

PROPOSAL OF AN INNOVATIVE ARCHITECTURE FOR WEB BASED

EDUCATION SYSTEMS

Rubén Peredo Valderrama
1
, Iván Peredo-Valderrama

1

1 Superior School of Computer Science of National Polytechnic Institute

Av. Juan de Dios Bátiz S/N esquina Miguel Othón de Mendizabal, Col. Lindavista, 07738

México

rperedo@ipn.mx

ABSTRACT

This paper presents a proposal of an innovative

Architecture for Web Based Education Systems based on:

Software Design Patterns, Components, and Multi-Agent

System (MAS). The approach improves the Learning

Technology Standard Architecture (LTSA), proposed by

IEEE. Maintaining compatibility with: Advanced

Distributed Learning Initiative - Sharable Content Object

Reusable Model (ADL-SCORM). The proposal

implements several Software Design Patterns provide

solutions for common problems in the development of

Web Based Education Systems, focusing on maintenance

and change. Another key part of the proposal are

IRLCOO components, which allow: conquering

complexity, managing change, and maximizing

reusability. The Web Based Education Systems are:

complex and dynamic, the MAS can model complex and

dynamic systems.

The IEEE 1484 LTSA has four processes, which are

implemented as agents in our proposal: Learner,

Evaluation, Coach, and Delivery.

KEY WORDS

Architecture, Software Design Patterns, Components,

MAS, Web-Based Education

1. Introduction

The Software Design Patterns are tools that allow us to

manage constant change in software design and

development, allowing managing changes and

maximizing reusability of the software developed.

Designers and developers need to build software that is

flexible and easy to maintain, supporting constant change,

developing software for the real world.

The Web and more specially the Web applications must

have capacity to manage change, maximizing reusability,

and maintainability. The Software Design Patterns offer

designs that can handle the change, allowing to make

changes and reuse of the software developed. The

Software Design Patterns take a set of patterns to resolve

recurrent problems.

The fundamental principles of design patterns were

established by the Gang of Four [1]:

 “Program to an ‘interface’, not an

‘implementation’.”

 “Favor ‘object composition’ over ‘class

inheritance’.”

The flexibility in the software development is linked to

the necessity to manage dependency; an inadequate

handling leads to unexpected results. The interfaces

decouple the code from the implementation, allowing

variation in the implementation; the interfaces reduce

implementation dependencies between subsystems,

resulting in changes that can be done at Run-Time. The

object composition adds new functionality bringing new

objects; it hides the internal details, maintaining

encapsulation.

The IEEE 1484 LTSA is a standard for Learning

Technology designed by the Learning Technology

Standards Committee (LTSC) of the IEEE. It defines an

architecture for recording descriptive information linked

to the learning process [2].

Sharable Content Object Reference Model (SCORM) is a

standard integrated with a set of related technical

standards, specifications, and guidelines. SCORM is a

specification of the Advanced Distributed Learning

(ADL) [3].SCORM defines a communication channel

between the client side content and the Run-Time

Environment (RTE).

A system can be based on a single agent working within

an environment, interacting with its users, but usually are

made up of multiple agents. The Multi-Agent System

(MAS) can model complex social systems and introduce

the possibility of agents having common or conflicting

goals. These agents may interact with others directly or

indirectly. Agents may decide to cooperate for mutual

benefit or may compete to serve their own interests [4].

This paper is organized as follows: in Section 2, the

General Architecture based on patterns is described; in

Section 3 the MAS architecture is described; in Section 4,

the Web applications are presented; finally, the

conclusions are discussed.

 Proceedings of the IASTED International Conference
Computers and Advanced Technology in Education (CATE 2012)
June 25 - 27, 2012 Napoli, Italy

DOI: 10.2316/P.2012.774-074 49

2. General Architecture based on atterns P

The OOP and Software Design Patterns help to develop

Web applications with the goals of flexibility and

reusability, keeping the Web application healthy, to

regularly update it, and to expand it, when needed. The

Software Design Patterns are a set of architectural designs

to keep the Web applications dynamic.

Selecting the best design patterns for a particular situation

is complex, because Web application development which

is our case may have different approaches. Our proposed

architecture uses the following Software Design Patterns:

Factory Method, Singleton, Composition, Observer,

Template Method, and Model-View-Controller (MVC).

The key Software Design Patterns are: MVC and

Composition, the first on the Server side, and the second

on the Client side.

The MVC is a compound pattern, with patterns embedded

working together to build complex Web applications,

been used in several previous papers [5-8]. The MVC

pattern makes the separation of: Model, View and

Controller, without overlap in each of their

responsibilities. The MVC pattern is shown in Fig. 1,

using Software Design Patterns on the Server side:

Observer and Singleton, while on the Client side:

Composition, Template Method, and Factory Method.

The MVC pattern needs to notify all associated Views

that a change has occurred, ignoring specific details about

the Views, being a recurrent problem, resolved

implementing an Observer pattern. The Observer pattern

keeps updated Views of the MVC pattern. The Singleton

pattern has one and only one instance of the class at any

one time, with a global access point, this pattern is

implemented with a Java Bean, to manage the Model of

the MVC pattern.

The Composition pattern is fundamental to the Client

side, allowing us to build composite components based on

primitive/composite components, also simplifies the

interface, allowing us to manage primitive/composite

components in the same way. The Intelligent Reusable

Learning Components - Oriented Object (IRLCOO) were

implemented with the Adobe Flash platform. Adobe Flash

is a multimedia platform with a powerful Object Oriented

Programming (OOP) language denominated ActionScript

3.0 [9]. IRLCOO were developed by Peredo et al [5], the

components were used to develop: Virtual Laboratory,

Problem Based Learning (PBL), Virtual Desktop,

VoiceXML, Authoring, and Evaluation Systems. The

components load media objects at Run-Time and offer a

programmable and adaptive environment to the Learner’s

needs, using the Composition pattern. The pattern

provides a solution to assemble complex systems that are

made up of several smaller components.

The system consists of components that may be individual

multimedia components or containers with collections of

multimedia components. The Composition pattern

improves the construction and management of multimedia

components composed of related pieces. The IRLCOO

can be primitives/indivisible components or composite,

containing a collection of other components, a container

allowing to the clients to manage primitives/indivisible

components and composite components to use a common

API, simplifying the interface [10]. This pattern has

particular utility in our development, allowing us building

and manipulating complex multimedia components.

IRLCOO Components have their communications

capabilities, grouped in a communication API. The

middleware for the components use different frameworks

as: Flex [11], AJAX [12], Web Services [13], Hibernate

[14], Struts [15], etc.

Fig. 2 shows the class diagram with the composition

pattern, allowing us to separate the control/ navigation of

the IRLCOO components, maximizing reusability with

IRLCOO components based on specialized/indivisible

components, also been implemented reusable multimedia

components for: animation, sound, image, and video,

obtaining a common API for specialized/indivisible

components.

Another pattern used on the client side was the Template

Method; it is a set of steps for getting something done.

The pattern uses inheritance for behavior between classes,

allowing to the subclasses to provide with implementation

in some operations. The parent class invokes the

operations of the subclasses, blocks the order of

operations to be called, but not implementations of

operations. The IRLCOO components for: Animation,

Sound, and Video, sharing actions in common, but with

specific differences among multimedia, the Template

Method was implemented with the IRLCOO components:

IRLCOO_Animation, IRLCOO_Image, IRLCOO_Sound,

and IRLCOO_Video. The components focus in the

functions of getting a filename and playing, placing them

into a set of generic steps, but taking into consideration

the differences among multimedia. The next block of

code shows the implementation of the pattern:

//ActionScript 3.0

package

{

import flash.display.Sprite;

...

//Abstract Class

class Multimedia extends Sprite

{

...

//Template method

public final function mediaPlayer(

):void

{

//Abstract Method

selectMedia();

//Abstract Method

50

play();

//Concrete Method

IRLCOO();

}

...

}

}

To do changes that were not planned in the design can

require changes to existing code. The Factory Method

pattern eliminates coupling caused by instantiating

concrete classes. It lets to separate the creation of objects

from their use. The Factory Method pattern introduces an

intermediary between the client and the concrete class that

is instantiated, the intermediary is called creator class, the

client does not specify the class name, the creator class

encapsulates that information, it allows loosely coupled

designs.

The Factory Method pattern allowed us a loosely coupled

design. The Classes/Objects in the class diagram

representing the logic of the Exam, instantiated within the

IRLCOO components, in order to evaluate the Exam.

Web applications developed have followed this general

architecture, being the following: Authoring, Evaluation,

PBL, Virtual Java Programming Laboratory, VoiceXML,

Remote Desktop, Virtual Desktop, and Filtered.

3. MAS Architecture

WBE systems are complex, and dynamic. An autonomous

agent finds, conveys, or manages information. Because of

the nature of the environments, the agents must be long-

lived (they should be able to execute unattended for long

periods of time), adaptive (they should be able to explore

and learn about their environment, including each other),

and they should interact and coordinate to achieve their

own goals, and the goals of their society; they should rely

on other agents to know things so they do not have to

know everything [16]. MAS are groups of agents, forming

a society in which they play different roles. The group

defines the roles, and the roles define the commitments

associated with them. When an agent joins a group, he

joins in one or more roles, and acquires the commitments

of that role. The groups define the social context in which

the agents interact [16].

.

Fig. 1. System architecture of the Server-side.

51

Composite-IRLCOO component

+add_IRLCOO(IRLCOO:Component):void
+remove_IRLCOO(IRLCOO:Component):void
+getName_IRLCOO():String
+setName_IRLCOO(name:String):void
+getParent_IRLCOO():IRLCOO
+setParent_IRLCOO(IRLCOO:Component):void
+getChild_IRLCOO():IRLCOO
+setChild_IRLCOO(IRLCOO:Component):void
+getIRLCOO_Animation():String
+setIRLCOO_Animation(name:String):void
+getIRLCOO_Image():String
+setIRLCOO_Image(name:String):void
+getIRLCOO_Sound():String
+setIRLCOO_Sound(name:String):void
+getIRLCOO_Video():String
+setIRLCOO_Video(name:String):void
…
+iterator():iterator

Primitive Components

Multimedia-IRLCOO Component

IRLCOO_Animation

+iterator():iterator

IRLCOO_Sound

+iterator():iterato
r

IRLCOO_Image

+iterator():iterato
r

IRLCOO_Video

+iterator():iterator

CLIENT

Content/Navigation-IRLCOO Component

IRLCOO_Title

+iterator():iterator

IRLCOO_Subtitle

+iterator():iterator

...

+iterator():iterator
IRLCOO_Navigation

+iterator():iterator

Composite-IRLCOO Components

Content-IRLCOO component

+add_IRLCOO(IRLCOO:Component):void
+remove_IRLCOO(IRLCOO:Component):void
+getName_IRLCOO():String
+setName_IRLCOO(name:String):void
+getParent_IRLCOO():IRLCOO
+setParent_IRLCOO(IRLCOO:Component):void
+getChild_IRLCOO():IRLCOO
+setChild_IRLCOO(IRLCOO:Component):void
+getIRLCOO_Animation():String
+setIRLCOO_Animation(name:String):void
+getIRLCOO_Image():String
+setIRLCOO_Image(name:String):void
+getIRLCOO_Sound():String
+setIRLCOO_Sound(name:String):void
+getIRLCOO_Video():String
+setIRLCOO_Video(name:String):void
…
+iterator():iterator

...

+add_IRLCOO(IRLCOO:Component):void
+remove_IRLCOO(IRLCOO:Component):void
+getName_IRLCOO():String
+setName_IRLCOO(name:String):void
+getParent_IRLCOO():IRLCOO
+setParent_IRLCOO(IRLCOO:Component):void
+getChild_IRLCOO():IRLCOO
+setChild_IRLCOO(IRLCOO:Component):void
+getVideo_IRLCOO():String
+setVideo_IRLCOO(name:String):void
…
+iterator():iterator

Evaluation-IRLCOO component

+add_IRLCOO(IRLCOO:Component):void
+remove_IRLCOO(IRLCOO:Component):void
+getName_IRLCOO():String
+setName_IRLCOO(name:String):void
+getParent_IRLCOO():IRLCOO
+setParent_IRLCOO(IRLCOO:Component):void
+getChild_IRLCOO():IRLCOO
+setChild_IRLCOO(IRLCOO:Component):void
+getIRLCOO_Animation():String
+setIRLCOO_Animation(name:String):void
+getIRLCOO_Image():String
+setIRLCOO_Image(name:String):void
+getIRLCOO_Sound():String
+setIRLCOO_Sound(name:String):void
+getIRLCOO_Video():String
+setIRLCOO_Video(name:String):void
…
+iterator():iterator

Fig. 2. Class diagram of the Composition pattern.

The Virtual Java Programming Laboratory implemented

the first attempt of a MAS showed in Fig. 3. The MAS

analyzes the Learner’s metrics, dynamically

reconfiguring: sequence, level and feedback according to

the Learner’s needs. The system was implemented using

the framework JADE [17]. The package

jade.wrapper.gateway is used, and more specifically the

classes: JadeGateway and GatewayAgent. The event

POST trigger a message from the Learner’s Web browser

to the system, later the message will be handled by the

GateWayServlet, depending on the sendmessage (action

type) received. The action creates a BlackBoardBean

object, which will be our communication channel between

the AgentConnection and the servlet. The AgentDB

receives the send message by the AgentConnection and

performs the query to the database. The response is

obtained and sends it to the AgentConnection, which is in

waiting of the mentioned response. The AgentConnection

writes the response on the BlackBoardBean and sends a

notification to the servlet, which prepares the response.

Finally the servlet sends the response to the user’s JSP.

The MAS Architecture later was improved based on layer

3 of IEEE 1484 – LTSA architecture specification [5] and

implemented the MAS with the frameworks JADEX-

Webbridge [18], using the Belief–Desire–Intention (BDI)

model. The architecture consists of four processes:

Learner, Evaluation, Coach, and Delivery; two stores:

Learner Records and Learning Resources; and fourteen

information workflows. The MAS makes use of

knowledge bases: Learning Resources and Learner

Records, Data Bases: Learning Resources and Learner

Records, the knowledge bases have Learner's metrics

collected via the IRLCOO components e.g., tracking

learning, chat, discussion forums, completed activities,

etc., the data bases have Learner's metrics collected via

the system based on IEEE 1484 – LTSA architecture and

made persistent via Hibernate [14], to tailor the:

navigation sequence and reconfigure content at Run-

Time according to Learner’s needs [9-10], modifying the

imsmanifest.xml, in order to maintain compatibility with

SCORM [11]. The JADEX-Webbridge is to communicate

transparently the platform of agents and the Web

application [18].

composition pattern

Learner
Agent

Web Browser

GateWayServlet
(SendMessageAction)

AgentConnection

AgentDB

BlackBoardBean

MASLearning
Resources

Learner
Records

Fig. 3. Communication model between IRLCOO and

MAS.

In this case, we centred in: Learner Agent, Coach Agent,

Evaluation Agent, and Delivery Agent, which allow the

system's adaptive behaviour, providing information about

the Learner Agent. The Learner Agent is used by the

system for:

 -Adaptive support and navigation guide based on

prioritized successors and Learner’s needs,

 -Context support,

 -Dynamic support and feedback.

Fig. 4 depicts the MAS architecture of the Server-side of

the proposal with the integrated MAS, highlighting the

following parts: Middleware, different Web applications

developed with patterns, and MAS. Middleware has the

following main modules: LMS, Meta-labeled SCORM,

Meta-labeled VoiceXML, Meta-labeled XML, Meta-

labeled RDF, Uploadfiles, Dynamic sequencing, Dynamic

composition, MAS, Dynamic Feedback, etc.

52

Fig. 4. MAS architecture of the Server-side.

The IRLCOO components take Learner's metrics, these

metrics complement the IEEE 1484 – LTSA architecture

specification e.g.: tracking learning, tracking evaluation, ,

evaluation chat, evaluation discussion forums, completed

activities, etc., being serialized in RDF format, forming

our Knowledge Base layer, it interacts with the Coach

Agent and the object Tracker Learner, extracting

Learner's metrics personalized via Jena Query Engine

(JQE), using: Learning Resources - RDF Store and

Learner Records - RDF Store, based on triples, Fig. 4

shows the previously described.

The Learner agent takes information about the Learner,

serialized to RDF triples through the IRLCOO

components. The Evaluation and Delivery agent

collaborate together to reconfigure dynamically the

sequence and level of learning materials, through the

imsmanifest.xml SCORM, to tailor based on Learner's

metrics personalized using the layers: Data Base and

Knowledge Base. The Coach agent provides a dynamic

and personalized feedback at Run-Time, based on the

information taken on Knowledge bases and Data Bases

(Learner Records and Learning Resources respectively),

during the learning process, and in accordance with the

specifications established by the real Coach. The initial

states of our agents are established among other things by

our: beliefs, goals, and the library of plans. Furthermore

to the BDI components, the Directory Facilitator (DF)

registers the service descriptions of our gents.

4. Web pplications A

Web applications developed are: Authoring, Evaluation,

PBL, Virtual Java Programming Laboratory, VoiceXML,

Remote Desktop, Virtual Desktop, and Filtered. We will

show only some next.

Authoring System facilitate the development of learning

content, to facilitate the authoring content to the tutors

who are not experts in developing Web applications with

multimedia. The Authoring System has a metadata tool

that supports the generation of IRLCOO components to

provide online courses (see Fig. 5). The courseware takes

Learner’s metrics based on IRLCOO components, with

the purpose to tailor learning experiences. Besides, the

IRLCOO components provide a RIA interface, based on

IRLCOO components and patterns, compatible with the

SCORM Models (Content Aggregation, Sequencing and

Navigation, and Run-Time Environment) [3].

The Evaluation System is based on IRLCOO components

and patterns. The Evaluation System makes an analysis of

the Learner’s results, which is built during the

Teaching/Learning Process. The results are based on

metrics taken during the Learner’s behaviour at Run-

Time. These measures are stored into the database and

knowledgebase named Learner Records under the

Learner’s results. The reconfiguration of new

course/assessment sequences is according to the results

obtained, and deposited within the system at: Databases

and Knowledgebase, also adapting the level of course

materials to Learner's needs, based on IRLCOO

components and patterns, taking decisions the Coach

Agent in accordance with its established goals.

Fig. 5. Learning content (Spanish) generated for the

Authoring System.

MAS utilize the dynamic sequencing to change the

course/assessment sequence. The dynamic sequencing is

defined for the instructional strategy based on the

Sequencing/Navigation SCORM. The Coach Agent

invokes Dynamic Reconfiguration Plan, to generate

dynamic feedback, according to the Learner’s results,

comparing the goals set by the Coach Agent, and

executed the plans: Dynamic sequencing and Dynamic

composition, according to the Learner’s metrics.

53

5. Conclusion

The different Web applications were created based on:

IRLCOO components, patterns and MAS. Our approach

is based on: accessibility, durability, interoperability, and

reusability of the learning contents, built Shareable

Content Objects (SCOs) based on IRLCOO components

and patterns.

The communication model proposed supports

synchronous and asynchronous communication channels,

incorporating technologies such as: AJAX, Struts,

Hibernate, Web Services, and JADE/JADEX/Webbridge.

This model integrated complementary technologies. The

different Web applications were developed under this

model to help in reducing the complexity to produce

learning materials. The IEEE 1484 LTSA standard allows

us to produce intelligent and adaptive Web applications

with bidirectional communication, according to the

Learner’s needs at Run-Time, taken certain Learner’s

metrics.

The Web applications are used to develop educational

materials for different courses online at the Institute, in

our case applied to the so called POLILIBROS. The

benefits of using these tools are: complexity reduction in

development, reuse, and updates based on components.

The costs are reduced significantly. A recurring factor in

the IRLCOO components and patterns is the managing

change. One of the most important limitations of the

system is the dependency on the plugin Adobe Flash

Player.

OOP and Software Design Patterns help to develop Web

applications with flexibility and reusability, keeping the

Web applications healthy, upgradeable and expandable,

maintaining our dynamic Web applications.

6. Future teps S

We must develop more IRLCOO components, is also

important to implement more Software Design Patterns in

the IRLCOO components. We must further improve the

architecture of MAS. We must add more ontologies and

improve the use of semantic Web technologies.

Acknowledgements

Authors of this paper would like to thank the Instituto

Politécnico Nacional (IPN) and the Escuela Superior de

Cómputo (ESCOM) for the support for this work within

the project SIP-IPN 20121741. Thanking all students who

participated in the development of systems, and

particularly to Juan Carlos Caravantes.

References

[1] E. Gamma, R. Helm, R. Johnson & J. Vlissides,

Design patterns: elements of reusable object-oriented

software (Addison-Wesley, 1995).

[2] A Draft Standard for Learning Technology - Learning

Technology Systems Architecture (LTSA). Retrieved

January 10, 2007 from http://ieee.ltsc.org/wg1.

[3] Advanced Distributed Learning Consortium.

Retrieved January 24, 2006 from http://www.adlnet.org.

[4] Fabio L. Bellifemine, Giovanni Caire, and Dominic

Greenwood, Developing Multi-Agent Systems with JADE.

Wiley (England, Series in Agent Technology. Wiley,

2007).

[5] R. Peredo, L. Balladares & L. Sheremetov,

Development of intelligent reusable learning objects for

Web-based education systems, Expert Systems with

Applications, 28(2), 2005, 273-283.

[6] A. Canales, A. Peña, R. Peredo, H. Sossa & A.

Gutiérrez, Adaptive and intelligent web based education

system: Towards an integral architecture and framework,
Expert Systems with Applications, 33(4), 2007, 1076-

1089.

[7] A. Canales and R. Peredo, Adaptive and Intelligent

Agents Applied in the Taking of Decisions Inside of a

Web-Based Education System, Intelligent Agents in The

Evolution of Web and Applications. (Studies in

Computational Intelligence. Springer Berlin/Heidelberg.

Book Chapter, 2009, 87-112).

[8] R. Peredo, A. Canales, A. Menchaca & I. Peredo,

Intelligent Web-based education system for adaptive

learning, Expert Systems with Applications, 38 (2011),

2011, 14690–14702 .

[9] Adobe© Flash©. Retrieved February 26, 2007 from

http://www.adobe.com.

[10] W. Sanders, C. Cumaranatunge, ActionScript 3.0

Design Patterns: Object Oriented Programming

Techniques (Sebastopol, CA: Adobe Developer Library,

2007).

[11] M. E. Davis, J. A. Phillips, Flex 3: A Beginner’s

Guide (USA: McGraw-Hill Osborne Media, 2008).

[12] D. Crane, E. Pascarello, D. James, Ajax in Action

(Greenwich, CT: Manning Publications, 2005).

[13] E. Newcomer, G. Lomow, Understanding SOA with

Web Services (Upper Saddle River, NJ: Addison-Wesley

Professional, 2004).

[14] N. Heudecker, P. Peak, Hibernate Quickly

(Greenwich, CT: Manning Publications, 2005).

[15] J. Holmes, Struts: The Complete Reference (New

York, NY: McGraw-Hill Osborne Media, 2006).

[16] Gerhard Weiss et al., Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence. The MIT

Press (England, The MIT Press, 2000).

[17] JADE version 3.6. Retrieved May 5, 2008 from:

http://jade.tilab.com/dl.php?file=JADE-all-3.6.zip.

[18] JADEX - Overview (About.Overview) - XWiki,

Retrieved August 21, 2009 from http://jadex-

agents.informatik.uni-

hamburg.de/xwiki/bin/view/About/Overview.

54

http://ieee.ltsc.org/wg1
http://www.adlnet.org/
http://www.adobe.com/

