	TRISE	0.0212
BRYOZ	CHITO	0.1000	SICYO	HASTE	0.1031	SERLA	MULUN	0.0094	SYALA	CAROT	0.0118
BRYOZ	SEAST	0.0097	SICYO	HAENI	0.0433	SERLA	CORHY	0.0040	SYALA	SEPSI	0.0421
BRYOZ	CALAR	0.0043	SICYO	HAEAX	0.0328	SERLA	THUNA	0.0050	SYALA	DIPEU	0.0707
BRYOZ	CHEMY	0.0010	SICYO	ORED	0.0789	SERLA	LUTJO	0.0933	SYALA	HAEMA	0.0010
BRYOZ	HALSE	0.0484	SICYO	UMBRI	0.0327	ALECI	PEPLA	0.0098	SYALA	POLAP	0.0109
BRYOZ	HAEAX	0.0033	SICYO	CYNOT	0.0368	ALECI	LARA	0.0357	SYALA	CITHA	0.0036

BRYOZ	COSER	0.0001	SICYO	CYNPA	0.0102	ALECI	DELCA	0.0072	SYALA	BROCL	0.0266
BRYOZ	KYPEL	0.0007	SICYO	ATNOB	0.0101	ALECI	SQUCA	0.0451	SYALA	LEPRO	0.0295
BRYOZ	CHAZO	0.0010	SICYO	POLAP	0.0009	ALECI	MULUN	0.0094	SYALA	SYSCI	0.0040
BRYOZ	FOFLA	0.0250	SICYO	CENIG	0.0011	ALECI	THUNA	0.0050	SYALA	SYLU	0.0020
BRYOZ	STERE	0.0040	SICYO	ZARO	0.0199	ALECI	LUTJO	0.0933	SYOV	SEPIA	0.0069
BRYOZ	ABTRO	0.0020	SICYO	SYOV	0.0482	CAROT	PEPLA	0.0098	SYOV	LOLLI	0.0019
BRYOZ	PRIPU	0.0330	SICYO	ANDEN	0.0909	CAROT	LARA	0.0357	SYOV	GALCU	0.0042
BRYOZ	ZACOR	0.1000	SICYO	PLEGU	0.0810	CAROT	DELCA	0.0072	SYOV	RHILO	0.0123
BRYOZ	ENMOR	0.0194	SICYO	SECOR	0.0213	CAROT	SQUCA	0.0451	SYOV	SEPSI	0.0421
BRYOZ	SUVER	0.0110	SICYO	SCOSO	0.0714	CAROT	CARFA	0.0087	SYOV	DIPEU	0.0707
BRYOZ	CAPUN	0.0418	SICYO	PRIST	0.0505	CAROT	SPHYL	0.0219	SYOV	HAEMA	0.0010
BRYOZ	SPAN	0.0592	SICYO	PRIAL	0.1000	CAROT	MULUN	0.0094	SYOV	CYNXA	0.0473
CIRRI	WORM	0.1667	SICYO	BELGY	0.3200	CAROT	THUNA	0.0050	SYOV	POLAP	0.0109
CIRRI	GASTR	0.1735	SICYO	BALPO	0.0413	CAROT	LUTJO	0.0933	SYOV	CITHA	0.0036
CIRRI	SEAST	0.4369	SICYO	BROCL	0.0228	CHORQ	PEPLA	0.0098	SYOV	DIHY	0.0044
CIRRI	PORTU	0.0080	SICYO	LEPRO	0.1769	CHORQ	LARA	0.0357	SYOV	LEPRO	0.0295
CIRRI	LARDE	0.0120	SICYO	DOREX	0.0279	CHORQ	DELCA	0.0072	SYOV	SYSCI	0.0040
CIRRI	LUTCO	0.2717	SICYO	SARGO	0.0134	CHORQ	SQUCA	0.0451	SYOV	SYLU	0.0020
CIRRI	STERE	0.0210	SICYO	PORAN	0.0030	CHORQ	CARFA	0.0087	HITE	SEPIA	0.0069
CIRRI	CAPUN	0.0219	SICYO	SYSCI	0.0282	CHORQ	RHILO	0.0613	HITE	LOLLI	0.0019
CIRRI	TOZE	0.4444	SICYO	SYLU	0.0160	CHORQ	SPHYL	0.0373	HITE	GALCU	0.0042
CIRRI	тово	0.1000	PASIP	SICYO	0.0200	CHORQ	MULUN	0.0094	HITE	CARFA	0.0020
CIRRI	PORAN	0.1130	PASIP	PASIP	0.0379	CHORQ	THUNA	0.0050	HITE	RHILO	0.0123
MEIO	MEIO	0.0906	PASIP	SEPIA	0.0050	CHORQ	SCOSI	0.1119	HITE	CAROT	0.0118
MEIO	WORM	0.1667	PASIP	OCTO	0.0147	CHORQ	LUTGU	0.0916	HITE	SEPSI	0.0421
MEIO	SEACU	0.8248	PASIP	ONBAN	0.0199	CHORQ	LUTJO	0.0933	HITE	DIPEU	0.0707
MEIO	FACAD	0.0960	PASIP	LOLLI	0.0312	OLIAL	PEPLA	0.0098	HITE	CYNXA	0.0473
MEIO	LITOA	0.3067	PASIP	LARDE	0.0120	OLIAL	LARA	0.0357	HITE	POLAP	0.0199
MEIO	PLEPL	0.0155	PASIP	ESROB	0.0284	OLIAL	DELCA	0.0072	HITE	CITHA	0.0036
MEIO	RYNIG	0.1099	PASIP	PSELE	0.0432	OLIAL	SQUCA	0.0451	ANDEN	STOMA	0.0050
MEIO	STERA	0.0256	PASIP	PSEGL	0.4942	OLIAL	CARFA	0.0160	ANDEN	SEPIA	0.0069
MEIO	MYLCA	0.0270	PASIP	DASDI	0.0304	OLIAL	CARLE	0.0167	ANDEN	PSEPR	0.0098
MEIO	URHA	0.0289	PASIP	URHA	0.0266	OLIAL	CARLI	0.0707	ANDEN	DASDI	0.0008
MEIO	HASTE	0.0206	PASIP	URAS	0.4409	OLIAL	NEBRE	0.0065	ANDEN	CARFA	0.0020
MEIO	PLEGU	0.0111	PASIP	URORO	0.0381	OLIAL	RHILO	0.0245	ANDEN	RHILO	0.0123
COPEP	ZOOPL	0.0182	PASIP	NAREN	0.0390	OLIAL	SPHYL	0.0684	ANDEN	TRISE	0.0212
COPEP	RADIO	0.0100	PASIP	GYMAR	0.0002	OLIAL	SPHYT	0.0127	ANDEN	CAROT	0.0118
COPEP	RADI1	0.0099	PASIP	RAJIN	0.0754	OLIAL	MULUN	0.0094	ANDEN	SEPSI	0.0421
COPEP	RADI2	0.0098	PASIP	PLATR	0.5045	OLIAL	THUNA	0.0050	ANDEN	DIPEU	0.0707
COPEP	RADI3	0.0097	PASIP	GINCI	0.0120	OLIAL	LUTJO	0.0933	ANDEN	CITHA	0.0036
COPEP	RADI4	0.0096	PASIP	ALECI	0.0933	OLIRE	DOGIG	0.0654	ANDEN	BROCL	0.0091
COPEP	CTENO	0.7900	PASIP	SEBRE	0.0791	OLIRE	PEPLA	0.0098	PLEGU	SEPIA	0.0069
COPEP	CIRRI	0.0125	PASIP	SEPER	0.0102	OLIRE	LARA	0.0357	PLEGU	LOLLI	0.0019

COPEP	AMPHI	0.3810	PASIP	SECRU	0.0115	OLIRE	DELCA	0.0072	PLEGU	ORCOR	0.0430
COPEP	CHAET	0.9000	PASIP	CORHY	0.0243	OLIRE	SQUCA	0.0451	PLEGU	GYMAR	0.0054
COPEP	WORM	0.1667	PASIP	SCOJA	0.0109	OLIRE	RHILO	0.0368	PLEGU	GALCU	0.0042
COPEP	PTERO	0.1328	PASIP	AUTHA	0.0725	OLIRE	MULUN	0.0094	PLEGU	CARFA	0.0020
COPEP	EUPHA	0.3800	PASIP	LUTGU	0.0111	SEBRE	PEPLA	0.0098	PLEGU	RHILO	0.0123
COPEP	FACAD	0.0056	PASIP	LUTPE	0.0131	SEBRE	LARA	0.0357	PLEGU	CAROT	0.0118
COPEP	LITOA	0.0204	PASIP	PAUR	0.0667	SEBRE	DELCA	0.0072	PLEGU	SEPSI	0.0421
COPEP	SERGE	0.8192	PASIP	RYBI	0.4880	SEBRE	SQUCA	0.0451	PLEGU	DIPEU	0.0707
COPEP	SERPH	0.2471	PASIP	DIPA	0.0403	SEBRE	CARFA	0.0015	PLEGU	CYNXA	0.0473
COPEP	PLEPL	0.3093	PASIP	DILAB	0.0633	SEBRE	SPHYL	0.0062	PLEGU	POLAP	0.0199
COPEP	STHEO	0.0166	PASIP	EPIPA	0.0251	SEBRE	MULUN	0.0094	PLEGU	CITHA	0.0521
COPEP	HYDRO	0.1323	PASIP	MYRO	0.0151	SEBRE	THUNA	0.0050	ELAF	TUTRU	0.0065
COPEP	SCYPH	0.4571	PASIP	MYJO	0.1816	SEBRE	LUTJO	0.0933	SECOR	LOLLI	0.0094
COPEP	CHEMY	0.0020	PASIP	PACOL	0.0324	SEBRE	LUTPE	0.0013	SECOR	ORCOR	0.0430
COPEP	RYNIG	0.1099	PASIP	CABRA	0.0459	SEPER	PEPLA	0.0098	SECOR	ZACAL	0.0208
COPEP	STERA	0.0385	PASIP	ANIN	0.1046	SEPER	LARA	0.0357	SECOR	RAJIN	0.0240
COPEP	LARDE	0.0120	PASIP	ANITA	0.1199	SEPER	DELCA	0.0072	SECOR	TRISE	0.0212
COPEP	MABIR	0.4000	PASIP	HASEX	0.0549	SEPER	SQUCA	0.0451	SECOR	NOCEP	0.0537
COPEP	RHITY	0.2022	PASIP	HAEFL	0.0162	SEPER	CARFA	0.0073	SECOR	SECOR	0.0122
COPEP	OLIRE	0.0100	PASIP	HAEMA	0.9752	SEPER	SPHYL	0.0156	SCOXY	ZACAL	0.0083
COPEP	ELBI	0.0406	PASIP	HASTE	0.1031	SEPER	MULUN	0.0094	SCOXY	RAJIN	0.0240
COPEP	TRASY	0.0117	PASIP	HAENI	0.0433	SEPER	CORHY	0.0020	SCOXY	CARLE	0.0167
COPEP	THUNA	0.2338	PASIP	HAEAX	0.0328	SEPER	THUNA	0.0050	SCOXY	CARLI	0.0707
COPEP	SCOJA	0.0715	PASIP	ORED	0.0789	SEPER	SCOSI	0.2461	SCOXY	NEBRE	0.0065
COPEP	SCACO	0.0100	PASIP	UMBRI	0.0327	SEPER	LUTGU	0.0533	SCOXY	SPHYT	0.0127
COPEP	SCARU	0.0100	PASIP	CYNOT	0.0368	SEPER	LUTJO	0.0933	SCOXY	NOCEP	0.0107
COPEP	PROMU	0.7500	PASIP	ATNOB	0.0101	ELBI	PEPLA	0.0098	SCOXY	EPILA	0.0274
COPEP	ANIN	0.0209	PASIP	CAUAF	0.1944	ELBI	LARA	0.0357	SCOXY	EPIPA	0.0565
COPEP	HASTE	0.0103	PASIP	TRILE	0.1292	ELBI	DELCA	0.0072	SCOXY	EPIAC	0.0074
COPEP	CYNOR	0.0031	PASIP	POLAP	0.0009	ELBI	SQUCA	0.0451	SCOXY	POLAP	0.0036
COPEP	ATNOB	0.0303	PASIP	APORE	0.4316	ELBI	MULUN	0.0094	SCOMY	PANHA	0.0102
COPEP	TRILE	0.0110	PASIP	JONI	0.0090	ELBI	THUNA	0.0050	SCOMY	ZACAL	0.0083
COPEP	KYPEL	0.0095	PASIP	POZON	0.0472	ELBI	LUTJO	0.0933	SCOMY	RAJIN	0.0240
COPEP	GOMIC	0.4327	PASIP	CENIG	0.3277	TRASY	LOLLI	0.0266	SCOMY	CARFA	0.0090
COPEP	GIMI	0.0431	PASIP	GIMI	0.0043	TRASY	PEPLA	0.0098	SCOMY	NEBRE	0.0324
COPEP	ENMOR	0.2556	PASIP	ZARO	0.0199	TRASY	LARA	0.0357	SCOMY	SPHYT	0.0064
COPEP	ANCHE	0.8812	PASIP	SYOV	0.1723	TRASY	ORCOR	0.0430	SCOMY	NOCEP	0.0107
COPEP	SASA	0.2510	PASIP	ANDEN	0.0909	TRASY	DELCA	0.0072	SCOMY	EPILA	0.0274
COPEP	HART	0.6590	PASIP	ELAF	0.2848	TRASY	ZACAL	0.0316	SCOMY	EPIPA	0.0565
COPEP	MUCE	0.0476	PASIP	SECOR	0.0213	TRASY	SQUCA	0.0451	SCOMY	EPIAC	0.0074
COPEP	PAES	0.1219	PASIP	SCOXY	0.2222	TRASY	CARFA	0.0073	SCOMY	ANIN	0.0038
COPEP	ETCRO	0.1087	PASIP	SCOSO	0.0714	TRASY	RHILO	0.0613	SCOMY	POLAP	0.0036
COPEP	CITHA	0.0414	PASIP	PRIAL	0.4500	TRASY	PARXA	0.0100	SCOSO	ZACAL	0.0083

COPEP	BELGY	0.0200	PASIP	BELGY	0.0200	TRASY	SPHYL	0.0156	SCOSO	RAJIN	0.0240
COPEP	CAPUN	0.0219	PASIP	BALPO	0.0413	TRASY	MULUN	0.0094	SCOSO	CARFA	0.0090
COPEP	CHECA	0.5339	PASIP	SUVER	0.0279	TRASY	ALOVU	0.0136	SCOSO	NEBRE	0.0324
COPEP	EXOMO	0.9694	PASIP	BROCL	0.0228	TRASY	SERLA	0.0218	SCOSO	SPHYT	0.0064
COPEP	LEPRO	0.0080	PASIP	HIPIN	0.2058	TRASY	CORHY	0.0324	SCOSO	NOCEP	0.0107
COPEP	HIPIN	0.1029	PASIP	DOREX	0.0279	TRASY	THUNA	0.0050	SCOSO	EPILA	0.0274
COPEP	DOREX	0.0998	PASIP	SARGO	0.0134	TRASY	LUTJO	0.0933	SCOSO	EPIPA	0.0565
COPEP	TOZE	0.2222	PASIP	PORMI	0.0295	SECRU	PEPLA	0.0098	SCOSO	EPIAC	0.0074
COPEP	тово	0.1000	PLEPL	OCTO	0.0221	SECRU	LARA	0.0357	SCOSO	ANIN	0.0038
COPEP	VINLU	0.7781	PLEPL	DOGIG	0.0674	SECRU	DELCA	0.0072	SCOSO	POLAP	0.0036
COPEP	LEUST	0.0610	PLEPL	ONBAN	0.0199	SECRU	SQUCA	0.0451	PRIST	LARDE	0.0120
COPEP	MYLE	0.1303	PLEPL	LOLLI	0.0312	SECRU	CARFA	0.0160	PRIST	HYCA	0.0556
COPEP	TRIME	0.3012	PLEPL	CHEMY	0.0010	SECRU	PRIG	0.0000	PRIST	ESROB	0.0105
COPEP	HYGOP	0.3640	PLEPL	LARDE	0.0120	SECRU	SPHYL	0.0534	PRIST	ZICAV	0.0449
COPEP	ATAF	0.2025	PLEPL	LARA	0.0357	SECRU	MULUN	0.0094	PRIST	PHYMA	0.0152
COPEP	PORAN	0.1060	PLEPL	PELOC	0.0100	SECRU	CORHY	0.0024	PRIST	GLOMA	0.0207
AMPHI	AMPHI	0.0952	PLEPL	ESROB	0.0284	SECRU	THUNA	0.0050	PRIST	STELO	0.0758
AMPHI	WORM	0.1667	PLEPL	PSEPR	0.1373	SECRU	LUTJO	0.0933	PRIST	ZACAL	0.0118
AMPHI	CHITO	0.0100	PLEPL	PSELE	0.0111	SECRU	NEPEC	0.0506	PRIST	PSEPR	0.0177
AMPHI	GASTR	0.0013	PLEPL	PSEGL	0.0106	CORHY	PEPLA	0.0460	PRIST	RAJIN	0.0240
AMPHI	OPHI	0.0200	PLEPL	DASDI	0.0749	CORHY	ALOSU	0.0001	PRIST	CARFA	0.0020
AMPHI	FACAD	0.0178	PLEPL	URHA	0.0266	CORHY	ALOVU	0.0136	PRIST	NOCEP	0.0107
AMPHI	SERGE	0.0080	PLEPL	RAJIN	0.0599	THUNA	PEPLA	0.0098	PRIST	SECOR	0.0101
AMPHI	SERPH	0.0618	PLEPL	PLATR	0.0202	THUNA	DELCA	0.0072	PRIST	GYMPA	0.0066
AMPHI	SICYO	0.0360	PLEPL	GALCU	0.0031	THUNA	CACA	0.0039	PRIAL	LARDE	0.0120
AMPHI	PASIP	0.1998	PLEPL	PRIG	0.5499	THUNA	THUNA	0.0050	PRIAL	HYCA	0.0556
AMPHI	CALBE	0.0037	PLEPL	RHILO	0.0613	SCOJA	LOLLI	0.0016	PRIAL	ESROB	0.0105
AMPHI	PORTU	0.0300	PLEPL	MUHEN	0.0377	SCOJA	PEPLA	0.0098	PRIAL	ZICAV	0.0449
AMPHI	CRABS	0.0026	PLEPL	MULUN	0.3589	SCOJA	CHEMY	0.0010	PRIAL	PHYMA	0.0152
AMPHI	STHEO	0.0307	PLEPL	TRISE	0.0847	SCOJA	SULEU	0.0671	PRIAL	GLOMA	0.0207
AMPHI	SCYPH	0.0918	PLEPL	ALOVU	0.0136	SCOJA	PHYMA	0.0152	PRIAL	STELO	0.0758
AMPHI	CHEMY	0.0040	PLEPL	ISURO	0.0127	SCOJA	ORCOR	0.0430	PRIAL	ZACAL	0.0118
AMPHI	LARDE	0.0120	PLEPL	GINCI	0.0120	SCOJA	GLOMA	0.0207	PRIAL	PSEPR	0.0177
AMPHI	OCMIC	0.0160	PLEPL	SERLA	0.0914	SCOJA	TUTRU	0.0202	PRIAL	RAJIN	0.0240
AMPHI	PSEGL	0.0481	PLEPL	ALECI	0.0734	SCOJA	GRAGR	0.0101	PRIAL	CARFA	0.0020
AMPHI	DASDI	0.0047	PLEPL	SEBRE	0.0475	SCOJA	DELCA	0.0072	PRIAL	ISURO	0.6637
AMPHI	URHA	0.0266	PLEPL	SEPER	0.0102	SCOJA	ZACAL	0.0473	PRIAL	NOCEP	0.0107
AMPHI	URORO	0.2368	PLEPL	ELBI	0.0133	SCOJA	ZAPEX	0.0004	PRIAL	SECOR	0.0101
AMPHI	DIPOM	0.1419	PLEPL	TRASY	0.0198	SCOJA	PRIG	0.0058	PRIAL	GYMPA	0.0066
AMPHI	PLATR	0.0387	PLEPL	SECRU	0.0115	SCOJA	MULUN	0.0165	BELGY	LARDE	0.0120
AMPHI	RHITY	0.0101	PLEPL	CORHY	0.1619	SCOJA	ALOVU	0.1361	BELGY	HYCA	0.0556
AMPHI	OLIRE	0.0100	PLEPL	THUNA	0.0070	SCOJA	CACA	0.0039	BELGY	ESROB	0.0105
AMPHI	THUNA	0.0432	PLEPL	AUTHA	0.0725	SCOJA	ISURO	0.0549	BELGY	ZICAV	0.0449

AMPHI	SCOJA	0.1002	PLEPL	LUTAR	0.0104	SCOJA	SERLA	0.0294	BELGY	PHYMA	0.0152
AMPHI	AUTHA	0.1209	PLEPL	LUTPE	0.2624	SCOJA	CORHY	0.0243	BELGY	GLOMA	0.0207
AMPHI	LUTPE	0.0656	PLEPL	PAUR	0.0667	SCOJA	THUNA	0.0050	BELGY	STELO	0.0758
AMPHI	HALSE	0.6452	PLEPL	SEPSI	0.0168	AUTHA	PHYMA	0.0152	BELGY	PSEPR	0.0177
AMPHI	MYRO	0.0390	PLEPL	MYRO	0.0151	AUTHA	ORCOR	0.0430	BELGY	RAJIN	0.0240
AMPHI	PACOL	0.3799	PLEPL	MYJO	0.0699	AUTHA	GLOMA	0.0207	BELGY	CARFA	0.0020
AMPHI	EUGRA	0.3000	PLEPL	PACOL	0.0324	AUTHA	TUTRU	0.0202	BELGY	NOCEP	0.0107
AMPHI	EUCUR	0.3178	PLEPL	DIAPE	0.0098	AUTHA	GRAGR	0.0101	BELGY	CAROT	0.3267
AMPHI	EUCEN	0.0159	PLEPL	EUCEN	0.0138	AUTHA	DELCA	0.0072	BELGY	SECOR	0.0101
AMPHI	EUDO	0.4286	PLEPL	COSER	0.0602	AUTHA	PRIG	0.0000	BALPO	PANHA	0.0102
AMPHI	CABRA	0.0080	PLEPL	ΤΟΤΟΑ	0.0341	AUTHA	ALOSU	0.0353	BALPO	CARFA	0.0120
AMPHI	ANIN	0.2833	PLEPL	CAPRI	0.0884	AUTHA	CACA	0.0039	BALPO	CORHY	0.0971
AMPHI	HASEX	0.0889	PLEPL	CAUAF	0.0720	AUTHA	SERLA	0.1186	BALPO	THUNA	0.0120
AMPHI	HAEFL	0.0061	PLEPL	ZARO	0.0259	AUTHA	CORHY	0.0405	BALPO	LUTPE	0.0013
AMPHI	HASTE	0.0103	PLEPL	SYOV	0.0057	AUTHA	THUNA	0.1867	SUVER	CARFA	0.0060
AMPHI	HAENI	0.0618	PLEPL	ANDEN	0.0909	SCOSI	PEPLA	0.0098	SUVER	THUNA	0.0120
AMPHI	HAEAX	0.0208	PLEPL	SECOR	0.2330	SCOSI	PANHA	0.0143	DIHOL	GALCU	0.0125
AMPHI	ORCHA	0.1095	PLEPL	SCOSO	0.0714	SCOSI	SULEU	0.0945	DIHOL	CARFA	0.0081
AMPHI	ORED	0.0042	PLEPL	PRIST	0.3030	SCOSI	DELCA	0.0072	DIHOL	LUTNO	0.1250
AMPHI	COSER	0.0128	PLEPL	PRIAL	0.0100	SCOSI	CARFA	0.0121	DIHOL	GYMPA	0.0066
AMPHI	UMBRI	0.0246	PLEPL	BALPO	0.0413	SCOSI	CARLE	0.2501	DIHY	GALCU	0.0125
AMPHI	MENAS	0.3046	PLEPL	DIHY	0.0248	SCOSI	SPHYL	0.0860	DIHY	CARFA	0.0080
AMPHI	MENPA	0.3046	PLEPL	SARGO	0.2232	SCOSI	CACA	0.0039	DIHY	LUTNO	0.1250
AMPHI	ATNOB	0.0101	CALAR	CALAR	0.0866	SCOSI	THUNA	0.0050	DIHY	GYMPA	0.0066
AMPHI	CAUAF	0.3729	CALAR	CALBE	0.0250	HOGUN	GALCU	0.0036	CAPUN	CHEMY	0.0010
AMPHI	POLAP	0.0009	CALAR	SEPIA	0.0288	HOGUN	CARFA	0.0073	CAPUN	GALCU	0.0556
AMPHI	APORE	0.1299	CALAR	OCTO	0.0735	HOGUN	NEBRE	0.0009	CAPUN	CARFA	0.0151
AMPHI	MULLI	0.2517	CALAR	ONBAN	0.0199	HOGUN	SPHYT	0.0018	CAPUN	NEBRE	0.0032
AMPHI	KYPEL	0.0008	CALAR	LOLLI	0.0312	LUTCO	GALCU	0.0036	CAPUN	SPHYT	0.0063
AMPHI	CHAZO	0.0090	CALAR	CHEMY	0.0010	LUTCO	CARFA	0.0073	CAPUN	ALOSU	0.0002
AMPHI	FOFLA	0.0080	CALAR	LARDE	0.0120	LUTCO	NEBRE	0.0009	CAPUN	CORHY	0.0040
AMPHI	JONI	0.3200	CALAR	LARA	0.0357	LUTCO	SPHYT	0.0018	CAPUN	LUTJO	0.0125
AMPHI	HOLPA	0.0369	CALAR	PELOC	0.0100	LUTGU	GALCU	0.0036	SPAN	GALCU	0.0556
AMPHI	STERE	0.1330	CALAR	PHALA	0.0126	LUTGU	CARFA	0.0073	SPAN	CARFA	0.0151
AMPHI	ABTRO	0.1111	CALAR	ESROB	0.0284	LUTGU	NEBRE	0.0009	SPAN	NEBRE	0.0032
AMPHI	GOMIC	0.0351	CALAR	ZICAV	0.0104	LUTGU	SPHYT	0.0018	SPAN	RHILO	0.0004
AMPHI	GIMI	0.5452	CALAR	PHYMA	0.0103	LUTJO	GALCU	0.0036	SPAN	SPHYT	0.0063
AMPHI	ZARO	0.6468	CALAR	GRAGR	0.0101	LUTJO	CARFA	0.0145	SPAN	ALOSU	0.0002
AMPHI	ENMOR	0.0023	CALAR	PSEPR	0.1373	LUTJO	NEBRE	0.0009	SPAN	CORHY	0.0040
AMPHI	SASA	0.0050	CALAR	PSELE	0.0166	LUTJO	SPHYT	0.0018	SPAN	LUTJO	0.0125
AMPHI	HART	0.0810	CALAR	PSEGL	0.0106	LUTAR	GALCU	0.0036	GYMPA	NAREN	0.0260
AMPHI	PAES	0.2437	CALAR	ZAPEX	0.0033	LUTAR	CARFA	0.0073	GYMPA	CARFA	0.1062
AMPHI	ETCRO	0.4348	CALAR	MYLCA	0.0103	LUTAR	NEBRE	0.0009	GYMPA	NEBRE	0.0257

AMPHI	CITHA	0.1473	CALAR	URHA	0.0466	LUTAR	SPHYT	0.0018	GYMPA	SPHYT	0.0506
AMPHI	SECOR	0.0101	CALAR	URAS	0.0501	LUTAR	SPHYE	0.0606	GYMPA	LUTGU	0.0111
AMPHI	SCOXY	0.0651	CALAR	RAJIN	0.0599	LUTNO	GALCU	0.0036	GYMPA	LUTPE	0.0285
AMPHI	PRIST	0.0101	CALAR	PLATR	0.0202	LUTNO	CARFA	0.0073	GYMPA	EPILA	0.0674
AMPHI	PRIAL	0.0300	CALAR	GALCU	0.0031	LUTNO	NEBRE	0.0009	GYMPA	EPIPA	0.1414
AMPHI	BELGY	0.0600	CALAR	MUCAL	0.2207	LUTNO	SPHYT	0.0018	GYMPA	EPIAC	0.0186
AMPHI	SUVER	0.0279	CALAR	MULUN	0.0259	LUTNO	SPHYE	0.0606	GYMPA	MYJO	0.0070
AMPHI	CAPUN	0.0219	CALAR	TRISE	0.0847	LUTPE	GALCU	0.0036	GYMPA	SPHYE	0.0673
AMPHI	CHECA	0.2495	CALAR	GINCI	0.0120	LUTPE	CARFA	0.0073	GYMPA	SYOV	0.0402
AMPHI	EXOMO	0.0306	CALAR	ALECI	0.0734	LUTPE	NEBRE	0.0009	GYMPA	GYMPA	0.0138
AMPHI	HIPIN	0.2058	CALAR	CAROT	0.0118	LUTPE	SPHYT	0.0018	GYMPA	BROCL	0.0513
AMPHI	TOZE	0.0111	CALAR	SEBRE	0.0717	SCAPE	CARFA	0.0222	GYZE	NAREN	0.0260
AMPHI	ТОВО	0.1000	CALAR	SEPER	0.0102	SCAPE	NEBRE	0.0086	GYZE	CARFA	0.0940
AMPHI	LEUST	0.0366	CALAR	ELBI	0.0177	SCAPE	SPHYT	0.0169	GYZE	NEBRE	0.0192
AMPHI	SARGO	0.0391	CALAR	TRASY	0.0431	SCAPE	GINCI	0.0964	GYZE	SPHYT	0.0378
AMPHI	MYLE	0.3727	CALAR	SECRU	0.0115	SCAPE	MYRO	0.0252	GYZE	LUTGU	0.0111
AMPHI	TRIME	0.0100	CALAR	THUNA	0.0070	SCACO	CARFA	0.0222	GYZE	LUTPE	0.0285
AMPHI	HYGOP	0.2013	CALAR	AUTHA	0.0242	SCACO	NEBRE	0.0086	GYZE	EPILA	0.0674
AMPHI	ATAF	0.0886	CALAR	SCOSI	0.0112	SCACO	SPHYT	0.0169	GYZE	EPIPA	0.1414
AMPHI	PORMI	0.0983	CALAR	HOGUN	0.0562	SCACO	GINCI	0.0964	GYZE	EPIAC	0.0186
AMPHI	PORAN	0.0860	CALAR	LUTCO	0.1630	SCACO	MYRO	0.0252	GYZE	MYJO	0.0070
ISOPO	WORM	0.1667	CALAR	LUTGU	0.0277	SCARU	CARFA	0.0222	GYZE	SPHYE	0.0673
ISOPO	FACAD	0.0044	CALAR	LUTAR	0.0104	SCARU	NEBRE	0.0086	GYZE	SYOV	0.0402
ISOPO	SICYO	0.0040	CALAR	LUTPE	0.0131	SCARU	SPHYT	0.0169	GYZE	GYMPA	0.0138
ISOPO	PASIP	0.1661	CALAR	HALDI	0.0115	SCARU	GINCI	0.0964	GYZE	BROCL	0.0513
ISOPO	CALBE	0.0037	CALAR	PAUR	0.0667	SCARU	MYRO	0.0252	MERLU	ONBAN	0.0427
ISOPO	LARDE	0.0120	CALAR	SEPSI	0.0168	HALDI	CARFA	0.0211	MERLU	DELCA	0.0145
ISOPO	URHA	0.0133	CALAR	DILAB	0.0070	HALDI	NEBRE	0.0257	MERLU	ZACAL	0.0307
ISOPO	RHITY	0.0101	CALAR	EPILA	0.0978	HALDI	SPHYT	0.0503	MERLU	PRIG	0.0003
ISOPO	SCOJA	0.0377	CALAR	EPIPA	0.0251	HALDI	LUTAR	0.0003	MERLU	PARXA	0.0100
ISOPO	RYBI	0.0010	CALAR	EPIAC	0.0297	HALDI	LUTNO	0.1250	MERLU	SPHYZ	0.3396
ISOPO	MYRO	0.0516	CALAR	MYRO	0.0151	HALDI	EPILA	0.0186	MERLU	ALOSU	0.0562
ISOPO	PACOL	0.1266	CALAR	MYJO	0.0559	HALDI	EPIPA	0.0398	MERLU	ALOVU	0.0680
ISOPO	CABRA	0.0080	CALAR	PACOL	0.0324	HALDI	EPIAC	0.0052	MERLU	TRILE	0.0199
ISOPO	ANIN	0.0221	CALAR	EUCEN	0.0372	HALDI	MYRO	0.0252	CHECA	STHEO	0.0061
ISOPO	ANITA	0.0879	CALAR	HAEFL	0.0394	HALDI	SPHYE	0.0606	CHECA	CHEMY	0.0020
ISOPO	HASEX	0.0120	CALAR	HASTE	0.1031	HALDI	GYMPA	0.1142	CHECA	STERA	0.0128
ISOPO	HAEFL	0.0384	CALAR	HAENI	0.0520	HALSE	CARFA	0.0211	CHECA	SULEU	0.0046
ISOPO	HASTE	0.0103	CALAR	HAEAX	0.0714	HALSE	NEBRE	0.0257	CHECA	DELCA	0.0217
ISOPO	HAENI	0.0509	CALAR	ORED	0.0540	HALSE	SPHYT	0.0503	CHECA	GALCU	0.0025
ISOPO	HAEAX	0.0153	CALAR	LAPAC	0.0100	HALSE	LUTAR	0.0003	CHECA	MULUN	0.0368
ISOPO	COSER	0.0003	CALAR	ΤΟΤΟΑ	0.0341	HALSE	LUTNO	0.1250	CHECA	CORHY	0.0648
ISOPO	CYNPA	0.0816	CALAR	MIMEG	0.0492	HALSE	EPILA	0.0186	CHECA	THUNA	0.0095

ISOPO	CAUAF	0.0360	CALAR	UMBRI	0.0327	HALSE	EPIPA	0.0628	EXOMO	STHEO	0.0061
ISOPO	APORE	0.0220	CALAR	CYNOT	0.0243	HALSE	EPIAC	0.0052	EXOMO	STERA	0.0128
ISOPO	MULLI	0.5145	CALAR	CYNXA	0.0118	HALSE	MYRO	0.0252	EXOMO	SULEU	0.0046
ISOPO	CHAZO	0.0020	CALAR	CYNPA	0.0102	HALSE	SPHYE	0.0606	EXOMO	DELCA	0.0217
ISOPO	JONI	0.0190	CALAR	CAPRI	0.0017	HALSE	PAWO	0.0121	EXOMO	GALCU	0.0025
ISOPO	POZON	0.0030	CALAR	POLAP	0.0009	HALSE	GYMPA	0.1142	EXOMO	MULUN	0.0368
ISOPO	STERE	0.0220	CALAR	ZARO	0.0259	PAMA	PEPLA	0.0098	EXOMO	CORHY	0.0648
ISOPO	ABTRO	0.0060	CALAR	PAWO	0.0243	PAMA	PHALA	0.0252	EXOMO	THUNA	0.0095
ISOPO	PRIPU	0.0050	CALAR	SYOV	0.0138	PAUR	PEPLA	0.0098	TYCRO	STHEO	0.0009
ISOPO	ZARO	0.0398	CALAR	ANDEN	0.0909	PAUR	PHALA	0.0252	TYCRO	PANHA	0.1429
ISOPO	ENMOR	0.0015	CALAR	PLEGU	0.0111	RYBI	PEPLA	0.0098	TYCRO	DELCA	0.0217
ISOPO	ETCRO	0.0870	CALAR	SCOSO	0.0714	RYBI	PHALA	0.0252	TYCRO	GALCU	0.0048
ISOPO	CITHA	0.0012	CALAR	PRIST	0.0101	SEPSI	PEPLA	0.0098	TYCRO	CARFA	0.0339
ISOPO	SECOR	0.0142	CALAR	PRIAL	0.0100	SEPSI	PHALA	0.0252	TYCRO	CARLE	0.0167
ISOPO	SCOXY	0.1121	CALAR	BALPO	0.1032	SEPSI	CARFA	0.0061	TYCRO	CARLI	0.1413
ISOPO	SUVER	0.0279	CALAR	DIHOL	0.0182	SEPSI	NEBRE	0.0065	TYCRO	NEBRE	0.0194
ISOPO	CAPUN	0.0219	CALAR	DIHY	0.0204	SEPSI	SPHYT	0.0127	TYCRO	RHILO	0.0368
ISOPO	CHECA	0.0060	CALAR	GYMPA	0.0496	PROMU	PEPLA	0.0098	TYCRO	SPHYL	0.1552
ISOPO	HIPIN	0.0412	CALAR	GYZE	0.2000	PROMU	PHALA	0.0252	TYCRO	SPHYT	0.0386
ISOPO	TOZE	0.2222	CALAR	SARGO	0.1116	PROMU	ZACAL	0.0139	TYCRO	MULUN	0.0368
ISOPO	ТОВО	0.1000	CALAR	PORMI	0.0098	PROMU	ALOSU	0.0007	TYCRO	ALOSU	0.0110
ISOPO	SARGO	0.0112	CALAR	PORAN	0.0340	PROMU	SERLA	0.0109	TYCRO	CORHY	0.0648
ISOPO	MYLE	0.1663	CALBE	CALAR	0.0866	DIPEU	PEPLA	0.0127	TYCRO	MYJO	0.0699
ISOPO	ATAF	0.0195	CALBE	CALBE	0.0250	DIPEU	PHALA	0.0314	TYCRO	GYMPA	0.0072
ISOPO	PORMI	0.1779	CALBE	SEPIA	0.0288	DIPEU	PAMA	0.0132	STREX	STHEO	0.0009
ISOPO	PORAN	0.0480	CALBE	OCTO	0.0735	DIPEU	BROCL	0.0570	STREX	PANHA	0.1429
CHAET	CHAET	0.0100	CALBE	ONBAN	0.0199	DIPA	PEPLA	0.0127	STREX	GALCU	0.0048
CHAET	PTERO	0.0191	CALBE	LOLLI	0.0312	DIPA	PHALA	0.0314	STREX	MYJO	0.0349
CHAET	SERGE	0.0080	CALBE	CHEMY	0.0010	DIPA	SQUCA	0.0511	STREX	GYMPA	0.0072
CHAET	SERPH	0.0618	CALBE	LARDE	0.0120	DIPA	PAMA	0.0132	BROCL	LOLLI	0.1250
CHAET	PASIP	0.0368	CALBE	LARA	0.0357	DIPA	BROCL	0.0570	BROCL	DELCA	0.0072
CHAET	PLEPL	0.0309	CALBE	PELOC	0.0100	DILAB	PEPLA	0.0127	BROCL	PHOSI	0.0640
CHAET	HYDRO	0.1058	CALBE	PHALA	0.0126	DILAB	PHALA	0.0314	BROCL	ZACAL	0.0111
CHAET	MABIR	0.0100	CALBE	ESROB	0.0284	DILAB	SULEU	0.0274	BROCL	ZAPEX	0.0013
CHAET	RHITY	0.0101	CALBE	ZICAV	0.0104	DILAB	PAMA	0.0132	BROCL	SCOJA	0.0305
CHAET	THUNA	0.0432	CALBE	PHYMA	0.0103	DILAB	BROCL	0.0570	BROCL	LUTAR	0.0002
CHAET	EUGRA	0.1000	CALBE	GRAGR	0.0101	EPILA	CARFA	0.0030	BROCL	SEPSI	0.1420
CHAET	CYNOR	0.0560	CALBE	PSEPR	0.1373	EPILA	NEBRE	0.0063	BROCL	DILAB	0.1658
CHAET	KYPEL	0.0053	CALBE	PSELE	0.0166	EPILA	SPHYT	0.0123	BROCL	CYNOT	0.0074
CHAET	ENMOR	0.0039	CALBE	PSEGL	0.0106	EPILA	SPHYE	0.0606	BROCL	SYOV	0.0057
CHAET	CITHA	0.0290	CALBE	ZAPEX	0.0056	EPIPA	CARFA	0.0060	BROCL	BROCL	0.0228
CHAET	CHECA	0.0080	CALBE	MYLCA	0.0103	EPIPA	SPHYE	0.0606	LEPRO	LOLLI	0.1250
CHAET	VINLU	0.0147	CALBE	URHA	0.0466	EPIAC	CARFA	0.0180	LEPRO	DELCA	0.0072

CHAET	LEUST	0.0122	CALBE	URAS	0.0501	EPIAC	NEBRE	0.0065	LEPRO	ZACAL	0.0111
CHAET	TRIME	0.0100	CALBE	RAJIN	0.0599	EPIAC	SPHYT	0.0127	LEPRO	ZAPEX	0.0013
CHAET	HYGOP	0.0841	CALBE	PLATR	0.0202	MYRO	CARFA	0.0073	LEPRO	SCOJA	0.0305
OLIGO	FACAD	0.0009	CALBE	GALCU	0.0031	MYXE	CARFA	0.0218	LEPRO	LUTAR	0.0344
OLIGO	LITOA	0.0204	CALBE	MUCAL	0.2207	MYJO	CARFA	0.0073	LEPRO	SEPSI	0.1420
POLYC	AMPHI	0.0095	CALBE	MULUN	0.0259	PACOL	CARFA	0.0073	LEPRO	DILAB	0.1658
POLYC	GASTR	0.0013	CALBE	TRISE	0.0847	PACOL	NEBRE	0.0065	LEPRO	CYNOT	0.0074
POLYC	OPHI	0.0800	CALBE	GINCI	0.0120	PACOL	SPHYT	0.0127	LEPRO	CYNOR	0.0044
POLYC	FACAD	0.2312	CALBE	HEFRA	0.5323	DIAPA	CALAR	0.0433	LEPRO	SYALA	0.0023
POLYC	LITOA	0.1227	CALBE	ALECI	0.0734	DIAPA	CALBE	0.0250	LEPRO	SYOV	0.0057
POLYC	SICYO	0.0140	CALBE	CAROT	0.0118	DIAPA	MENAS	0.0761	LEPRO	ANDEN	0.0909
POLYC	PASIP	0.0242	CALBE	SEBRE	0.0717	DIAPA	MENPA	0.0761	LEPRO	GYMPA	0.0066
POLYC	PLEPL	0.0309	CALBE	SEPER	0.0102	DIAPA	CYNXA	0.0127	LEPRO	BROCL	0.0228
POLYC	CALAR	0.0173	CALBE	ELBI	0.0177	DIAPE	MENAS	0.0761	LEPRO	LEPRO	0.0239
POLYC	CALBE	0.0037	CALBE	TRASY	0.0431	DIAPE	MENPA	0.0761	LEPRO	SYSCI	0.1573
POLYC	PORTU	0.0210	CALBE	SECRU	0.0115	EUGRA	SULEU	0.0313	LEPRO	SYLU	0.0873
POLYC	PANIN	0.0546	CALBE	THUNA	0.0070	EUGRA	GYMAR	0.0069	HIPIN	GALCU	0.0125
POLYC	STOMA	0.0500	CALBE	AUTHA	0.0242	EUGRA	CARFA	0.0020	HIPIN	SCOJA	0.0305
POLYC	OCTO	0.1103	CALBE	SCOSI	0.0112	EUGRA	NEBRE	0.0021	HIPIN	CYNOT	0.0074
POLYC	LOLLI	0.0031	CALBE	HOGUN	0.0562	EUGRA	SPHYT	0.0042	HIPIN	GYMPA	0.0066
POLYC	SCYPH	0.0459	CALBE	LUTCO	0.1630	EUGRA	OLIAL	0.0500	DOREX	GALCU	0.0125
POLYC	CHEMY	0.0229	CALBE	LUTGU	0.0277	EUGRA	CYNXA	0.0127	DOREX	GYMPA	0.0066
POLYC	RYNIG	0.0549	CALBE	LUTAR	0.0104	EUGRA	NEPEC	0.2508	FICOM	CARFA	0.0121
POLYC	LARA	0.0357	CALBE	LUTPE	0.0131	EUGRA	BENPA	0.1250	FICOM	NEBRE	0.0065
POLYC	DASDI	0.0850	CALBE	HALDI	0.0115	EUCUR	SULEU	0.0313	FICOM	RHILO	0.0613
POLYC	MYLCA	0.4695	CALBE	PAMA	0.0711	EUCUR	GYMAR	0.0069	FICOM	SPHYT	0.0127
POLYC	URHA	0.1332	CALBE	PAUR	0.0667	EUCUR	CARFA	0.0020	FICOM	ALOSU	0.0002
POLYC	URORO	0.6978	CALBE	SEPSI	0.0168	EUCUR	NEBRE	0.0021	FICOM	EPIAC	0.3711
POLYC	DIPOM	0.6913	CALBE	DILAB	0.0070	EUCUR	SPHYT	0.0042	FICOM	MYJO	0.1048
POLYC	NAREN	0.6675	CALBE	EPILA	0.0978	EUCUR	OLIAL	0.0500	FICOM	POLAP	0.0027
POLYC	RHIST	0.0103	CALBE	EPIPA	0.0251	EUCUR	BENPA	0.1250	TOZE	CENIG	0.0218
POLYC	PLATR	0.0454	CALBE	EPIAC	0.0297	EUCEN	SULEU	0.0313	TOZE	SCOMY	0.0850
POLYC	PARXA	0.0100	CALBE	MYRO	0.0151	EUCEN	GYMAR	0.0069	тово	CENIG	0.0218
POLYC	THUNA	0.0135	CALBE	MYJO	0.0559	EUCEN	OLIAL	0.0500	тово	SCOMY	0.0850
POLYC	SCOJA	0.0545	CALBE	PACOL	0.0324	EUCEN	CYNXA	0.0127	VINLU	PASIP	0.1052
POLYC	LUTCO	0.0761	CALBE	EUCEN	0.0372	EUCEN	BENPA	0.1250	VINLU	DOGIG	0.1021
POLYC	HALSE	0.0806	CALBE	HAEFL	0.0394	EUDO	SULEU	0.0313	VINLU	STHEO	0.0307
POLYC	PAUR	0.0667	CALBE	HASTE	0.1031	EUDO	DASDI	0.0007	VINLU	OCMIC	0.0601
POLYC	EPIAC	0.0009	CALBE	HAENI	0.0520	EUDO	GYMAR	0.0754	VINLU	DELCA	0.0362
POLYC	PACOL	0.0679	CALBE	HAEAX	0.0714	EUDO	CARFA	0.0020	VINLU	TRASY	0.3285
POLYC	EUGRA	0.3000	CALBE	ORED	0.0540	EUDO	NEBRE	0.0021	VINLU	AUTHA	0.0712
POLYC	EUCUR	0.3178	CALBE	LAPAC	0.0100	EUDO	SPHYT	0.0042	LEUST	DELCA	0.0725
POLYC	EUCEN	0.5101	CALBE	ΤΟΤΟΑ	0.0341	EUDO	OLIAL	0.0500	LEUST	MERLU	0.2647

POLYC	EUDO	0.4286	CALBE	MIMEG	0.0492	EUDO	PAMA	0.2236	SARGO	CARFA	0.0149
POLYC	GECIN	0.0681	CALBE	UMBRI	0.0327	EUDO	NEPEC	0.1891	SARGO	NEBRE	0.0219
POLYC	CABRA	0.0050	CALBE	MENAS	0.0812	EUDO	BENPA	0.1250	SARGO	SPHYT	0.0430
POLYC	ANIN	0.0181	CALBE	MENPA	0.0812	GECIN	CALAR	0.0433	SARGO	LUTNO	0.1250
POLYC	HASEX	0.0889	CALBE	CYNOT	0.0243	GECIN	CALBE	0.0250	SARGO	GYMPA	0.0173
POLYC	HAEFL	0.4000	CALBE	CYNXA	0.0118	GECIN	TUTRU	0.0032	MYLE	SQUCA	0.0772
POLYC	HASTE	0.0206	CALBE	CYNPA	0.2041	GECIN	CARFA	0.0061	MYLE	CARFA	0.0149
POLYC	HAENI	0.2069	CALBE	CAPRI	0.0017	GECIN	NEBRE	0.0065	MYLE	NEBRE	0.0162
POLYC	HAEAX	0.0547	CALBE	POLAP	0.0009	GECIN	SPHYT	0.0042	MYLE	SPHYT	0.0312
POLYC	ORCHA	0.7668	CALBE	ZARO	0.0259	CABRA	STERA	0.0128	MYLE	LUTNO	0.1250
POLYC	ORED	0.1204	CALBE	PAWO	0.0243	CABRA	PANHA	0.0367	MYLE	GYMPA	0.0173
POLYC	COSER	0.0006	CALBE	SYOV	0.0138	CABRA	TUTRU	0.4174	BENPA	PASIP	0.0074
POLYC	MIMEG	0.0447	CALBE	HITE	0.0116	CABRA	DELCA	0.0072	BENPA	DOGIG	0.1624
POLYC	UMBRI	0.0327	CALBE	ANDEN	0.0909	CABRA	GYMAR	0.0015	BENPA	STHEO	0.1228
POLYC	MENAS	0.1827	CALBE	PLEGU	0.0111	CABRA	CARFA	0.0238	BENPA	ONBAN	0.0114
POLYC	MENPA	0.1827	CALBE	SCOSO	0.0714	CABRA	NEBRE	0.0061	BENPA	ZICAV	0.0449
POLYC	CYNPA	0.0306	CALBE	PRIST	0.0101	CABRA	SPHYT	0.0119	BENPA	PHYMA	0.0152
POLYC	CAPRI	0.0017	CALBE	PRIAL	0.0100	CABRA	SCOJA	0.0305	BENPA	GLOMA	0.0207
POLYC	CAUAF	0.1051	CALBE	BALPO	0.1032	ANIN	RAJIN	0.0240	BENPA	DELCA	0.0096
POLYC	POLAP	0.0063	CALBE	DIHOL	0.0182	ANIN	CARFA	0.0060	BENPA	STELO	0.0758
POLYC	KYPEL	0.0042	CALBE	DIHY	0.0204	ANIN	CARLE	0.0167	BENPA	ZACAL	0.0278
POLYC	FOFLA	0.3393	CALBE	GYMPA	0.0496	ANIN	NEBRE	0.0032	BENPA	PARXA	0.2000
POLYC	JONI	0.0930	CALBE	GYZE	0.2000	ANIN	SPHYT	0.0060	BENPA	ALOSU	0.0033
POLYC	HOLPA	0.0050	CALBE	SARGO	0.1116	ANIN	MYRO	0.0252	BENPA	TRASY	0.0117
POLYC	STERE	0.0130	CALBE	PORMI	0.0098	ANITA	PHALA	0.0252	TRIME	PASIP	0.0074
POLYC	PRIPU	0.0160	CALBE	PORAN	0.0340	ANITA	CARFA	0.0060	TRIME	DOGIG	0.0102
POLYC	GOMIC	0.1462	PORTU	CALAR	0.0866	ANITA	NEBRE	0.0032	TRIME	STHEO	0.1228
POLYC	GIMI	0.2059	PORTU	CALBE	0.0250	ANITA	SPHYT	0.0060	TRIME	ONBAN	0.0114
POLYC	ENMOR	0.0070	PORTU	SEPIA	0.0288	ANITA	CACA	0.0039	TRIME	LARDE	0.0120
POLYC	PAWO	0.2282	PORTU	OCTO	0.0735	HASEX	RAJIN	0.0240	TRIME	HYCA	0.0556
POLYC	PAES	0.1219	PORTU	ONBAN	0.0199	HASEX	CARFA	0.0014	TRIME	ESROB	0.0158
POLYC	ETCRO	0.2174	PORTU	LOLLI	0.0312	HASEX	CARLE	0.0167	TRIME	ZICAV	0.0449
POLYC	SYOV	0.0172	PORTU	LARDE	0.0120	HASEX	CARLI	0.0426	TRIME	PHYMA	0.0152
POLYC	PLEGU	0.2111	PORTU	LARA	0.0357	HASEX	NEBRE	0.0052	TRIME	GLOMA	0.0207
POLYC	SECOR	0.0304	PORTU	PELOC	0.0100	HASEX	SPHYT	0.0102	TRIME	DELCA	0.0096
POLYC	SCOXY	0.0150	PORTU	PHALA	0.0126	HASEX	MYRO	0.0252	TRIME	STELO	0.0758
POLYC	BALPO	0.1858	PORTU	ESROB	0.0284	HAEFL	RAJIN	0.0240	TRIME	ZACAL	0.0278
POLYC	SUVER	0.0379	PORTU	ZICAV	0.0104	HAEFL	CARFA	0.0014	TRIME	PARXA	0.2000
POLYC	CAPUN	0.2271	PORTU	PHYMA	0.0103	HAEFL	CARLE	0.0167	TRIME	TRASY	0.0117
POLYC	LEPRO	0.1594	PORTU	GRAGR	0.0101	HAEFL	CARLI	0.0426	HYGOP	PASIP	0.0147
POLYC	SARGO	0.0670	PORTU	PSEPR	0.1373	HAEFL	NEBRE	0.0052	HYGOP	STHEO	0.2333
POLYC	TRIME	0.0100	PORTU	PSELE	0.0191	HAEFL	SPHYT	0.0102	HYGOP	ONBAN	0.0114
POLYC	ATAF	0.0506	PORTU	PSEGL	0.0106	HAEFL	MYRO	0.0252	HYGOP	ESROB	0.0158

WORM	CHAET	0.0600	PORTU	ZAPEX	0.0066	HAEFL	MYJO	0.1048	HYGOP	ZICAV	0.0449
WORM	FACAD	0.1666	PORTU	MYLCA	0.0103	HASTE	PHALA	0.0252	HYGOP	PHYMA	0.0152
WORM	SICYO	0.0729	PORTU	URHA	0.0466	HASTE	CARFA	0.0077	HYGOP	GLOMA	0.0207
WORM	PLEPL	0.0155	PORTU	URAS	0.0501	HASTE	CARLI	0.0513	HYGOP	DELCA	0.0096
WORM	PANIN	0.0101	PORTU	RAJIN	0.0599	HASTE	NEBRE	0.0060	HYGOP	STELO	0.0758
WORM	CHEMY	0.0010	PORTU	PLATR	0.0202	HASTE	SPHYT	0.0026	HYGOP	ZACAL	0.0278
WORM	RYNIG	0.0110	PORTU	GALCU	0.0031	HASTE	CACA	0.0039	HYGOP	PARXA	0.2000
WORM	URHA	0.0177	PORTU	MUCAL	0.2207	HASTE	NEPEC	0.0303	HYGOP	TRASY	0.0117
WORM	NAREN	0.0558	PORTU	MULUN	0.0259	HAELE	PHALA	0.0252	ATAF	PEPLA	0.0098
WORM	MABIR	0.1000	PORTU	TRISE	0.0847	HAELE	ZACAL	0.0139	ATAF	RYNIG	0.2637
WORM	HEFRA	0.0048	PORTU	GINCI	0.0120	HAELE	GYMAR	0.0018	ATAF	STERA	0.2564
WORM	CHORQ	0.5904	PORTU	ALECI	0.0734	HAELE	CARLI	0.0426	ATAF	LARA	0.0357
WORM	SCOJA	0.0109	PORTU	CAROT	0.0118	HAELE	CACA	0.0039	ATAF	HYCA	0.0556
WORM	HALDI	0.0690	PORTU	SEBRE	0.0717	HAENI	PHALA	0.0252	ATAF	PHALA	0.0252
WORM	HALSE	0.0484	PORTU	SEPER	0.0102	HAENI	SULEU	0.0640	ATAF	SULEU	0.0488
WORM	PAUR	0.0667	PORTU	ELBI	0.0177	HAENI	GYMAR	0.0168	ATAF	PSEPR	0.0333
WORM	DIAPA	0.0100	PORTU	TRASY	0.0431	HAENI	CARLI	0.0087	ATAF	CARLE	0.0167
WORM	DIAPE	0.0294	PORTU	SECRU	0.0115	HAENI	NEBRE	0.0060	ATAF	CARLI	0.0707
WORM	EUGRA	0.2000	PORTU	THUNA	0.0070	HAENI	SPHYT	0.0016	ATAF	NEBRE	0.0648
WORM	CABRA	0.0719	PORTU	AUTHA	0.0242	HAENI	CACA	0.0039	ATAF	SPHYL	0.0313
WORM	HAEFL	0.1010	PORTU	SCOSI	0.0112	HAEAX	PELOC	0.0100	ATAF	SPHYT	0.0129
WORM	HASTE	0.0103	PORTU	HOGUN	0.0562	HAEAX	PHALA	0.0252	ATAF	TRISE	0.0212
WORM	HAENI	0.0130	PORTU	LUTCO	0.1630	HAEAX	CARLI	0.0087	ATAF	NOCEP	0.0537
WORM	HAEAX	0.0328	PORTU	LUTGU	0.0277	HAEAX	NEBRE	0.0008	ATAF	SCOJA	0.0305
WORM	ORED	0.0963	PORTU	LUTAR	0.3126	HAEAX	SPHYT	0.0016	PORMI	DOGIG	0.0123
WORM	COSER	0.0003	PORTU	LUTPE	0.0131	HAEAX	CORHY	0.0109	PORMI	PHALA	0.0252
WORM	UMBRI	0.0327	PORTU	HALDI	0.0115	ORCHA	PHALA	0.1258	PORMI	SULEU	0.0061
WORM	MENAS	0.1015	PORTU	PAUR	0.0667	ORCHA	TUTRU	0.0128	PORMI	TUTRU	0.0273
WORM	MENPA	0.1015	PORTU	SEPSI	0.0168	ORCHA	PSEPR	0.0016	PORMI	PHOSI	0.0640
WORM	POLAP	0.0453	PORTU	DILAB	0.0070	ORCHA	RAJIN	0.0240	PORMI	ZACAL	0.0626
WORM	KYPEL	0.0119	PORTU	EPILA	0.0978	ORCHA	CARLE	0.0167	PORMI	PSELE	0.0111
WORM	SYALA	0.0097	PORTU	EPIPA	0.0251	ORCHA	MYRO	0.0252	PORMI	ZAPEX	0.4687
WORM	ANDEN	0.0909	PORTU	EPIAC	0.1002	ORED	PHALA	0.0252	PORMI	TRISE	0.0212
WORM	SUVER	0.0180	PORTU	MYRO	0.0151	ORED	SULEU	0.0488	PORMI	CAROT	0.1054
WORM	ATAF	0.1198	PORTU	MYJO	0.0559	ORED	TUTRU	0.0128	PORMI	CHORQ	0.0217
WORM	PORAN	0.1560	PORTU	PACOL	0.0324	ORED	PHOSI	0.0640	PORMI	SEBRE	0.0717
CHITO	SEAST	0.0971	PORTU	ANIN	0.0030	ORED	PSEPR	0.0016	PORMI	LUTAR	0.0125
CHITO	PORTU	0.0300	PORTU	HAEFL	0.0394	ORED	GYMAR	0.0121	PORMI	MYJO	0.0002
CHITO	CRABS	0.2697	PORTU	HASTE	0.1031	ORED	CARLE	0.0167	PORMI	TRILE	0.0110
CHITO	SECRU	0.0681	PORTU	HAENI	0.0520	ORED	CARLI	0.0087	PORMI	CENIG	0.0087
CHITO	HALDI	0.0345	PORTU	HAEAX	0.0714	ORED	NEBRE	0.0008	PORMI	PORMI	0.1160
CHITO	ANIN	0.0774	PORTU	ORED	0.0540	ORED	SPHYT	0.0016	PORMI	PORAN	0.0320
CHITO	HAEFL	0.0576	PORTU	LAPAC	0.0100	ORED	CACA	0.0039	PORAN	DOGIG	0.0123

CHITO	ORED	0.0058	PORTU	ΤΟΤΟΑ	0.0341	XECA	PHALA	0.0252	PORAN	PHALA	0.0252
СНІТО	SECOR	0.0101	PORTU	MIMEG	0.0492	XECA	DASDI	0.0020	PORAN	SULEU	0.0061
СНІТО	SUVER	0.0429	PORTU	UMBRI	0.0327	XECA	GYMAR	0.7141	PORAN	TUTRU	0.0273
СНІТО	SARGO	0.0558	PORTU	CYNOT	0.0243	XECA	CARLE	0.0167	PORAN	PHOSI	0.0640
GASTR	GASTR	0.1881	PORTU	CYNPA	0.0306	XECA	CARLI	0.0087	PORAN	ZACAL	0.0626
GASTR	PTERO	0.0191	PORTU	CAPRI	0.0017	XECA	NEBRE	0.0008	PORAN	PSELE	0.0111
GASTR	SEAST	0.1359	PORTU	POLAP	0.0009	XECA	SPHYT	0.0016	PORAN	ZAPEX	0.4687
GASTR	SICYO	0.2038	PORTU	ZARO	0.0259	XECA	CACA	0.0039	PORAN	SQUCA	0.1342
GASTR	CALAR	0.0043	PORTU	PAWO	0.0243	XECA	CYNOT	0.0074	PORAN	TRISE	0.0212
GASTR	CALBE	0.2824	PORTU	SYALA	0.0056	COSER	RAJIN	0.0240	PORAN	CAROT	0.1054
GASTR	PORTU	0.2768	PORTU	SYOV	0.0138	COSER	CARLE	0.0167	PORAN	CHORQ	0.0217
GASTR	PANIN	0.2649	PORTU	ANDEN	0.0909	COSER	CARLI	0.0087	PORAN	SEBRE	0.0717
GASTR	STOMA	0.0130	PORTU	PLEGU	0.0111	COSER	NEBRE	0.0008	PORAN	CORHY	0.0081
GASTR	OCTO	0.0441	PORTU	SCOSO	0.0714	COSER	SPHYT	0.0016	PORAN	MYJO	0.0002
GASTR	CHEMY	0.0369	PORTU	PRIST	0.0101	COSER	MYRO	0.0252	PORAN	TRILE	0.0110
GASTR	LARDE	0.0120	PORTU	PRIAL	0.0100	LAPAC	LARA	0.0357	PORAN	CENIG	0.0087
GASTR	ESROB	0.3158	PORTU	BALPO	0.1032	LAPAC	TRISE	0.0212	PORAN	PORMI	0.1160
GASTR	ZICAV	0.0626	PORTU	DIHOL	0.0584	LAPAC	ALOSU	0.1653	PORAN	PORAN	0.0320
GASTR	DASDI	0.3441	PORTU	DIHY	0.0505	LAPAC	SYOV	0.0121	SYSCI	SULEU	0.0183
GASTR	AENAR	0.6750	PORTU	GYMPA	0.0084	MIMEG	RYNIG	0.0879	SYSCI	DELCA	0.0145
GASTR	NAREN	0.0779	PORTU	GYZE	0.2000	MIMEG	LARA	0.0357	SYSCI	PLATR	0.0017
GASTR	GYMAR	0.0001	PORTU	SARGO	0.1116	MIMEG	SULEU	0.0701	SYSCI	SQUCA	0.0416
GASTR	RAJIN	0.0108	PORTU	PORMI	0.0098	MIMEG	TUTRU	0.0162	SYSCI	CARFA	0.0091
GASTR	GALCU	0.0499	PORTU	PORAN	0.0340	MIMEG	PHOSI	0.0640	SYSCI	NEBRE	0.0065
GASTR	NOCEP	0.0193	CRABS	OPHI	0.0200	MIMEG	GYMAR	0.0015	SYSCI	SPHYT	0.0255
GASTR	HEFRA	0.2742	CRABS	SICYO	0.0729	MIMEG	CARFA	0.0008	SYSCI	SPHYZ	0.0002
GASTR	HOGUN	0.0843	CRABS	CALBE	0.2074	MIMEG	NEBRE	0.0009	SYSCI	MULUN	0.0035
GASTR	SCAPE	0.1000	CRABS	PORTU	0.1669	MIMEG	SPHYT	0.0018	SYSCI	CAROT	0.1481
GASTR	HALDI	0.1034	CRABS	CRABS	0.3685	MIMEG	TRISE	0.0212	SYSCI	SCOSI	0.0112
GASTR	HALSE	0.0403	CRABS	PANIN	0.3711	MIMEG	ΤΟΤΟΑ	0.1578	SYSCI	LUTAR	0.0052
GASTR	PAMA	0.1829	CRABS	STOMA	0.0949	MIMEG	CYNOR	0.0062	SYSCI	ANIN	0.0001
GASTR	PAUR	0.0667	CRABS	SEPIA	0.4732	MIMEG	SYOV	0.0121	SYSCI	TRILE	0.0110
GASTR	MYRO	0.0101	CRABS	ОСТО	0.0221	UMBRI	LARA	0.0357	SYSCI	POLAP	0.0136
GASTR	MYJO	0.0021	CRABS	ONBAN	0.0199	UMBRI	PHALA	0.0252	SYSCI	BROCL	0.0237
GASTR	DIAPA	0.0599	CRABS	LOLLI	0.0312	UMBRI	SULEU	0.1524	SYLU	SULEU	0.0183
GASTR	GECIN	0.0240	CRABS	CHEMY	0.0040	UMBRI	TUTRU	0.0162	SYLU	OCMIC	0.0401
GASTR	CABRA	0.2814	CRABS	LARDE	0.0120	UMBRI	PHOSI	0.0640	SYLU	DELCA	0.0145
GASTR	ANIN	0.0711	CRABS	LARA	0.0357	UMBRI	CARFA	0.0008	SYLU	PLATR	0.0017
GASTR	ANITA	0.0579	CRABS	PELOC	0.0100	UMBRI	NEBRE	0.0009	SYLU	SQUCA	0.0416
GASTR	HAEFL	0.0051	CRABS	PHALA	0.0126	UMBRI	SPHYT	0.0018	SYLU	CARFA	0.0091
GASTR	HASTE	0.0619	CRABS	ESROB	0.0284	UMBRI	TRISE	0.0212	SYLU	NEBRE	0.0065
GASTR	HAELE	0.3209	CRABS	ZICAV	0.0104	UMBRI	ISURO	0.0013	SYLU	SPHYT	0.0255
GASTR	HAENI	0.0217	CRABS	PHYMA	0.0103	UMBRI	CYNOT	0.0074	SYLU	SPHYZ	0.0002

GASTR	HAEAX	0.0490	CRABS	GRAGR	0.0101	UMBRI	TRILE	0.0110	SYLU	MULUN	0.0035
GASTR	ORCHA	0.0657	CRABS	PHOSI	0.0900	UMBRI	CENIG	0.0037	SYLU	CAROT	0.1481
GASTR	ORED	0.0581	CRABS	PSEPR	0.1373	UMBRI	SYOV	0.0121	SYLU	SCOSI	0.0112
GASTR	MIMEG	0.2861	CRABS	PSELE	0.0111	MENAS	LARA	0.0357	SYLU	LUTAR	0.0052
GASTR	UMBRI	0.0327	CRABS	PSEGL	0.0106	MENAS	CARFA	0.0008	SYLU	ANIN	0.0001
GASTR	CYNXA	0.0055	CRABS	ZAPEX	0.0056	MENAS	NEBRE	0.0009	SYLU	TRILE	0.0110
GASTR	CAPRI	0.0017	CRABS	MYLCA	0.0103	MENAS	RHILO	0.0613	SYLU	POLAP	0.0136
GASTR	POLAP	0.0543	CRABS	URHA	0.0266	MENAS	SPHYT	0.0018	SYLU	BROCL	0.0237
GASTR	KYPEL	0.0009	CRABS	RAJIN	0.0599	MENAS	TRISE	0.0212			

ANEXO V. RESULTADOS DE LOS ÍNDICES Y NIVELES TRÓFICOS

Tabla 13. Resultados de los índices de centralidad (grado del nodo (*DC_{in}* (#presas), *DC_{out}* (depredadores), *DC* (presas + depredadores); intermediación (*IC*); cercanía (*CC_{in}* (cercanía desde cualquier nodo de la red hasta este nodo), CC_{out}(cercanía desde este nodo a cualquier nodo de la red), *CC* (cercanía total sin flujo de dirección)) e importancia topológica (*K_{bu}* (índice clave de abajo a arriba), *K_{td}* (índice clave de arriba abajo), *K_{dir}* (índice clave de efectos directos), *K_{indir}* (índice clave de efectos indirectos), *K* (índice de importancia topológica)); por último, los niveles tróficos de cada nodo con respecto a las dietas de la red trófica (*NT*)

Código	Nombre	Nombre común	DC	DC	DC	Ю	CCin	CCout	сс	IIС	Kbu	Ktd	K dir	K indir	κ ητ
ABTRO	Abudefduf troschelii	Castañeta manchada	13	9	22	7	0.00001	0.00002	0.294	0.362	0.408	0.539	0.874	0.07	0.95 2.44
ACAN1	Acanthochiasma	Protozoos	5	2	7	0	0.00001	0.00003	0.251	0.138	0.942	0.292	0.337	0.90	1.23 2.11
ACAN2	Acantholithium	Protozoos	5	2	7	0	0.00001	0.00003	0.251	0.140	0.942	0.292	0.337	0.90	1.23 2.12
ACANB	Acanthometra	Protozoos	5	2	7	0	0.00001	0.00003	0.251	0.142	0.942	0.292	0.337	0.90	1.23 2.13
ACAN4	Astrolithium	Protozoos	5	2	7	0	0.00001	0.00003	0.251	0.144	0.942	0.292	0.337	0.90	1.23 2.14
ACAN5	Gigartacon	Protozoos	5	2	7	0	0.00001	0.00003	0.251	0.145	0.942	0.292	0.337	0.90	1.23 2.15
ACAN6	Phylostaurus	Protozoos	5	2	7	9	0.00001	0.00003	0.251	0.241	0.942	0.292	0.337	0.90	1.23 2.16
AENAR	Aetobatis narinari	Raya jaspeada	2	3	5	0	0.00001	0.00001	0.260	0.182	0.053	0.037	0.079	0.01	0.09 3.39
aleci	Alectis ciliaris	Caballa	12	7	19	0	0.00003	0.00002	0.180	0.234	0.277	0.546	0.462	0.36	0.82 4.24
Algae	Algas	Macro algas	0	19	19	0	0.00001	0.00007	0.154	0.137	26.824	0.000	3.560	23.3	26.8 1.00
ALOSU	Alopias superciliosus	Zorro ojón	16	1	17	48	0.00003	0.00001	0.322	0.399	0.026	3.550	1.695	1.88	3.58 4.83
ALOVU	Alopias vulpinus	Zorro marino	9	1	10	2	0.00003	0.00001	0.285	0.263	0.026	4.765	0.987	3.80	4.79 4.15
amphi	Anfípodos	Anfípodos	11	91	102	1505	0.00001	0.00004	0.333	0.580	25.296	0.581	9.935	16	25.9 2.49
ANCHE	Anchoa helleri	Anchoa del Golfo	3	45	48	1	0.00001	0.00002	0.322	0.442	4.356	0.069	2.789	1.64	4.43 2.98
ANDEN	Ancylopssetta dendritica	Lenguado de 3 ocelos	11	12	23	0	0.00003	0.00002	0.305	0.322	0.848	0.465	0.683	0.63	1.31 4.24
ANIN	Anisotremus interruptus	Roncador labio grueso	27	6	33	363	0.00003	0.00001	0.373	0.556	0.147	1.848	1.180	0.81	1.99 3.63
ANITA	Anisotremus taeniatus	Burro rayado	8	5	13	2	0.00003	0.00001	0.271	0.267	0.097	0.269	0.312	0.05	0.37 3.61
APORE	Apogon retrosella	Cardenal de Cortés	12	8	20	14	0.00003	0.00002	0.362	0.434	0.819	0.532	0.901	0.45	1.35 4.06
ASCI	Ascidias/tunicata	Tunicados	5	12	17	0	0.00001	0.00003	0.179	0.165	2.420	0.242	1.214	1.45	2.66 2.42
ataf	Atherinops affinis	Pejerrey pescadillo	13	16	29	9	0.00001	0.00002	0.148	0.297	0.775	0.477	1.018	0.23	1.25 3.01
ATNOB	Atractoscion nobilis	Corvinata blanca	11	5	16	33	0.00003	0.00001	0.313	0.361	0.118	1.438	1.288	0.27	1.56 3.40
autha	Auxis thazard thazard	Bonito	18	12	30	0	0.00003	0.00002	0.350	0.389	0.600	0.822	1.027	0.39	1.42 4.04
avice	Avicennia germinans	Mangle negro	0	1	1	0	0.00001	0.00001	0.320	0.160	0.027	0.000	0.024	0.00	0.03 1.00
BALED	Balaenoptera edeni	Rorcual tropical	4	2	6	0	0.00001	0.00001	0.072	0.065	0.056	0.123	0.128	0.05	0.18 3.27
BALPO	Balistes polylepis	Pejepuerco coche	14	5	19	5	0.00003	0.00002	0.284	0.327	0.275	0.593	0.515	0.35	0.87 3.82
BAMUS	Balaenoptera musculus	Ballena azul	2	0	2	0	0.00001	0.00001	0.010	0.046	0.000	0.036	0.031	0.00	0.04 3.29
Baphy	Balaenoptera physalus	Rorcual común	7	2	9	0	0.00003	0.00001	0.111	0.087	0.056	0.298	0.201	0.15	0.35 3.45
BELGY	Bellator gymnostethus	Rubio cabro	6	13	19	17	0.00003	0.00002	0.285	0.349	0.685	0.118	0.721	0.08	0.80 3.68
BENPA	Benthosema panamense	Pez linterna	5	13	18	315	0.00003	0.00002	0.242	0.366	1.302	0.845	1.271	0.88	2.15 4.29
BIVAL	Bivalvia	Bivalvos	2	72	74	0	0.00001	0.00004	0.369	0.413	15.798	0.089	6.359	9.53	15.9 2.00
BROCL	Brotula clarkae	Lengua rosada	23	12	35	836	0.00003	0.00002	0.362	0.564	0.460	3.260	1.953	1.77	3.72 4.80
BRYOZ	Bryozoa	Briozoos	2	20	22	0	0.00001	0.00004	0.358	0.319	6.526	0.089	1.864	4.75	6.62 2.00
Cabra	Calamus brachysomus	Pluma marotilla	17	9	26	435	0.00003	0.00002	0.324	0.484	0.453	0.608	0.931	0.13	1.06 3.38

CACA	Carcharodon carcharias	Tiburón blanco	38	0	38	0	0.00007 0.00001 0.307 0.400 0.000 159.9 12.82 147 160 4.76
Calar	Callinectes arcuatus	Jaiba azul	19	85	104	1294	$0.00003\ 0.00002\ 0.335\ 0.581\ 8.215\ 2.418\ 7.562\ 3.07\ 10.6\ 3.24$
CALBE	Callinectes belliculosus	Jaiba guerrera o verde	17	90	107	2103	$0.00003\ 0.00002\ 0.334\ 0.584\ 8.661\ 0.877\ 6.707\ 2.83\ 9.54\ 3.51$
CALCA	Algas calcáreas	Algas calcáreas	0	5	5	0	$0.00001\ 0.00004\ 0.152\ 0.054\ 4.640\ 0.000\ 0.559\ 4.08\ 4.64\ 1.00$
Capri	Caulolatilus princeps	Blanquillo	18	2	20	71	$0.00003\ 0.00001\ 0.319\ 0.419\ 0.033\ 0.775\ 0.377\ 0.43\ 0.81\ 3.23$
CAPUN	Canthigaster punctatissima	Botete bonito	20	8	28	35	$0.00001\ 0.00002\ 0.327\ 0.458\ 0.273\ 1.291\ 1.370\ 0.19\ 1.56\ 3.08$
Carfa	Carcharhinus falciformis	Tiburón sedoso	96	1	97	37	$0.00005\; 0.00001\; 0.347\; 0.524\;\; 0.039\;\; 69.9\;\; 21.8\;\; 48.1\;\; 69.9\; 4.80$
CARLE	Carcharhinus leucas	Tiburón toro	24	1	25	1	0.00004 0.00001 0.129 0.249 0.039 21.08 3.468 17.7 21.1 5.19
CARLI	Carcharhinus limbatus	Tiburón puntas negras	18	3	21	3	$0.00003\; 0.00001\; 0.195\; 0.285\;\; 0.094\;\; 3.031\; 1.962\; 1.16\;\; 3.12\; 4.45$
CAROB	Carcharhinus obscurus	Tiburón arenero	3	1	4	0	$0.00003\; 0.00001\; 0.044\; 0.100\;\; 0.026\; 0.512\; 0.262\; 0.28\;\; 0.54\; 4.62$
CAROT	Carangoides otrynter	Jurel chicuaca	18	9	27	7	$0.00003\; 0.00002\; 0.185\; 0.323\;\; 0.328\;\; 1.681\; 1.201\; 0.81\;\; 2.01\; 4.84$
Cauaf	Caulolatilus affinis	Cabezon	8	0	8	0	$0.00003\; 0.00001\; 0.071\; 0.081\; 0.000\; 0.163\; 0.116\; 0.05\;\; 0.16\; 3.64$
ŒMYS	Cetengraulis mysticetus	Anchoveta	9	36	45	63	0.00001 0.00002 0.323 0.501 2.732 1.368 3.596 0.50 4.10 2.01
ŒNIG	Centropomus nigrescens	Robalo negro	13	0	13	0	$0.00003\; 0.00001\; 0.332\; 0.315\;\; 0.000\;\; 2.074\; 1.356\; 0.72\;\; 2.07\; 4.12$
CHAET	Chaetognata	Quetognatos	5	20	25	244	$0.00001\ 0.00004\ 0.246\ 0.393\ 6.827\ 0.113\ 2.073\ 4.87\ 6.94\ 3.10$
CHAZO	Chaetodipterus zonatus	Chavela café	13	1	14	1	$0.00001\ 0.00001\ 0.322\ 0.317\ 0.011\ 0.686\ 0.643\ 0.05\ 0.70\ 2.87$
CHECA	Cheilopogon californicus	Volador de California	12	9	21	274	$0.00001\ 0.00002\ 0.295\ 0.422\ 0.548\ 0.480\ 0.721\ 0.31\ 1.03\ 3.28$
CHEIVIY	Chelonia mydas	Tortuga verde	41	3	44	213	$0.00003\; 0.00001\; 0.356\; 0.548\;\; 0.109\;\; 6.649\; 5.767\; 0.99\;\; 6.76\; 2.27$
сніто	Chiton	Chitón	7	11	18	60	$0.00001\ 0.00003\ 0.204\ 0.310\ 4.323\ 0.424\ 1.223\ 3.52\ 4.75\ 2.42$
CHLOR	Chlorophyta	Clorófitas	0	19	19	0	$0.00001\ 0.00003\ 0.185\ 0.177\ 3.582\ 0.000\ 2.052\ 1.53\ 3.58\ 1.00$
CHORQ	Chloroscombrus orqueta	Anchoveta	8	12	20	14	$0.00003\; 0.00002\; 0.185\; 0.292\;\; 0.492\;\; 0.410\; 0.692\; 0.21\;\; 0.90\; 4.09$
CIANO	Cianobacterias	Cianobacteria	0	18	18	0	$0.00001\ 0.00008\ 0.108\ 0.132\ 19.9580.000\ 2.772\ 17.2 20 1.00$
arri	Cirripeda	Cirrípedos	8	11	19	48	$0.00001\ 0.00004\ 0.178\ 0.293\ 4.338\ 0.348\ 1.450\ 3.24\ 4.69\ 2.18$
атна	Citharichthys (spp.)		20	23	43	1424	$0.00003\; 0.00002\; 0.329\; 0.554\; 1.349\; 1.306\; 1.864\; 0.79\; 2.65\; 3.81$
CLADO	Cladocera	Cladóceros	3	11	14	32.5	$0.00001\ 0.00004\ 0.322\ 0.364\ 4.470\ 0.129\ 1.299\ 3.30\ 4.60\ 2.00$
CLAPH	Cladophora	Cladófora	0	11	11	0	$0.00001\ 0.00003\ 0.160\ 0.105\ 0.990\ 0.000\ 0.762\ 0.23\ 0.99\ 1.00$
COPEP	Copepoda	Copépodos	5	67	72	91	$0.00001\ 0.00006\ 0.294\ 0.481\ 38.6510.197\ 8.812 30 38.8\ 2.03$
CORAL	Coral	Coral	2	5	7	0	$0.00001\ 0.00002\ 0.291\ 0.165\ 0.858\ 0.051\ 0.775\ 0.13\ 0.91\ 2.31$
CORHY	Coryphaena hyppurus	Dorado o Llampuga	24	3	27	1075	$0.00003\ 0.00002\ 0.319\ 0.495\ 0.218\ 3.229\ 1.885\ 1.56\ 3.45\ 4.66$
COSER	Conodon serrifer	Ronco ofensivo	16	6	22	61	$0.00003\; 0.00001\; 0.360\; 0.464\;\; 0.197\;\; 0.639\; 0.610\;\; 0.23\;\; 0.84\; 3.81$
CRABS	Benthic crabs	Cangrejos	6	101	107	499	$0.00001\ 0.00003\ 0.270\ 0.501\ 13.0090.322\ 7.361\ 5.97\ 13.3\ 3.27$
CTENO	Ctenophora	Ctenóforos	3	4	7	0	$0.00001\ 0.00004\ 0.326\ 0.229\ 0.900\ 0.138\ 0.423\ 0.62\ 1.04\ 3.02$
CYNOR	Cynoscion reticulatus	Corvina rayada	16	9	25	97	$0.00003\ 0.00002\ 0.366\ 0.492\ 0.238\ 1.945\ 1.023\ 1.16\ 2.18\ 4.07$
CYNOT	Cynoscion Othonopterus	Corvina del Golfo	18	7	25	203	$0.00003\ 0.00002\ 0.368\ 0.507\ 0.233\ 1.864\ 1.070\ 1.03\ 2.10\ 3.49$
Cynpa	Cynoscion parvipinnis	Corvina aleta corta	12	7	19	30	0.00003 0.00002 0.366 0.438 0.233 0.522 0.454 0.30 0.75 3.89
Cynxa	Cynoscion xanthulus	Corvina aleta amarilla	25	7	32	529	$0.00003\ 0.00002\ 0.366\ 0.554\ 0.393\ 2.578\ 1.881\ 1.09\ 2.97\ 4.20$
DASDI	Dasyatis dipterura	Raya látigo	16	5	21	51	$0.00003\ 0.00001\ 0.325\ 0.426\ 0.475\ 1.132\ 1.218\ 0.39\ 1.61\ 3.59$
Delca	Delphinus capensis	Delfín comun	48	3	51	141	$0.00003\ 0.00001\ 0.286\ 0.473\ 0.084\ 8.803\ 4.002\ 4.89\ 8.89\ 4.22$
Diapa	Diapterus aureolus	Mojarra palometa	7	5	12	1740	$0.00003\ 0.00002\ 0.167\ 0.298\ 0.282\ 0.339\ 0.412\ 0.21\ 0.62\ 3.51$
DIAPE	Diapterus peruvianus	Mojarra aletas amarilla	12	2	14	6	$0.00001\ 0.00001\ 0.163\ 0.223\ 0.227\ 0.600\ 0.665\ 0.16\ 0.83\ 3.33$
DIAT1	Bidulphia (spp.)	Diatomea	0	5	5	0	0.00001 0.00004 0.156 0.073 4.376 0.000 0.411 3.96 4.38 1.00
Diat2	Chaetoceros (spp.)	Diatomea	0	4	4	0	0.00001 0.00004 0.207 0.108 3.977 0.000 0.275 3.70 3.98 1.00
DIAT3	Cocinodiscus (spp.)	Diatomea	0	7	7	0	0.00001 0.00004 0.156 0.087 5.374 0.000 0.636 4.74 5.37 1.00

DIAT4	Ditylum (spp.)	Diatomea	0	2	2	0	0.00001 0.00003 0.156 0.067 0.942 0.000 0.064 0.88 0.94 1.00
DIAT5	Melosira (spp.)	Diatomea	0	3	3	0	$0.00001\ 0.00003\ 0.156\ 0.071\ 1.356\ 0.000\ 0.175\ 1.18\ 1.36\ 1.00$
DIAT6	Navicula (spp.)	Diatomea	0	4	4	0	$0.00001\ 0.00004\ 0.156\ 0.079\ 3.804\ 0.000\ 0.286\ 3.52\ 3.80\ 1.00$
Diat7	Rhizosolenia (spp.)	Diatomea	0	4	4	0	$0.00001\ 0.00003\ 0.156\ 0.077\ 1.924\ 0.000\ 0.314\ 1.61\ 1.92\ 1.00$
DIAT8	Skeletonema (spp.)	Diatomea	0	5	5	0	$0.00001\ 0.00003\ 0.156\ 0.082\ 2.339\ 0.000\ 0.425\ 1.91\ 2.34\ 1.00$
DIATO	Diatomeas	Diatomea	0	35	35	0	$0.00001\ 0.00009\ 0.087\ 0.207\ 63.815\ 0.000\ 6.163\ 57.6\ 63.8\ 1.00$
DIHOL	Diodon holocanthus	Pez erizo apache	11	4	15	65	$0.00003\; 0.00002\; 0.352\; 0.422\;\; 0.228\; 0.525\; 0.382\; 0.37\;\; 0.75\; 3.89$
DIHY	Diodon hystrix	Pez erizo pecoso	10	4	14	202	$0.00003\; 0.00002\; 0.215\; 0.319\;\; 0.228\;\; 0.442\; 0.419\; 0.25\;\; 0.67\; 3.75$
DILAB	Diplectrum labarum	Serrano espinudo	11	5	16	57	$0.00003\; 0.00002\; 0.207\; 0.302\;\; 0.264\;\; 0.605\; 0.421\;\; 0.45\;\; 0.87\; 4.62$
DINO1	Ceratium (spp.)	Dinoflagelado	0	3	3	0	$0.00001\ 0.00003\ 0.156\ 0.077\ 1.529\ 0.000\ 0.164\ 1.37\ 1.53\ 1.00$
DINO2	Triposolenia (spp.)	Dinoflagelado	0	2	2	0	$0.00001\ 0.00003\ 0.156\ 0.075\ 0.942\ 0.000\ 0.064\ 0.88\ 0.94\ 1.00$
DINO3	Peridinium (spp.)	Dinoflagelado	0	3	3	0	$0.00001\ 0.00003\ 0.156\ 0.080\ 1.529\ 0.000\ 0.164\ 1.37\ 1.53\ 1.00$
DINOF	Dinofalgelados	Dinoflagelado	0	15	15	0	$0.00001\ 0.00006\ 0.293\ 0.237\ 34.2660.000\ 2.286\ \ 32\ \ 34.3\ 1.00$
DIPA	Diplectrum pacificum	Serrano cabaicucho	9	5	14	173	$0.00003\; 0.00002\; 0.209\; 0.309\; 0.269\; 0.627\; 0.426\; 0.47\; 0.90\; 4.17$
DIPEU	Diplectrum eumelum	Serrano cara bonita	12	4	16	0	$0.00003\; 0.00002\; 0.111\; 0.175\;\; 0.223\;\; 1.435\; 0.943\;\; 0.72\;\; 1.66\; 4.57$
DIPOM	Diplobatis ommata	Raya eléctrica ocelada	3	0	3	0	$0.00003\; 0.00001\; 0.021\; 0.065\;\; 0.000\;\; 0.074\; 0.039\; 0.03\;\; 0.07\; 3.40$
DOGIG	Dosidicus gigas	Calamar gigante	12	32	44	514	$0.00003\; 0.00002\; 0.334\; 0.546\;\; 1.708\;\; 1.053\; 2.185\;\; 0.58\;\; 2.76\; 4.54$
DOREX	Doryrhamphus excisus	Pez pipa chico	15	2	17	4	$0.00003\ 0.00002\ 0.169\ 0.240\ 0.073\ 0.702\ 0.430\ 0.35\ 0.78\ 3.37$
ELAF	Elops affinis	Machete del Pacifico	3	1	4	0	$0.00003\; 0.00001\; 0.135\; 0.108\;\; 0.047\;\; 0.278\; 0.078\;\; 0.25\;\; 0.32\; 4.16$
ELBI	Elagatis bipinnulata	Macarela cola amarilla	13	7	20	0	$0.00003\ 0.00002\ 0.180\ 0.218\ 0.277\ 0.431\ 0.506\ 0.20\ 0.71\ 3.82$
ENIMOF	REngraulis mordax	Anchoa de California	18	53	71	604	$0.00001\ 0.00002\ 0.349\ 0.567\ 5.385\ 0.895\ 4.482\ 1.80\ 6.28\ 2.92$
ENTER	Enteromorpha	Enteromorfa	0	10	10	0	$0.00001 \ 0.00003 \ 0.160 \ 0.096 \ 1.658 \ 0.000 \ 0.987 \ 0.67 \ 1.66 \ 1.00$
EPIAC	Epinephelus acanthistius	Cabrilla rosa o Baqueta	23	3	26	65	$0.00003\ 0.00001\ 0.309\ 0.433\ 0.042\ 5.042\ 1.209\ 3.87\ 5.08\ 5.02$
EPILA	Epinephelus labriformis	Cabrilla piedrera	17	4	21	5549	$0.00003\ 0.00002\ 0.260\ 0.428\ 0.132\ 4.481\ 1.043\ 3.57\ 4.61\ 4.80$
epipa	Epinephelus panamensis	Cabrilla enjambre	21	2	23	0	$0.00003\ 0.00002\ 0.209\ 0.271\ 0.100\ 4.766\ 1.071\ 3.80\ 4.87\ 4.92$
ESROB	Eschrichtius robustus	Ballena gris	24	2	26	3	$0.00003\; 0.00001\; 0.152\; 0.269\; 0.056\; 1.455\; 0.934\; 0.58\; 1.51\; 3.77$
etcro	Etropus crossotus	Lenguando ribete	9	23	32	39	$0.00001\ 0.00002\ 0.315\ 0.452\ 2.324\ 0.192\ 1.335\ 1.18\ 2.52\ 3.20$
EUCEN	Eucinostomus entomelas	Mojarra mancha negra	11	5	16	93	$0.00003\; 0.00002\; 0.206\; 0.307\;\; 0.909\;\; 0.489\; 0.868\;\; 0.53\;\; 1.40\; 3.30$
EUCUR	Eucinostomus currani	Mojarrita bandera	6	7	13	312	$0.00003\; 0.00002\; 0.292\; 0.366\;\; 0.896\;\; 0.346\; 0.606\;\; 0.64\;\; 1.24\; 3.52$
EUDO	Eucinostomus dowi	Mojarra manchita	3	10	13	0	$0.00001\ 0.00002\ 0.311\ 0.265\ 1.177\ 0.061\ 0.815\ 0.42\ 1.24\ 3.31$
EUGRA	Eucinostomus gracilis	Mojarra charrita	5	9	14	0	$0.00001\ 0.00002\ 0.292\ 0.250\ 1.052\ 0.157\ 0.790\ 0.42\ 1.21\ 3.57$
EUPHA	Eufásidos	Eufásidos	3	63	66	5	$0.00001\ 0.00004\ 0.272\ 0.417\ 15.2590.113\ 6.659\ 8.71\ 15.3\ 2.39$
EXOMO	Exocoetus monocirrhus	Volador barbudo	2	8	10	0	$0.00001\ 0.00002\ 0.229\ 0.176\ 0.521\ 0.035\ 0.337\ 0.22\ 0.56\ 3.04$
Facad	Farfantopenaeus	Camarón café	33	103	136	4906	$0.00001\ 0.00003\ 0.360\ 0.610\ 16.146\ 11.38\ 17.69\ 9.83\ 27.5\ 3.16$
FICOM	californiensis Fistularia commersonii	Corneta pintada	2	8	10	0	0.00003 0.00002 0.316 0.283 0.262 0.444 0.559 0.15 0.71 4.82
FOFLA	Forcipiger flavissimus	Mariposa narizona	8	2	10	0	0.00001 0.00001 0.181 0.110 0.032 0.314 0.273 0.07 0.35 2.85
FORALV	Acanthospira (spp.)	Foraminífero	3	28	31	1	0.00001 0.00006 0.343 0.433 25.3050.117 2.891 22.5 25.4 2.00
GALCU	Galeocerdo cuvier	Tiburón tigre	57	0	57	0	0.00004 0.00001 0.277 0.372 0.000 43.82 13.9 29.9 43.8 4.49
GASTR	Gastropod	Gasterópodos	11	70	81	895	0.00001 0.00004 0.369 0.598 11.3730.523 6.513 5.38 11.9 2.58
GECIN	Gerres cinereus	Mojarra plateada	7	6	13	45	0.00001 0.00002 0.228 0.282 1.310 0.426 0.348 1.39 1.74 4.17
GIMI	Gillichthys mirabilis	Chupalodo grande	13	23	36	793	0.00003 0.00002 0.369 0.572 2.979 0.580 1.731 1.83 3.56 3.31
GINCI	Ginglymostoma cirratum	- Tiburón gata	27	0	27	0	0.00003 0.00001 0.159 0.255 0.000 2.177 1.313 0.86 2.18 3.67

GISIM	Girella simplicidens	Chopa del Golfo	3	0	3	0	0.00001 0.00001 0.090 0.029 0.000 0.136 0.136 0.00 0.14 2.00
GLOMA	Globicephala macrorhynchus	Ballena piloto	19	2	21	0	0.00003 0.00001 0.110 0.213 0.047 1.499 0.899 0.65 1.55 5.07
GOIVIC	Gobionellus microdon	Gobio cola de palma	7	21	28	66	0.00001 0.00002 0.369 0.509 2.902 0.174 1.498 1.58 3.08 3.03
GRAGR	Grampus griseus	Delfin gris	18	3	21	33	0.00003 0.00001 0.184 0.307 0.084 0.984 0.569 0.50 1.07 5.23
Gymaf	Gymnura marmorata	Raya mariposa californiana	19	0	19	0	0.00003 0.00001 0.372 0.378 0.000 2.320 1.591 0.73 2.32 4.00
Gyivipa	Gymnothorax panamensis	Morena mapache	30	14	44	1071	0.00003 0.00002 0.259 0.481 0.610 4.343 3.166 1.79 4.95 4.43
GYZE	Gymnomuraena zebra	Morena cebra	5	14	19	0	0.00003 0.00002 0.184 0.247 0.786 0.144 0.730 0.20 0.93 4.42
HAEAX	Haemulopsis axillaris	Ronco almejero	21	6	27	181	0.00003 0.00002 0.324 0.473 0.233 0.909 0.686 0.46 1.14 3.76
Haefl	Haemulon flaviguttatum	Burro de Cortés	20	8	28	2	0.00003 0.00001 0.300 0.386 0.246 0.967 0.743 0.47 1.21 3.63
Haele	Haemulopsis leuciscus	Ronco roncacho	5	5	10	0	$0.00001\ 0.00001\ 0.308\ 0.251\ 0.209\ 0.305\ 0.258\ 0.26\ 0.51\ 3.90$
HAEMA	Haemulon maculicauda	Burro rasposo	9	0	9	0	$0.00003\ 0.00001\ 0.317\ 0.257\ 0.000\ 0.813\ 0.324\ 0.49\ 0.81\ 4.50$
HAENI	Haemulopsis nitidus	Ronco brillante	16	7	23	3	$0.00003\ 0.00001\ 0.281\ 0.343\ 0.240\ 0.593\ 0.456\ 0.38\ 0.83\ 3.68$
Haldi	Halichoeres dispilus	Señorita camaleón	13	11	24	56	$0.00003\ 0.00002\ 0.358\ 0.463\ 0.558\ 0.981\ 1.047\ 0.49\ 1.54\ 3.49$
Halse	Halichoeres semicinctus	Señorita piedrera	13	12	25	549	$0.00003\ 0.00002\ 0.358\ 0.511\ 0.683\ 0.714\ 0.920\ 0.48\ 1.40\ 3.46$
HART	Harengula thrissina	Arenque	5	37	42	8	0.00001 0.00002 0.274 0.411 2.737 0.184 2.180 0.74 2.92 3.06
HASEX	Haemulon sexfasciatum	Burro almejero	12	7	19	6	$0.00003\; 0.00001\; 0.300\; 0.347\;\; 0.207\;\; 0.371\; 0.492\;\; 0.09\;\; 0.58\; 3.41$
HASTE	Haemulon steindachneri	Ronco chere-chere	17	7	24	1	0.00003 0.00001 0.259 0.322 0.258 0.704 0.586 0.38 0.96 4.16
HEFRA	Heterodontus francisci	Tiburón dormilón cornudo	8	0	8	0	0.00003 0.00001 0.337 0.209 0.000 0.607 0.318 0.29 0.61 3.96
HIPIN	Hippocampus ingens	Caballito del Pacífico	11	4	15	21	$0.00003\ 0.00002\ 0.199\ 0.274\ 0.216\ 0.332\ 0.403\ 0.15\ 0.55\ 3.50$
HITE	Hippoglossina tetrophthalma	Lenguado cuatrojos	3	11	14	8	0.00003 0.00002 0.307 0.332 0.947 0.276 0.518 0.70 1.22 4.03
HOGUN	Hoplopagrus guntherii	Pargo coconaco	10	4	14	0	0.00003 0.00001 0.321 0.290 0.060 0.498 0.401 0.16 0.56 3.66
Holpa	Holacanthus passer	Pez ángel rey	11	1	12	0	0.00001 0.00001 0.266 0.172 0.011 1.013 0.733 0.29 1.02 2.18
hyca	Hydroprogne caspia	Pagaza piquirroja	12	2	14	0	$0.00003\; 0.00001\; 0.085\; 0.169\;\; 0.047\;\; 0.764\; 0.551\; 0.26\;\; 0.81\; 3.90$
HYDRO	Hydrozoa	Medusas	10	25	35	670	$0.00001\ 0.00004\ 0.355\ 0.554\ 4.491\ 0.682\ 2.332\ 2.84\ 5.17\ 3.51$
Hygop	Hygophum (spp.)	Pez linterna cabezo	7	12	19	0	$0.00001\ 0.00002\ 0.155\ 0.183\ 1.918\ 0.223\ 0.876\ 1.27\ 2.14\ 3.32$
ISOPO	Isopod	Isopodo	2	48	50	0	$0.00001\ 0.00004\ 0.350\ 0.384\ 8.836\ 0.089\ 3.897\ 5.03\ 8.93\ 2.00$
ISURO	Isurus oxyrinchus	Tiburon mako	9	0	9	0	$0.00003\; 0.00001\; 0.290\; 0.239\; 0.000\; 0.755\; 0.371\; 0.38\; 0.75\; 5.27$
JONI	Johnrandallia nigrirostris	Mariposa barbero	9	2	11	0	$0.00003\ 0.00001\ 0.186\ 0.122\ 0.032\ 0.328\ 0.317\ 0.04\ 0.36\ 2.65$
KYPAN	Kyphosus analogus	Chopa rayada	7	2	9	5	$0.00001\ 0.00001\ 0.209\ 0.212\ 0.046\ 0.694\ 0.734\ 0.01\ 0.74\ 2.00$
KYPEL	Kyphosus elegans	Chopa de Cortés	16	2	18	15	$0.00001\ 0.00001\ 0.349\ 0.403\ 0.046\ 0.803\ 0.751\ 0.10\ 0.85\ 2.07$
LAPAC	Larimus pacificus	Boquinete del Pacífico	9	4	13	0	$0.00003\ 0.00002\ 0.203\ 0.200\ 0.261\ 0.273\ 0.341\ 0.19\ 0.53\ 3.75$
lara	Larus atricilla	Gaviota reidora americana	28	2	30	18	0.00003 0.00001 0.086 0.295 0.047 4.748 2.442 2.35 4.79 4.61
LARDE	Larus delawarensis	Gaviota de Delaware	35	1	36	5	$0.00003\ 0.00001\ 0.161\ 0.326\ 0.029\ 2.402\ 1.481\ 0.95\ 2.43\ 3.57$
LEPRO	Lepophidium prorates	Congrioperla cornuda	13	18	31	56	$0.00003\ 0.00002\ 0.315\ 0.457\ 0.935\ 0.912\ 1.074\ 0.77\ 1.85\ 4.03$
LEUST	Leuroglossus stilbius	Lengualisa californiana	9	2	11	1	$0.00001\ 0.00002\ 0.151\ 0.173\ 0.225\ 0.372\ 0.423\ 0.17\ 0.60\ 3.25$
LISTO	Lile stolifera	Sardinita rayada	1	43	44	0	$0.00001\ 0.00002\ 0.275\ 0.346\ 4.626\ 0.018\ 2.641\ 2.00\ 4.64\ 3.04$
LITOA	Litopenaeus stylirostris	Camarón azul	30	92	122	202	0.00001 0.00002 0.359 0.572 11.660 11.34 16.41 6.59 23 2.89
юш	Lolliguncula (spp.)	Loligínidos	36	64	100	20457	0.00003 0.00002 0.365 0.616 4.938 1.549 4.835 1.65 6.49 4.24
lutar	Lutjanus argentiventris	Pargo amarillo	29	5	34	2211	0.00003 0.00002 0.371 0.580 0.150 4.242 1.899 2.49 4.39 4.34
штоо	Lutjanus colorado	Pargo colorado	6	4	10	0	0.00003 0.00001 0.321 0.243 0.060 0.251 0.205 0.11 0.31 3.95
lutgu	Lutjanus guttatus	Pargo lunarejo	20	4	24	34	0.00003 0.00001 0.321 0.418 0.060 1.810 0.761 1.11 1.87 4.49

Lutjanus jordani	Pargo colmillón	15	4	19	4	0.00003 0.00001 0.321 0.371 0.060 2.615 1.320 1.36 2.68 5.05
LUTNO Lutjanus novemfasciatus	Pargo prieto	8	5	13	0	$0.00003\ 0.00002\ 0.321\ 0.310\ 0.150\ 2.107\ 1.410\ 0.85\ 2.26\ 4.38$
LUTPE Lutjanus peru	Huachinango del Pacífico	24	4	28	12	0.00003 0.00001 0.322 0.433 0.060 1.823 0.877 1.01 1.88 4.11
MABIR Manta birostris	Manta raya	6	0	6	0	0.00001 0.00001 0.139 0.082 0.000 0.208 0.171 0.04 0.21 3.26
MACPI Sargassum horridum	Sargazo*	0	2	2	0	0.00001 0.00001 0.317 0.159 0.179 0.000 0.168 0.01 0.18 1.00
MANGL Rhizophora mangle	Manglar rojo	0	1	1	0	0.00001 0.00001 0.291 0.129 0.027 0.000 0.024 0.00 0.03 1.00
MEO Meiobenthos	Meiobentos	4	12	16	11	$0.00001\ 0.00004\ 0.148\ 0.224\ 4.804\ 0.107\ 1.382\ 3.53\ 4.91\ 2.37$
MENAS Menticirrhus nasus	Chano o Berrugata real	10	6	16	10	$0.00003\ 0.00001\ 0.328\ 0.376\ 0.157\ 1.594\ 1.121\ 0.63\ 1.75\ 3.80$
MENPA Menticirrhus panamensis	Berrugato panameño	10	5	15	4	$0.00003\; 0.00001\; 0.328\; 0.356\;\; 0.109\;\; 1.594\; 1.075\; 0.63\;\; 1.70\; 3.80$
MERLU Merluccius productus	Merluza norteña	9	9	18	180	$0.00001\ 0.00002\ 0.339\ 0.442\ 0.819\ 1.137\ 1.283\ 0.67\ 1.96\ 3.81$
MIMEG Micropogonias megalops	Berrugata	14	13	27	172	$0.00003\ 0.00002\ 0.335\ 0.486\ 0.722\ 0.637\ 0.875\ 0.48\ 1.36\ 3.70$
MUCAL Mustelus californicus	Cazón mamón	9	5	14	0	$0.00003\ 0.00001\ 0.294\ 0.270\ 0.160\ 0.289\ 0.328\ 0.12\ 0.45\ 4.28$
MUCE Mugil cephalus	Lisa rayada	8	18	26	123	0.00001 0.00002 0.271 0.404 2.287 0.831 1.848 1.27 3.12 2.05
MUHEN Mustelus henlei	Cazón hilacho	5	5	10	0	$0.00003\ 0.00001\ 0.294\ 0.244\ 0.160\ 0.237\ 0.230\ 0.17\ 0.40\ 4.25$
МUШ Mullidae (spp.)	Chivo amarillo	6	7	13	200	0.00003 0.00002 0.151 0.257 0.813 0.353 0.764 0.40 1.17 3.24
MULUN Mustelus lunulatus	Cazón segador	33	5	38	195	0.00003 0.00001 0.296 0.476 0.160 5.165 3.026 2.30 5.33 4.21
MYJO Mycteroperca jordani	Baya o Garropa	26	1	27	6	0.00003 0.00001 0.308 0.403 0.011 2.327 1.148 1.19 2.34 4.62
MMCA Myliobatis californica	Raya murciélago	11	2	13	0	0.00003 0.00001 0.285 0.231 0.044 0.387 0.298 0.13 0.43 3.14
MME Myripristis leiognathos	Candil panameño	6	6	12	0	0.00001 0.00002 0.132 0.126 0.287 0.326 0.319 0.29 0.61 3.57
MMRO Mycteroperca rosacea	Cabrilla sardinera	45	1	46	3	0.00003 0.00001 0.344 0.470 0.011 4.994 2.950 2.05 5.00 3.75
MXE Mycteroperca xenarcha	Mero brujo	4	1	5	0	0.00001 0.00001 0.102 0.118 0.011 0.143 0.102 0.05 0.15 3.63
NAREN Narcine entemedor	Raya eléctrica de	9	0	9	0	0.00003 0.00001 0.146 0.116 0.000 0.920 0.259 0.66 0.92 3.52
NEBRE Negaprion brevirostris	Cortés Tiburón limón	71	3	74	34	0.00004 0.00001 0.351 0.524 0.094 22.9 11.01 12 23 4.56
NEPEC Nematistius pectoralis	Рарадауо	10	0	10	0	$0.00003\ 0.00001\ 0.149\ 0.154\ 0.000\ 1.127\ 0.745\ 0.38\ 1.13\ 4.17$
NOCEP Notorynchus cepedianus	Cañabota gata	25	0	25	0	0.00003 0.00001 0.223 0.278 0.000 22.23 5.671 16.6 22.2 5.19
OCIVIC Oceanodroma microsoma	Paíño menor	6	2	8	0	$0.00003\ 0.00001\ 0.124\ 0.085\ 0.047\ 0.418\ 0.307\ 0.16\ 0.47\ 3.43$
OCTO Octopus (spp.)	Pulpos	25	39	64	2344	$0.00003\ 0.00002\ 0.326\ 0.565\ 2.669\ 0.951\ 2.607\ 1.01\ 3.62\ 3.89$
OLIAL Oligoplites altus	Palometa	5	14	19	42	$0.00003\ 0.00002\ 0.210\ 0.323\ 0.502\ 0.845\ 1.026\ 0.32\ 1.35\ 4.21$
OLGO Oligoqueto	Oligoquetos	9	2	11	416	$0.00001\ 0.00003\ 0.327\ 0.395\ 0.942\ 0.849\ 0.900\ 0.89\ 1.79\ 2.01$
OLIRE Oligoplites refulgens	Sardina piña	6	7	13	0	$0.00001\ 0.00002\ 0.177\ 0.151\ 0.465\ 0.119\ 0.391\ 0.19\ 0.58\ 3.81$
ONBAN Onychoteuthis banksii		23	38	61	611	$0.00003\ 0.00002\ 0.211\ 0.456\ 2.787\ 1.241\ 2.667\ 1.36\ 4.03\ 4.45$
OPHI Ophiuroid	Ofiuros	6	21	27	65	$0.00001\ 0.00002\ 0.220\ 0.373\ 3.311\ 0.143\ 1.794\ 1.66\ 3.45\ 2.17$
OPILI Opisthonema libertate	Sardina Crinuda	8	45	53	69	$0.00001\ 0.00002\ 0.274\ 0.460\ 3.572\ 1.025\ 3.775\ 0.82\ 4.60\ 2.03$
ORCHA Orthopristis chalceus	Burrito corcovado	4	6	10	0	$0.00001\ 0.00001\ 0.255\ 0.198\ 0.218\ 0.123\ 0.299\ 0.04\ 0.34\ 3.18$
ORCOR Orcinus orca	Orca	34	0	34	0	0.00004 0.00001 0.134 0.274 0.000 32.73 9.525 23.2 32.7 4.69
ORED Orthopristis reddingi	Burrito rayado	17	11	28	40	$0.00003\ 0.00001\ 0.325\ 0.461\ 0.462\ 0.857\ 0.877\ 0.44\ 1.32\ 3.89$
OSTRA Ostracoda	Ostrácodos	3	40	43	2	$0.00001\ 0.00006\ 0.314\ 0.427\ 12.7710.130\ 3.923\ 8.98\ 12.9\ 2.11$
PACOL Paranthias colonus	Sandía o Gringo	14	3	17	0	$0.00003\; 0.00001\; 0.206\; 0.203\;\; 0.042\;\; 0.554\; 0.247\; 0.35\;\; 0.60\; 3.61$
PAES Paralichthys aestuarius	Lenguado de Cortés	7	11	18	0	0.00003 0.00002 0.300 0.274 1.236 0.222 0.729 0.73 1.46 3.58
PAMA Paralabrax maculatofasciatus	Cabrilla de roca	12	2	14	0	0.00003 0.00002 0.124 0.153 0.068 1.833 0.954 0.95 1.90 4.06
PANHA Pandion haliaetus	Águila pescadora	7	0	7	0	0.00003 0.00001 0.149 0.140 0.000 1.485 0.824 0.66 1.49 3.73

Parxa	Parmaturus xaniurus	Pejegato lima	19	0	19	0	$0.00003\ 0.00001\ 0.176\ 0.200\ 0.000\ 1.593\ 0.762\ 0.83\ 1.59\ 4.45$
PASIP	Pasiphaea (spp.)	Camarones carideos	15	73	88	3006	$0.00003\; 0.00002\; 0.364\; 0.604\;\; 7.828\;\; 0.686\; 5.879\; 2.63\;\; 8.51\; 3.51$
Paur	Paralabrax auroguttatus	Cabrilla extranjera	15	2	17	0	$0.00003\; 0.00002\; 0.123\; 0.167\;\; 0.068\;\; 0.627\; 0.306\;\; 0.39\;\; 0.70\; 4.11$
PAWO	Paralichthys woolmani	Lenguado huarache	14	9	23	509	$0.00003\ 0.00002\ 0.301\ 0.440\ 0.761\ 0.660\ 0.845\ 0.58\ 1.42\ 3.33$
PELOC	Pelecanus occidentalis	Pelícano pardo	17	2	19	9	$0.00003\ 0.00001\ 0.175\ 0.273\ 0.047\ 3.561\ 0.807\ 2.80\ 3.61\ 3.70$
PEPLA	Pelamis platura	Serpiente amarilla	31	6	37	4774	$0.00003\ 0.00002\ 0.198\ 0.446\ 0.232\ 16.13\ 6.456\ 9.91\ 16.3\ 4.71$
Phaeo	Phaeophyceae	Feofitas	0	20	20	0	0.00001 0.00004 0.347 0.308 4.958 0.000 1.981 2.98 4.96 1.00
Phala	Phalacrocorax auritus	Cormorán orejudo	37	2	39	29	0.00003 0.00001 0.153 0.340 0.047 10.13 5.418 4.76 10.1 4.50
PHOSI	Phocaena sinus	Vaquita marina	12	4	16	0	0.00003 0.00001 0.186 0.231 0.113 1.835 0.834 1.11 1.95 4.68
PHYLL	Phyllospadix torreyi	Hierba de rompiente	0	2	2	0	0.00001 0.00001 0.241 0.095 0.129 0.000 0.115 0.01 0.13 1.00
PHYMA	Physeter macrocephalus	Cachalote	24	1	25	2	0.00003 0.00001 0.162 0.276 0.029 1.643 0.963 0.71 1.67 5.17
PHYTO	Phytoplankton	Fitoplancton	0	30	30	0	0.00001 0.00010 0.249 0.269 73.0820.000 7.584 65.5 73.1 1.00
PLATR	Platyrhinoidis triseriata	Guitarra Espinuda	18	0	18	0	0.00003 0.00001 0.310 0.296 0.000 1.144 0.494 0.65 1.14 4.20
Plegu	Pleuronichthys guttulatus	Platija diamante	12	13	25	1131	0.00003 0.00002 0.307 0.466 1.029 0.537 0.957 0.61 1.57 3.34
PLEPL	Pleuroncodes planipes	Langostilla	9	58	67	68	0.00001 0.00002 0.322 0.513 5.121 0.421 3.997 1.54 5.54 2.70
POLAP	Polydactylus approximans	Aguapuro	32	1	33	171	0.00003 0.00002 0.348 0.513 0.040 2.844 1.553 1.33 2.88 4.39
POLYC	Polychaeta	Poliquetos	10	81	91	1435	0.00001 0.00004 0.338 0.581 21.0321.126 8.568 1369 22.2 2.11
PORAN	Porichthys analis	Sapo charro	18	19	37	613	0.00003 0.00002 0.302 0.501 1.336 0.939 1.527 0.75 2.28 3.68
PORIF	Porifera	Esponjas	1	15	16	0	0.00001 0.00004 0.238 0.206 6.646 0.018 1.599 5.07 6.66 3.04
PORMI	Porichthys mimeticus	Sapo mimético	14	18	32	158	0.00003 0.00002 0.302 0.460 1.417 0.560 1.271 0.71 1.98 3.38
PORTU	Portunus (spp.)	Jaibas	16	84	100	1404	0.00001 0.00002 0.321 0.559 8.820 1.269 6.305 3.78 10.1 3.44
POZON	Pomacanthus zonipectus	Angel de Cortés	10	1	11	0	0.00003 0.00001 0.263 0.165 0.011 0.487 0.446 0.05 0.50 3.03
PRIAL	Prionotus albirostris	Rubio rey	12	15	27	321	$0.00003\ 0.00002\ 0.285\ 0.445\ 0.819\ 0.493\ 0.917\ 0.40\ 1.31\ 4.25$
Prig	Prionace glauca	Tintorera o Tiburón azul	14	1	15	0	0.00003 0.00001 0.351 0.272 0.000 1.617 1.052 0.56 1.62 4.42
PRIPU	Prionurus punctatus	Cirujano cochinito	10	5	15	2	$0.00001\ 0.00002\ 0.331\ 0.347\ 0.119\ 0.420\ 0.465\ 0.07\ 0.54\ 2.31$
PRIST	Prionotus stephanophrys	Rubio Volador	13	14	27	254	$0.00003\; 0.00002\; 0.285\; 0.440\;\; 0.708\;\; 0.530\; 0.834\; 0.40\;\; 1.24\; 3.83$
PROMU	JPronotogrammus multifasciatus	Doncellita o Serrano baga	2	5	7	0	0.00001 0.00002 0.302 0.207 0.272 0.036 0.260 0.05 0.31 3.03
PROTO	Protozoa	Protozoos	5	20	25	129.5	0.00001 0.00008 0.216 0.367 21.6280.224 3.260 18.6 21.9 2.05
PSEGL	Pseudobatos glaucostigma	Pez guitarra moteado	10	1	11	0	$0.00003\ 0.00001\ 0.234\ 0.190\ 0.018\ 0.383\ 0.182\ 0.22\ 0.40\ 4.35$
PSELE	Pseudobatos leucorhynchus	Guitarra trompa blanca	13	1	14	5	$0.00003\ 0.00001\ 0.271\ 0.294\ 0.018\ 0.705\ 0.300\ 0.42\ 0.72\ 4.09$
PSEPR	Pseudobatos productus	Pez guitarra	26	0	26	0	0.00003 0.00001 0.292 0.334 0.000 2.416 1.529 0.89 2.42 4.17
PTERO	Pteropoda	Pterópodos	9	23	32	606	0.00001 0.00004 0.290 0.475 4.547 0.429 1.987 2.99 4.98 2.61
RADI1	Sphaerozoum (spp.)	Radiolarios	9	2	11	1	$0.00001\ 0.00003\ 0.251\ 0.233\ 0.942\ 0.410\ 0.430\ 0.92\ 1.35\ 2.12$
RADI2	Tetraplagia (spp.)	Radiolarios	9	2	11	0	$0.00001\ 0.00003\ 0.251\ 0.163\ 0.942\ 0.410\ 0.430\ 0.92\ 1.35\ 2.13$
Radis	Thalassoxantium (spp.)	Radiolarios	9	2	11	0	$0.00001\ 0.00003\ 0.251\ 0.169\ 0.942\ 0.410\ 0.430\ 0.92\ 1.35\ 2.13$
RAD14	Triplagiacantha (spp.)	Radiolarios	9	2	11	35	$0.00001\ 0.00003\ 0.251\ 0.287\ 0.942\ 0.410\ 0.430\ 0.92\ 1.35\ 2.14$
Radio	Radiolaria	Radiolarios	9	17	26	212	0.00001 0.00006 0.321 0.466 7.650 0.316 1.904 6.06 7.97 2.09
Rajin	Raja inornata	Raya de California	26	0	26	0	0.00003 0.00001 0.260 0.308 0.000 3.129 1.702 1.43 3.13 4.50
RHILO	Rhizoprionodon longurio	Cazon picudo del Pacífico	29	4	33	4	0.00003 0.00001 0.304 0.415 0.120 3.704 2.187 1.64 3.82 4.59
RHIST	Rhinoptera steindachneri	Gavilán negro (Chucho)	4	1	5	0	0.00001 0.00001 0.234 0.161 0.018 0.134 0.113 0.04 0.15 3.19
Rhity	Rhincodon typus	Tiburón ballena	12	1	13	1	0.00001 0.00001 0.179 0.206 0.026 0.950 0.666 0.31 0.98 3.46
RHODO	Rhodophyta	Rodofitas	0	30	30	0	$0.00001\ 0.00005\ 0.273\ 0.282\ 9.373\ 0.000\ 3.547\ 5.83\ 9.37\ 1.00$

ROTIF	Rotifera	Rotíferos	3	10	13	31	0.00001 0.00008 0.178 0.241 9.144 0.062 1.845 7.36 9.21 2.00
Ruppi	Ruppia maritima	Pelo de marisma	0	2	2	0	$0.00001 \ 0.00002 \ 0.200 \ 0.069 \ 0.603 \ 0.000 \ 0.087 \ 0.52 \ 0.60 \ 1.00$
Rybi	Rypticus bicolor	Pez jabón	11	2	13	45	$0.00003\; 0.00002\; 0.322\; 0.365\;\; 0.068\;\; 0.484\; 0.259\;\; 0.29\;\; 0.55\; 4.00$
Rynig	Rynchops niger	Pico tijera	10	3	13	0	$0.00003\; 0.00001\; 0.211\; 0.171\; 0.042\; 0.543\; 0.408\; 0.18\; 0.59\; 3.73$
Salic	Salicornia (spp.)		0	1	1	0	0.00001 0.00002 0.060 0.007 0.576 0.000 0.063 0.51 0.58 1.00
Sarga	Sargassum	Sargazo	0	11	11	0	$0.00001\ 0.00004\ 0.294\ 0.186\ 3.712\ 0.000\ 0.821\ 2.89\ 3.71\ 1.00$
SARGO	Sargocentron (spp.)	Candil	17	5	22	124	$0.00003\ 0.00002\ 0.257\ 0.380\ 0.242\ 0.733\ 0.526\ 0.45\ 0.97\ 4.02$
SASA	Sardinops sagax	Sardina Monterrey	10	53	63	264	$0.00001\ 0.00002\ 0.361\ 0.566\ 4.873\ 1.253\ 4.950\ 1.18\ 6.13\ 2.38$
SCACO	Scarus compressus	Loro chato	4	5	9	1	$0.00001\ 0.00001\ 0.180\ 0.176\ 0.102\ 0.352\ 0.435\ 0.02\ 0.45\ 2.18$
SCAPE	Scarus perrico	Loro jorobado	4	5	9	1	$0.00001\ 0.00001\ 0.181\ 0.180\ 0.102\ 0.171\ 0.260\ 0.01\ 0.27\ 2.26$
SCARU	Scarus rubroviolaceus	Loro bicolor	4	5	9	7	$0.00001\ 0.00001\ 0.180\ 0.202\ 0.102\ 0.329\ 0.413\ 0.02\ 0.43\ 2.18$
SCOJA	Scomber Japonicus	Macarela del Pacífico	28	20	48	12097	0.00003 0.00002 0.349 0.583 1.007 2.315 2.027 1.30 3.32 3.75
SCOIVIY	Scorpaena mystes	Rascacio escorpion	4	12	16	360	$0.00003\ 0.00002\ 0.260\ 0.370\ 0.544\ 1.358\ 1.559\ 0.34\ 1.90\ 4.54$
SCOSI	Scomberomorus sierra	Sierra	19	9	28	405	$0.00003\ 0.00002\ 0.226\ 0.417\ 0.392\ 1.774\ 1.249\ 0.92\ 2.17\ 4.46$
SCOSO	Scorpaena sonorae	Escorpión de Sonora	14	11	25	0	$0.00003\; 0.00002\; 0.260\; 0.315\;\; 0.401\; 0.731\; 0.623\; 0.51\;\; 1.13\; 4.61$
SCOXY	Scorpaenodes xyris	Escorpión arcoiris	10	11	21	2	$0.00003\; 0.00002\; 0.250\; 0.303\;\; 0.452\;\; 0.309\; 0.647\; 0.11\;\; 0.76\; 3.77$
SCYPH	Scyphozoa	Medusas	9	3	12	38	$0.00001\ 0.00002\ 0.233\ 0.278\ 0.194\ 0.656\ 0.722\ 0.13\ 0.85\ 3.16$
SEACU	Holoturidae	Holoturias	2	11	13	0	$0.00001\ 0.00002\ 0.280\ 0.183\ 1.741\ 0.156\ 0.839\ 1.06\ 1.90\ 3.13$
SEAG	Praderas	Pasto marino	0	12	12	0	$0.00001\ 0.00004\ 0.213\ 0.130\ 5.649\ 0.000\ 1.131\ 4.52\ 5.65\ 1.00$
SEAST	Estrellas de mar	Estrellas de mar	6	10	16	6	$0.00001\ 0.00002\ 0.187\ 0.260\ 0.971\ 0.447\ 1.012\ 0.41\ 1.42\ 3.26$
SEAUR	Erizos de mar	Erizos de mar	3	29	32	56	$0.00001\ 0.00003\ 0.274\ 0.423\ 3.759\ 0.267\ 2.280\ 1.74\ 4.03\ 2.00$
SEBRE	Selene brevoortii	Jorobado mexicano	14	10	24	0	$0.00003\; 0.00002\; 0.305\; 0.337\;\; 0.372\;\; 0.741\; 0.651\; 0.46\;\; 1.11\; 4.27$
SECOR	Sebastes cortezi	Cancharro de Cortés	22	7	29	944	$0.00003\ 0.00002\ 0.177\ 0.398\ 0.188\ 1.118\ 0.813\ 0.49\ 1.31\ 3.78$
SECRU	Selar crumenophthalmus	Chicharro común	16	12	28	42	$0.00003\ 0.00002\ 0.350\ 0.480\ 0.555\ 0.836\ 0.877\ 0.51\ 1.39\ 3.73$
SEPER	Selene peruviana	Espejuelo	23	12	35	161	$0.00003\ 0.00002\ 0.267\ 0.444\ 0.505\ 1.772\ 1.248\ 1.03\ 2.28\ 4.15$
SEPIA	Sepias	Sepias	18	25	43	722	$0.00003\ 0.00002\ 0.310\ 0.518\ 1.982\ 1.082\ 1.927\ 1.14\ 3.06\ 4.14$
SEPSI	Serranus psittacinus	Serran Violon	19	5	24	0	$0.00003\ 0.00002\ 0.212\ 0.277\ 0.111\ 2.242\ 1.118\ 1.23\ 2.35\ 4.81$
SERGE	Sergestes (spp.)		7	36	43	222	0.00001 0.00004 0.210 0.429 4.277 0.245 2.540 1.98 4.52 3.08
SERLA	Seriola lalandi	Medregal rabo amarillo	14	10	24	195	0.00003 0.00002 0.230 0.378 0.378 1.125 0.974 0.53 1.50 3.97
SERPH	Sergia phorca		8	31	39	4	0.00001 0.00004 0.175 0.330 3.833 0.302 2.211 1.92 4.14 3.04
SICYO	Sicyonia (spp.)	Camaron de roca	15	62	77	4342	$0.00003\ 0.00002\ 0.375\ 0.615\ 5.600\ 0.464\ 4.302\ 1.76\ 6.06\ 3.42$
SPAN	Sphoeroides annulatus	Botete diana	8	8	16	183	0.00001 0.00002 0.316 0.397 0.284 0.546 0.768 0.06 0.83 2.96
SPHYE	Sphyraena ensis	Barracuda mexicana	13	4	17	8430	0.00003 0.00002 0.365 0.499 0.164 7.069 1.730 5.50 7.23 4.17
SPHYL	Sphyrna lewini	Tiburón martillo común	26	1	27	13	0.00005 0.00001 0.223 0.354 0.026 118.7 5.315 113 119 5.04
SPHYT	Sphyrna tiburo	Cornuda tiburo	69	4	73	198	0.00004 0.00001 0.322 0.527 0.120 22.54 10.67 12 22.7 4.49
SPHYZ	Sphyrna zygaena	Tiburón martillo liso	7	1	8	14	0.00003 0.00001 0.364 0.356 0.026 0.753 0.368 0.41 0.78 5.24
Squca	Squatina californica	Tiburón ángel	23	1	24	0	0.00003 0.00001 0.102 0.226 0.040 3.210 1.867 1.38 3.25 4.80
STELO	Stenella longirostris	Delfín tornillon	10	4	14	0	0.00003 0.00001 0.186 0.222 0.113 0.905 0.669 0.35 1.02 5.13
stera	Sternula antillarum	Golondrinita marina	14	0	14	0	0.00003 0.00001 0.148 0.129 0.000 1.095 0.765 0.33 1.10 3.83
STERE	Stegastes rectifraenum	Jaqueta de Cortés	17	8	25	253	0.00001 0.00002 0.252 0.401 0.386 1.433 1.456 0.36 1.82 2.46
stheo	Sthenoteuthis oualaniensis		19	39	58	1197	0.00003 0.00002 0.256 0.489 2.848 1.442 3.124 1.17 4.29 4.27
STOMA	Stomatopods	Estomatópodos	24	66	90	8000	0.00003 0.00002 0.352 0.600 6.992 0.933 5.325 2.60 7.93 3.52
STREX	Strongylura exilis	Agujón californiano	7	5	12	0	0.00001 0.00002 0.239 0.222 0.511 0.456 0.449 0.52 0.97 3.87

SULEU	Sula leucogaster	Alcatraz pardo	26	2	28	15	0.00003 0.00001 0.217 0.361 0.047 3.685 2.184 1.55 3.73 4.53
SUVER	Sufflamen verres	Cochito naranja	25	2	27	24	$0.00003\ 0.00002\ 0.211\ 0.349\ 0.037\ 1.481\ 1.285\ 0.23\ 1.52\ 3.19$
SYALA	Syacium latifrons	Lenguado playero	10	16	26	11200	0.00003 0.00002 0.350 0.534 1.180 0.549 0.990 0.74 1.73 4.50
SYLU	Synodus lucioceps	Chile lucio	16	17	33	1231	$0.00003\ 0.00002\ 0.370\ 0.573\ 0.981\ 1.225\ 1.420\ 0.79\ 2.21\ 4.67$
syov	Syacium ovale	Lenguado ovalado	19	14	33	3154	$0.00003\ 0.00002\ 0.307\ 0.513\ 0.937\ 1.245\ 1.347\ 0.83\ 2.18\ 4.27$
sysa	Synodus scituliceps	Chile arpón	16	16	32	0	$0.00003\ 0.00002\ 0.370\ 0.452\ 0.807\ 1.225\ 1.253\ 0.78\ 2.03\ 4.19$
THUNA	Thunnus albacares	Atún aleta amarilla	42	4	46	435	$0.00003\ 0.00002\ 0.243\ 0.461\ 0.089\ 5.261\ 2.770\ 2.58\ 5.35\ 4.02$
TOBO	Tomicodon boehlkei	Pejesapo de Cortés	8	2	10	3	$0.00001\ 0.00002\ 0.101\ 0.149\ 0.463\ 0.315\ 0.594\ 0.18\ 0.78\ 2.88$
TOTOA	Totoaba macdonaldi	Totoaba	16	0	16	0	$0.00003\; 0.00001\; 0.089\; 0.176\;\; 0.000\;\; 1.378\; 0.522\; 0.86\;\; 1.38\; 4.38$
TOZE	Tomicodon zebra	Chupapiedra zebra	6	2	8	32	0.00001 0.00002 0.154 0.192 0.463 0.242 0.523 0.18 0.71 3.08
TRASY	Trachurus symmetricus	Jurel ojetón	14	17	31	18	0.00003 0.00002 0.199 0.354 0.981 0.836 1.268 0.55 1.82 3.85
TRILE	Trichurus lepturus	Machete o Peje Espada	14	4	18	19	0.00003 0.00002 0.164 0.269 0.180 1.090 0.714 0.56 1.27 4.30
TRIME	Triphoturus mexicanus	Linternilla Mexicana	12	15	27	432	0.00001 0.00002 0.320 0.478 2.281 0.626 1.382 1.52 2.91 3.26
TRISE	Triakis semifasciata	Tiburón leopardo	28	2	30	6	0.00003 0.00001 0.186 0.333 0.040 4.480 2.338 2.18 4.52 4.35
TUTRU	Tursiops truncatus	Delfin mular	23	3	26	13	0.00003 0.00001 0.186 0.325 0.084 3.433 2.345 1.17 3.52 4.56
TYCRO	Tylosurus crocodilus	Agujón lisero	6	16	22	0	$0.00003\ 0.00002\ 0.239\ 0.286\ 0.909\ 0.445\ 0.811\ 0.54\ 1.35\ 4.08$
	Ulvales	Ulvales	0	6	6	0	0.00001 0.00003 0.200 0.104 1.731 0.000 0.466 1.27 1.73 1.00
020712							
UMBRI	Umbrina (spp.)	Berrugata aleta	13	14	27	0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42
UMBRI	Umbrina (spp.) Urotrygon aspidura	Berrugata aleta amarilla Raya redonda panámica	13 8	14 0	27 8	0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44
unibri Uras Urha	Umbrina (spp.) Urotrygon aspidura Urolophus halleri	Berrugata aleta amarilla Raya redonda panámica Raya redonda común	13 8 18	14 0 0	27 8 18	0 0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69
UIVIBRI URAS URHA URORO	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Pogers	13 8 18 5	14 0 0 0	27 8 18 5	0 0 0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27
UIVIBRI URAS URHA URORO VINLU	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado	13 8 18 5 7	14 0 0 0 7	27 8 18 5 14	0 0 0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08
UMBRI URAS URHA URORO VINILU WORM	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos	13 8 18 5 7 7	14 0 0 0 7 36	27 8 18 5 14 43	0 0 0 0 135	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22
UMBRI URAS URHA URORO VINILU WORM XECA	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema	13 8 18 5 7 7 1	14 0 0 7 36 9	27 8 18 5 14 43 10	0 0 0 0 135 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04
UMBRI URAS URHA URORO VINLU WORM XECA ZACAL	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California	13 8 18 5 7 7 1 27	14 0 0 7 36 9 4	27 8 18 5 14 43 10 31	0 0 0 135 0 12	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60
UMBRI URAS URHA URORO VINLU WORM XECA ZACAL ZACOR	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus Zanclus cornutus	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California Idolo moro	13 8 18 5 7 7 1 27 6	14 0 0 7 36 9 4 0	27 8 18 5 14 43 10 31 6	0 0 0 135 0 12 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60 0.00001 0.00001 0.052 0.036 0.000 0.276 0.268 0.01 0.28 2.46
UMBRI URAS URHA URORO VINLU WORM XECA ZACAL ZACOR ZACOR	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus Zanclus cornutus Zapteryx exasperata	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California Idolo moro Guitarra pinta	13 8 18 5 7 7 1 27 6 16	14 0 0 7 36 9 4 0	27 8 18 5 14 43 10 31 6 16	0 0 0 135 0 12 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60 0.00001 0.00001 0.052 0.036 0.000 0.276 0.268 0.01 0.28 2.46 0.00003 0.00001 0.361 0.353 0.000 1.615 0.539 1.08 1.62 4.51
UIVIBRI URAS URHA URORO VINLU WORM XECA ZACAL ZACOR ZAPEX ZARO	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus Zanclus cornutus Zapteryx exasperata Zalembius rosaceus	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California Idolo moro Guitarra pinta Mojarra rosada	13 8 18 5 7 1 27 6 16 15	14 0 0 7 36 9 4 0 0 3	27 8 18 5 14 43 10 31 6 16 18	0 0 0 135 0 12 0 0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60 0.00001 0.00001 0.052 0.036 0.000 0.276 0.268 0.01 0.28 2.46 0.00003 0.00001 0.361 0.353 0.000 1.615 0.539 1.08 1.62 4.51 0.00003 0.00001 0.113 0.170 0.105 0.578 0.337 0.35 0.68 3.63
UMBRI URAS URHA URORO VINLU WORM XECA ZACAL ZACAL ZACOR ZACA ZARO ZICAV	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus Zanclus cornutus Zapteryx exasperata Zalembius rosaceus Ziphius cavirostris	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California Idolo moro Guitarra pinta Mojarra rosada Ziphio de Cuvier	13 8 18 5 7 1 27 6 16 15 18	14 0 0 7 36 9 4 0 0 3 1	27 8 18 5 14 43 10 31 6 16 18 19	0 0 0 135 0 12 0 0 0 0	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60 0.00001 0.00001 0.052 0.036 0.000 0.276 0.268 0.01 0.28 2.46 0.00003 0.00001 0.361 0.353 0.000 1.615 0.539 1.08 1.62 4.51 0.00003 0.00001 0.113 0.170 0.105 0.578 0.337 0.35 0.68 3.63 0.00003 0.00001 0.162 0.208 0.029 1.143 0.724 0.45 1.17 5.02
UIVIBRI URAS URHA URORO VINLU WORM XECA ZACAL ZACAL ZACOR ZAPEX ZARO ZICAV ZOOPL	Umbrina (spp.) Urotrygon aspidura Urolophus halleri Urotrygon rogersi Vinciguerria lucetia Gusanos Xenistius californiensis Zalophus californianus Zanclus cornutus Zapteryx exasperata Zalembius rosaceus Ziphius cavirostris Zooplancton	Berrugata aleta amarilla Raya redonda panámica Raya redonda común Raya redonda de Rogers Luminoso punteado Gusanos Salema Lobo marino de California Idolo moro Guitarra pinta Mojarra rosada Ziphio de Cuvier	 13 8 18 7 7 1 27 6 16 15 18 8 	14 0 0 7 36 9 4 0 0 3 1 57	27 8 18 5 14 43 10 31 6 16 18 19 75	0 0 0 135 0 12 0 0 0 0 0 0 265	0.00003 0.00002 0.329 0.374 0.795 0.522 0.862 0.45 1.32 3.42 0.00003 0.00001 0.054 0.106 0.000 0.421 0.101 0.32 0.42 4.44 0.00003 0.00001 0.142 0.167 0.000 0.737 0.357 0.38 0.74 3.69 0.00003 0.00001 0.150 0.082 0.000 0.109 0.069 0.04 0.11 3.27 0.00001 0.00002 0.115 0.132 1.813 0.338 0.850 1.30 2.15 3.08 0.00001 0.00004 0.350 0.526 7.703 0.339 3.453 4.59 8.04 3.22 0.00001 0.00002 0.325 0.251 0.404 0.018 0.365 0.06 0.42 3.04 0.00003 0.00001 0.172 0.330 0.113 4.537 2.446 2.20 4.65 4.60 0.00001 0.00001 0.052 0.036 0.000 0.276 0.268 0.01 0.28 2.46 0.00003 0.00001 0.361 0.353 0.000 1.615 0.539 1.08 1.62 4.51 0.00003 0.00001 0.113 0.170 0.105 0.578 0.337 0.35 0.68 3.63 0.00003 0.00001 0.162 0.208 0.029 1.143 0.724 0.45 1.17 5.02 0.00001 0.00006 0.295 0.507 34.8630.186 11.66 23.4 35.1 2.04