Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodigital.ipn.mx/handle/123456789/19796| Título : | Mono-Objective Function Analysis Using an Optimization Approach |
| Autor : | Clepner Kerik, Julio Bernardo |
| Palabras clave : | Lyapunov problem solving control methods search heuristic methods artificial intelligence |
| Fecha de publicación : | mar-2014 |
| Editorial : | IEEE LATIN AMERICA TRANSACTIONS, VOL. 12, NO. 2 |
| Citación : | IEEE South Brazil |
| Resumen : | In this paper we propose an evolutionary technique based in a Lyapunov method for mono-objective optimization, that associate to every ergodic controllable finite Markov Chains a Lyapunov-like mono-objective function. For representing the trajectory dynamics properties local-optimal policies are defined to minimize the one-step decrement of the cost-function. We propose a state-value function that increase and decrease between states of the Markov decision processes. Then, we show that a Lyapunov mono-objective function, which can only decrease over time, can be built for the system. For illustration purposes, we present a simulated experiment that shows the trueness of the suggested method. |
| URI : | http://www.repositoriodigital.ipn.mx/handle/123456789/19796 |
| ISSN : | 1548-0992 |
| Aparece en las colecciones: | Artículos |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 12TLA2_33Clempner.pdf | 484.75 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
